Dual Optically-Coupled Darlington Isolator

Optoelectronic Products

General Description

The FCD890 comprises two distinct optoisolators with transistor output, in a single 8-pin dual in-line package. Each channel consists of a GaAs emitter optically coupled to a photo-Darlington. The coupler was designed specifically as a high-sensitivity type for operation in the 1.0 mA input region.

High Current Transfer Ratio at Low Input Current 2500 V Minimum Isolation Input-to-Output 10¹¹ Ω Isolation Resistance Low Coupling Capacitance—Typically 1.0 pF I/O Compatible With Integrated Circuits Two Packages Fit Into a Standard 16-Pin DIP Socket

Absolute Maximum Ratings

Maximum Temperature and Humidity

Storage Temperature -55°C to +150°C
Operating Temperature -55°C to +100°C
Pin Temperature (Soldering, 5s)
Total Package Power Dissipation
at T_A = 25°C

400 mW

5.3 mW/°C

Derate Linearly from 25°C

Input Diode (Each Channel)

Output Transistor (Each Channel)

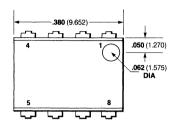
 VCE
 Collector-to-Emitter

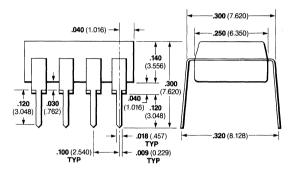
 Voltage
 30 V

 VEC
 Emitter-to-Collector

 Voltage
 7.0 V

 PD
 Power Dissipation

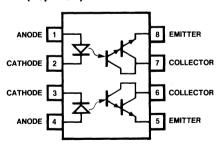

 at TA = 25°C
 150 mW


 Derate Linearly from 25°C
 2 mW/°C

 IC
 Collector Current
 30 mA

FCD890

Package Outline



Notes

All dimensions in inches **bold** and millimeters (parentheses) Tolerance unless specified = \pm .015 (\pm .381) Package weight is 0.4 gram

Connection Diagram DIP (Top View)

Pin

Anode

•	,	
2	Cathode	Channel #1
3	Cathode	
4	Anode	Channel #2
5	Emitter	
6	Collector	Channel #2
7	Collector	

8 Emitter Channel #1

Typical Electrical Characteristics

FCD890

Electrical Characteristics—Input Diode T_A = 25°C

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _F V _R C _J	Forward Voltage Reverse Voltage Junction Capacitance	3.0	1.25 5.5 150	1.5	V V pF	$I_F = 20 \text{ mA}$ $I_R = 10 \mu\text{A}$ $V_R = 0 V$, $f = 1 \text{ MHz}$

Electrical Characteristics—Output Transistor T_A = 25°C (Darlington)

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _{CEO}	Collector-to-Emitter Voltage	30	65		V	I _C = 1.0 mA, I _E = 0
V _{ECO}	Emitter-to-Collector Voltage Collector-to-Emitter Leakage Current	7.0	10 5.0	100	V nA	$I_{C} = 100 \mu\text{A}$ $V_{CE} = 10 \text{V}$, $I_{E} = 0$
h _{FE}	Forward Current Gain		20 k			V _{CE} = 5.0 V, I _C = 25 mA

Electrical Characteristics—Coupled $T_A = 25$ °C

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _{IO}	Input-to-Output Voltage	2500	4000		V	
V _{CE(sat)}	Collector-to-Emitter Saturation Voltage			1.0	V	I _C = 2.0 mA, I _F = 1.0 mA
, ,		İ			1	
I _C /I _F (CTR)	Collector Current Transfer Ratio (Note 1)	200			%	$V_{CE} = 1.0 V,$
	•	l l			1	I _F = 1.0 mA
R _{IO}	Input-to-Output Resistance		1011		Ω	V _{IO} = 500 V
CIO	Input-to-Output Capacitance	1	1.0	1	pF	f = 1.0 MHz,
						$V_{IO} = 0$
t _r , t _f	Collector Rise and Fall Times (Note 2)		80		μs	$I_C = 10 \text{ mA},$
						$V_{CE} = 10 \text{ V},$
		1			-	$R_L = 100 \Omega$

Note

1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to decrease from 90% to 10% of peak value.