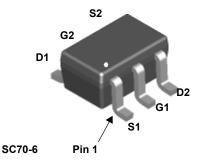
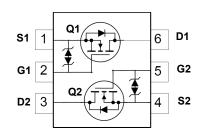


April 2007

FDG8850NZ

Dual N-Channel PowerTrench[®] MOSFET 30V,0.75A,0.4 Ω


Features


- Max $r_{DS(on)} = 0.4\Omega$ at $V_{GS} = 4.5V$, $I_D = 0.75A$
- Max $r_{DS(on)} = 0.5\Omega$ at $V_{GS} = 2.7V$, $I_D = 0.67A$
- Very low level gate drive requirements allowing operation in 3V circuits(V_{GS(th)} <1.5V)
- Very small package outline SC70-6
- RoHS Compliant

General Description

This dual N-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETs. Since bias resistors are not required, this dual digital FET can replace several different digital transistors, with different bias resistor values.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		30	V
V_{GS}	Gate to Source Voltage		±12	V
	Drain Current -Continuous		0.75	^
ID	-Pulsed		2.2	A
Б	Power Dissipation for Single Operation	(Note 1a)	0.36	10/
P _D ((Note 1b)	0.30	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient Single operation	(Note 1a)	350	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient Single operation	(Note 1b)	415	C/VV

Package Marking and Ordering Information

Device Marking	Device	Reel Size Tape Width		Quantity
.50	FDG8850NZ	7"	8mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$, $V_{GS} = 0V$			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±12V, V_{DS} = 0V			±10	μΑ

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.65	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-3.0		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 0.75A$ $V_{GS} = 2.7V, I_D = 0.67A$ $V_{GS} = 4.5V, I_D = 0.75A, T_J = 125^{\circ}C$		0.25 0.29 0.36	0.4 0.5 0.6	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 0.75A$		3		S

Dynamic Characteristics

C _{iss}	Input Capacitance		90	120	pF
C _{oss}	Output Capacitance	$V_{DS} = 10V, V_{GS} = 0V, f = 1MHZ$	20	30	pF
C _{rss}	Reverse Transfer Capacitance		15	25	pF

Switching Characteristics (note 2)

t _{d(on)}	Turn-On Delay Time		4	10	ns
t _r	Rise Time	$V_{DD} = 5V, I_{D} = 0.5A,$	1	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5V, R_{GEN} = 6\Omega$	9	18	ns
t _f	Fall Time		1	10	ns
Q_g	Total Gate Charge		1.03	1.44	nC
Q_{gs}	Gate to Source Charge	V_{GS} =4.5V, V_{DD} = 5V, I_{D} = 0.75A	0.29		nC
Q_{ad}	Gate to Drain "Miller" Charge		0.17		nC

Drain-Source Diode Characteristics and Maximum Ratings

I _S	Maximum Continuous Drain-Source Diode Forward Current				0.3	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 0.3A$	(Note 2)	0.76	1.2	V

Notes:

^{1.} R_{0,IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θ,IC} is guaranteed by design while R_{θ,IA} is determined by the user's board design.

a. 350° C/W when mounted on a 1 in² pad of 2 oz copper .

b. 415°C/W when mounted on a minimum pad of 2 oz copper.

Scale 1:1 on letter size paper.

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

Typical Characteristics T_J = 25°C unless otherwise noted

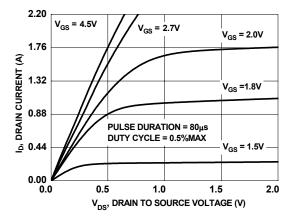
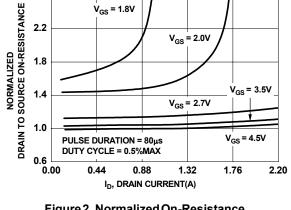



Figure 1. On-Region Characteristics

2.6

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

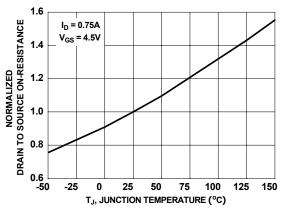


Figure 3. Normalized On - Resistance vs Junction Temperature

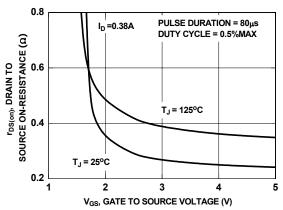


Figure 4. On-Resistance vs Gate to Source Voltage

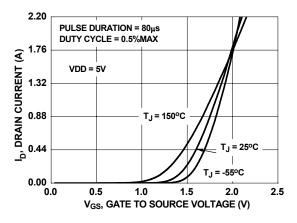


Figure 5. Transfer Characteristics

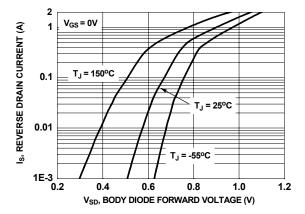


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

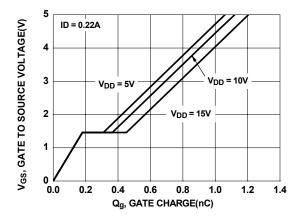


Figure 7. Gate Charge Characteristics

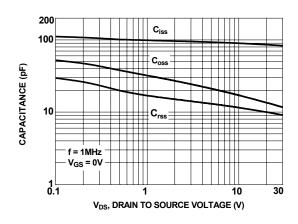
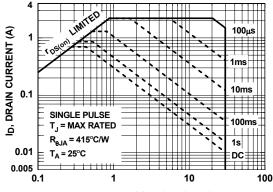



Figure 8. Capacitance vs Drain to Source Voltage

V_{DS}, DRAIN to SOURCE VOLTAGE (V) Figure 9. Forward Bias Safe Operating Area

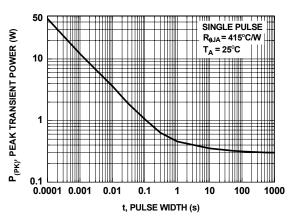


Figure 10. Single Pulse Maximum Power Dissipation

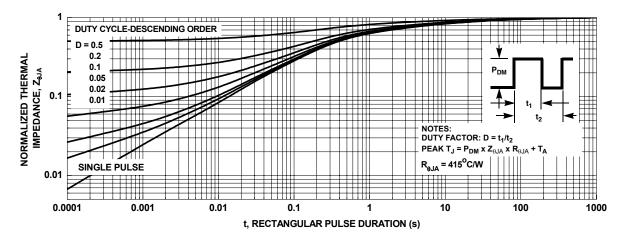


Figure 11. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

i-Lo™ **ACEx®** Power-SPM™ TinyBoost™ PowerTrench® Across the board. Around the world $^{\text{TM}}$ ImpliedDisconnect™ TinyBuck™ Programmable Active Droop™ TinyLogic[®] ActiveArray™ IntelliMAX™ Bottomless™ ISOPLANAR™ QFET® TINYOPTO™ QS™ Build it Now™ MICROCOUPLER™ TinyPower™ CoolFET™ MicroPak™ QT Optoelectronics™ TinyWire™ $CROSSVOLT^{\text{TM}}$ MICROWIRE™ Quiet Series™ TruTranslation™ $\mathsf{CTL^{\mathsf{TM}}}$ RapidConfigure™ µSerDes™ Motion-SPM™ Current Transfer Logic™ MSX™ RapidConnect™ **UHC®** DOME™ MSXPro™ ScalarPump™ UniFET™ E²CMOS™ OCX^{TM} SMART START™ VCX™ OCXPro™ SPM[®] Wire™ EcoSPARK® OPTOLOGIC® $\mathsf{STEALTH}^{\mathsf{TM}}$ EnSigna™ OPTOPLANAR® FACT Quiet Series™ SuperFET™ FACT[®] PACMAN™ SuperSOT™-3 $\mathsf{FAST}^{\mathbb{R}}$ PDP-SPM™ SuperSOT™-6 FASTr™ РОР™ SuperSOT™-8 FPS™ Power220® SyncFET™ $\mathsf{FRFET}^{\mathbb{R}}$ Power247® TCM^TM The Power Franchise® GlobalOptoisolator™ PowerEdge™ GTO™ Ф тм PowerSaver™ HiSeC™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 126

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative