■ Max r _{DS(on)}	= 5.7 m Ω at $~V_{GS}$ = 4.5 V, I_D = 17 A	improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or					
■ State-of-the	-art switching performance	conventional switching PWM controllers. It has been optimized					
Lower output boost efficie	ut capacitance, gate resistance, and gate charge ency						
Shielded aa	ate technology reduces switch node ringing and	Applications					
•	nmunity to EMI and cross conduction	High side switching for high end computing					
RoHS Comp	pliant	High power density DC-DC synchronous buck converter					
Pin 1 To MOSFET	$Dual Cool^{TM} 33 Bottom$ Maximum Ratings T _A = 25 °C unless of	$S = \begin{bmatrix} 1 & 0 \\ 0 & 0 $					
Symbol	Parameter	Ratings Units					
V _{DS}	Drain to Source Voltage	(Note 5) 25 V					
V _{GS}	Gate to Source Voltage	(Note 4) ±12 V					

N-Channel Dual CoolTM 33 PowerTrench[®] MOSFET

February 2016

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage	(Note 5)	25	V
V _{GS}	Gate to Source Voltage	(Note 4)	±12	V
	Drain Current - Continuous (Package limited) T _C = 25 °C		40	
	- Continuous (Silicon Limited) T _C = 25 °C		73	A
D	- Continuous	(Note 1a)	17	A
	- Pulsed		60	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	29	mJ
D	Power Dissipation $T_{C} = 25 \text{ °C}$		41	w
P _D	Power Dissipation $T_A = 25 \degree C$	(Note 1a)	3.0	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node

Thermal Characteristics

FAIRCHILD

FDMC8588DC

25 V, 40 A, 5.7 mΩ

■ Dual CoolTM Top Side Cooling PQFN package

Features

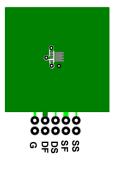
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Top Source)	7.0	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	3.0	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	105	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1k)	12	

Package Marking and Ordering Information

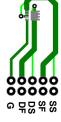
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
08DC	FDMC8588DC	Dual Cool [™] 33	13 "	12 mm	3000 units

FDMC8588DC N
N-Channel Dual Cool
M
33 PowerTrench [®]
MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A , V_{GS} = 0 V	25			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA , referenced to 25 °C		5		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 12 V, V _{DS} = 0 V			100	nA
On Chara	octeristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	0.8	1.2	1.8	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA , referenced to 25 °C		-4		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 18 A		3.6	5.0	
r _{DS(on)}		V _{GS} = 4.5 V, I _D = 17 A		4.1	5.7	mΩ
. ,		V_{GS} = 10 V, I_{D} = 18 A, T_{J} = 125 °C		5.5	7.6	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 17 A		103		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1695		pF
C _{oss}	Output Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHz		493		pF
C _{rss}	Reverse Transfer Capacitance			63		pF
R _g	Gate Resistance			0.4		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			8		ns
t _r	Rise Time	V _{DD} = 13 V, I _D = 17A,		3		ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		25		ns
t _f	Fall Time			2		ns
Q _{g(TOT)}	Total Gate Charge at 4.5V			12		nC
Q _{gs}	Total Gate Charge	V _{DD} = 13 V, I _D = 17 A		3.0		nC
Q _{gd}	Gate to Drain "Miller" Charge	1		3.0		nC


V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2)	0.7	1.2	V
		$V_{GS} = 0 V, I_S = 17 A$ (Note 2)	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _E = 17 A, di/dt = 100 A/μs		25		ns
Q _{rr}	Reverse Recovery Charge	$T_{\rm F} = 17$ A, u/ul = 100 A/µs		10		nC

Thermal Characteristics


$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Top Source)	7.0	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	3.0	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1c)	29	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	40	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	19	*CAN/
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1f)	23	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1g)	30	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1h)	79	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	16	

Notes:

1. $R_{\theta,JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

 a. 42 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 105 °C/W when mounted on a minimum pad of 2 oz copper

c. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper

f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper

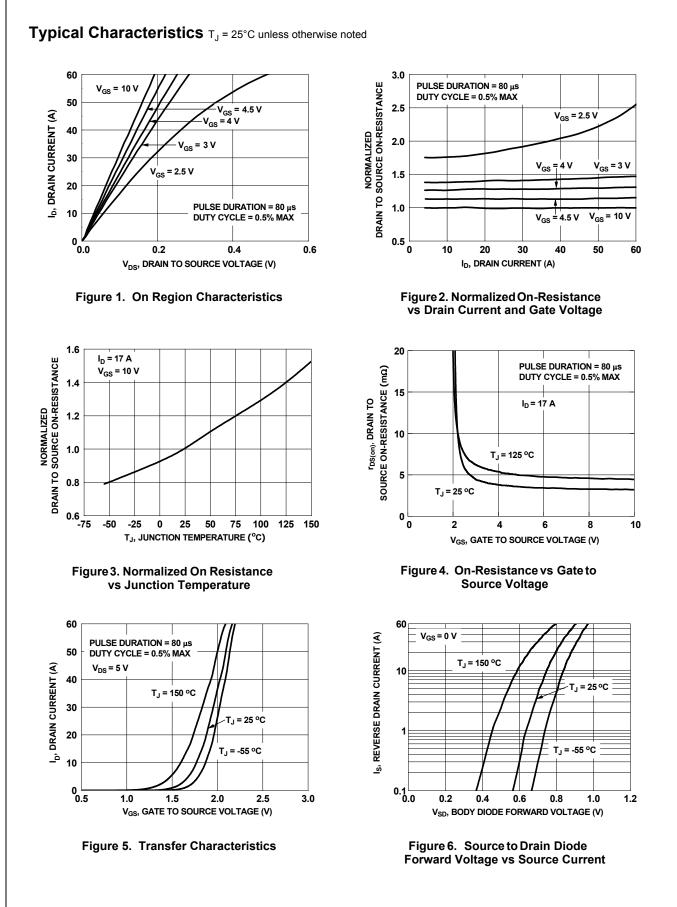
g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper

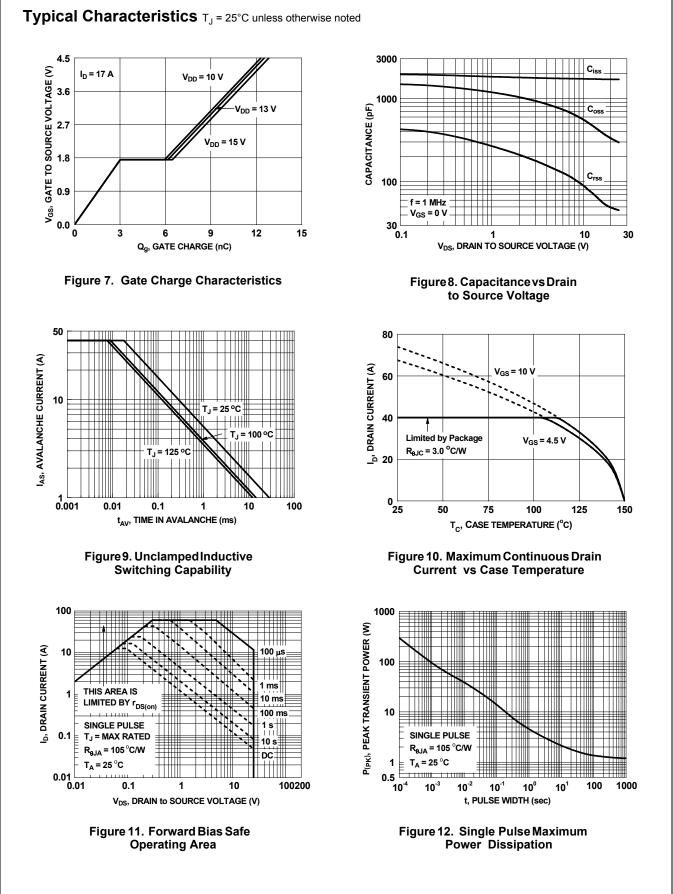
h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

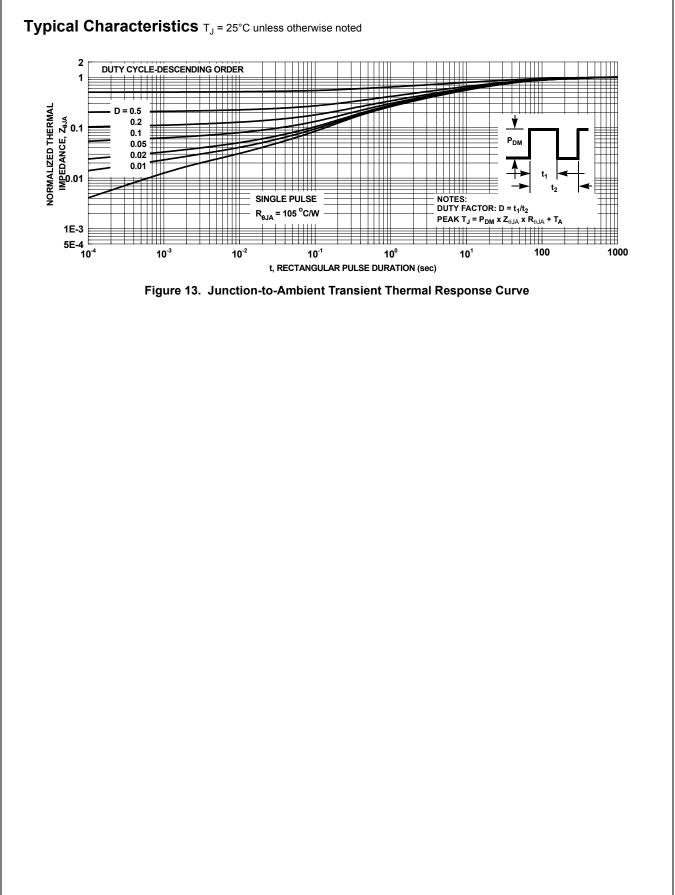
i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper


I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.


3. E_{AS} of 29 mJ is based on starting T_J = 25 °C, L = 1.2 mH, I_{AS} = 7 A, V_{DD} = 23 V, V_{GS} = 10V. 100% tested at L = 0.1 mH, I_{AS} = 16 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

5. The continuous Vds rating is 25V; however, a pulse of 28 V peak voltage for no longer than 3ns duration at 500KHz frequency can be applied.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC