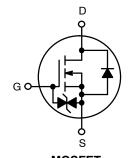
Description

SUPERFET II MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. In addition, internal gate-source ESD diode allows to withstand over 2 kV HBM surge stress. Consequently, SUPERFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

Features

- Typ. $R_{DS(on)} = 340 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. $Q_g = 43 \text{ nC}$)
- Low E_{oss} (Typ. 4.1 µJ @ 400 V)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 138 pF)
- 100% Avalanche Tested
- ESD Improved Capacity
- These Devices are Pb-Free and are RoHS Compliant

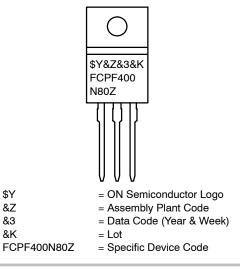
Applications


- AC-DC Power Supply
- LED Lighting

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
800 V	400 m Ω @ 10 V	11 A



MOSFET

TO-220F Ultra Narrow Lead CASE 221BN

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to Source Voltage		800	V
V _{GSS}	Gate to Source Voltage	– DC	±20	V
		– AC (f > 1 Hz)	±30	
ID	Drain Current	– Continuous (T _C = 25°C)	11*	А
		– Continuous (T _C = 100°C)	6.9*	
I _{DM}	Drain Current – Pulsed (Note 1)		33*	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		339	mJ
I _{AS}	Avalanche Current (Note 2)		2.2	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.36	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		20	V/ns
PD	Power Dissipation	(T _C = 25°C)	35.7	W
		– Derate Above 25°C	0.29	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8"	from Case for 5 Seconds	300	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature.

1. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 2.2 \text{ A}, V_{DD} = 50 \text{ V}, R_G = 25 \Omega, \text{ starting } T_J = 25^{\circ}\text{C}.$ 3. $I_{SD} \le 11 \text{ A}, \text{ di/dt} \le 200 \text{ A/}\mu\text{s}, V_{DD} \le \text{BV}_{DSS}, \text{ starting } T_J = 25^{\circ}\text{C}.$

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	3.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping
FCPF400N80ZL1-F154	FCPF400N80Z	TO-220F (Pb-Free)	50 Units / Tube

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit		
OFF CHARACT	OFF CHARACTERISTICS							
BV _{DSS}	Drain to Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = 1 mA, T_{J} = 25 $^{\circ}C$	800	-	-	V		
$\Delta BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C	_	0.8	-	V/°C		
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 800 V, V_{GS} = 0 V	-	-	25	μΑ		
		V_{DS} = 640 V, T_{C} = 125°C	-	-	250			
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±10	μΑ		

ON CHARACTERISTICS

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1.1 \text{ mA}$	2.5	_	4.5	V
		$V_{GS} = V_{DS}$, $I_D = 0.68$ mA	2.5	-	4.5	
R _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I _D = 5.5 A	-	0.34	0.4	Ω
		V_{GS} = 10 V, I _D = 7.1 A	-	0.35	0.4	
		V_{GS} = 10 V, I _D = 7.1 A, T _C = 150°C	-	0.89	-	
9fs	Forward Transconductance	V _{DS} = 20 V, I _D = 5.5 A	-	12	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 100 V, V_{GS} = 0 V, f = 1 MHz	-	1770	2350	pF
C _{oss}	Output Capacitance		-	51	70	pF
C _{rss}	Reverse Transfer Capacitance		-	0.5	-	pF
C _{oss}	Output Capacitance	V_{DS} = 480 V, V_{GS} = 0 V, f = 1 MHz	-	28	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V_{DS} = 0 V to 480 V, V_{GS} = 0 V	-	138	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 640 \text{ V}, \text{ I}_{D} = 11 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	43	56	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	8.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	17	_	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	2.3	-	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 11 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	20	50	ns
t _r	Turn-On Rise Time	R _g = 4.7 Ω (Note 4)	-	12	34	ns
t _{d(off)}	Turn-Off Delay Time		-	51	112	ns
t _f	Turn-Off Fall Time		-	2.6	15	ns

SOURCE-DRAIN DIODE CHARACTERISTICS

۱ _S	Maximum Continuous Source to Drain Diode Forward Current		-	-	11	А
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current		-	-	33	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{SD} = 11 A$	-	-	1.2	V
t _{rr}	Reverse Recovery Time	$V_{DD} = 400 \text{ V}, I_{SD} = 11 \text{ A},$	-	395	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/µs	-	7.4	-	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

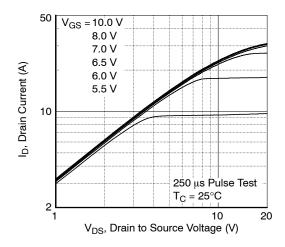


Figure 1. On-Region Characteristics

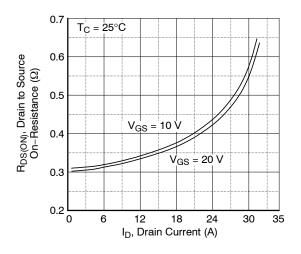


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

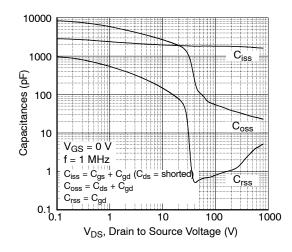


Figure 5. Capacitance Characteristics

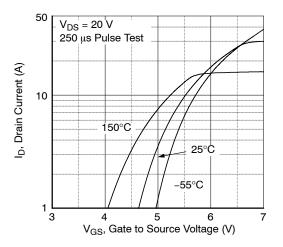


Figure 2. Transfer Characteristics

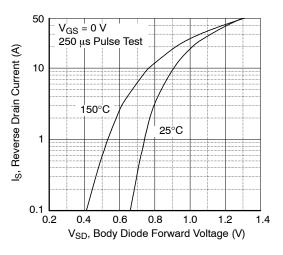


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

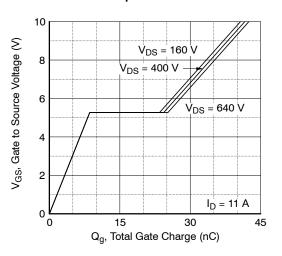
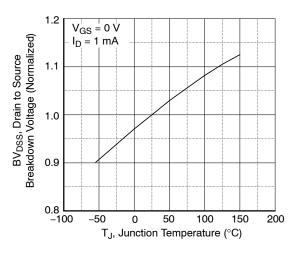
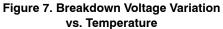




Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

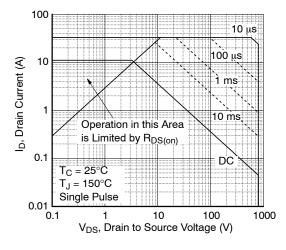


Figure 9. Maximum Safe Operating Area

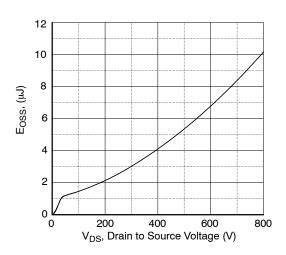


Figure 11. E_{OSS} vs. Drain to Source Voltage

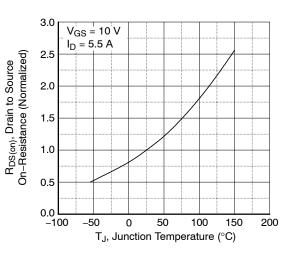


Figure 8. On–Resistance Variation vs. Temperature

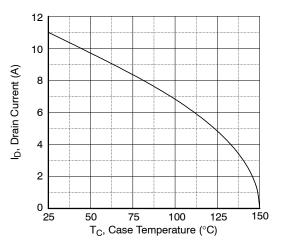


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

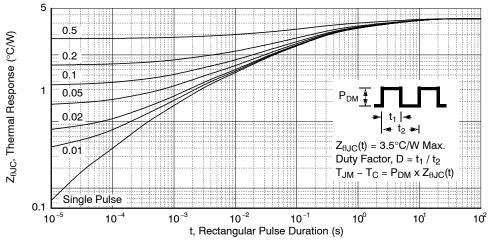


Figure 12. Transient Thermal Response Curve

Figure 13. Gate Charge Test Circuit & Waveform

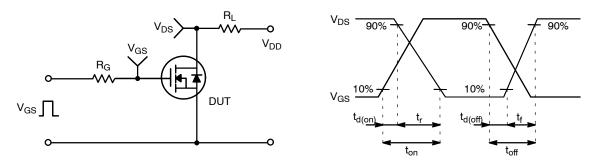


Figure 14. Resistive Switching Test Circuit & Waveforms

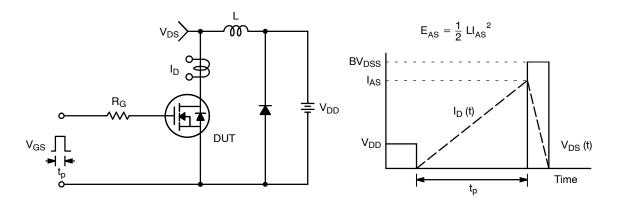


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

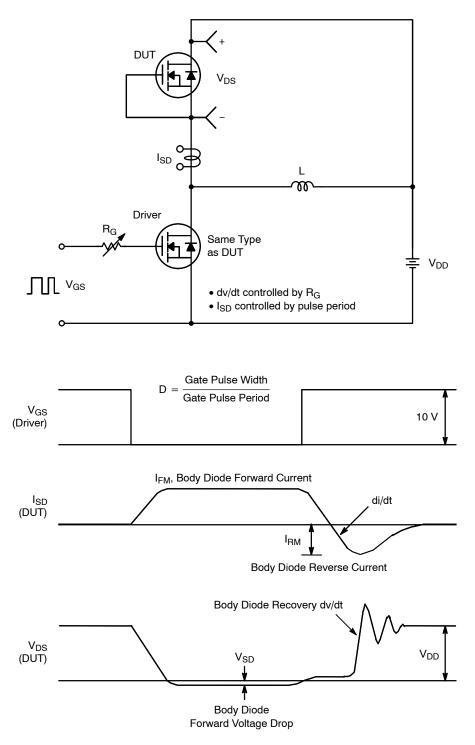
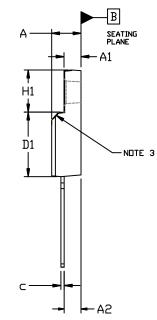


Figure 16. Peak Recovery dv/dt Test Circuit & Waveforms


SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

TO-220 FULLPACK, 3-LEAD CASE 221BN ISSUE O

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. CONTOUR UNCONTROLLED IN THIS AREA.
- 4. DIMENSIONS EXCLUDE BURRS, MOLD FLASH, AND TIE BAR PROTRUSIONS.

	MILLIMETERS						
DIM	MIN.	NDM.	MAX.				
Α	4.60	4.70	4.80				
A1	2.50	2.60	2.70				
A2	2.47	2.57	2.67				
b	0.56	0.63	0.69				
b2			0.90				
с	0.46	0.53	0.59				
D	15.80	16.00	16.20				
D1	9.58	9.68	9.78				
Е	10.00	10.20	10.40				
e		2.54 BSC					
H1		6.32 REF					
L	13.45	13.60	13.75				
L1	1.70	1.80	1.90				
Ρ	3.00	3.10	3.20				
Q	3.25	3.35	3.45				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has neglised, seed applications, easing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized applic

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative