Dual Optically-Coupled Isolator

Optoelectronic Products

FCD880, FCD885

General Description

The FCD880 and FCD885 comprise two distinct optoisolators with transistor output, in a single 8-pin dual in-line package. Each channel consists of a GaAs emitter optically coupled to a phototransistor.

High Current Transfer Ratio 2500 V Minimum Isolation Input-to-Output 10¹¹ Ω Isolation Resistance Low Coupling Capacitance—Typically 1.0 pF I/O Compatible With Integrated Circuits Two Packages Fit Into a Standard 16-Pin DIP Socket

Absolute Maximum Ratings

Storage Temperature -55°C to +150°C
Operating Temperature -55°C to +100°C
Pin Temperature (Soldering, 5 s) 260°C

Total Package Power Dissipation at $T_A = 25$ °C 400 mW Derate Linearly from 25°C 5.3 mW/°C

Input Diode (Each Channel)

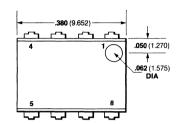
V_R Reverse Voltage 3.0 V I_F Forward dc Current 60 mA

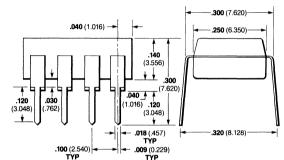
I_{pk} Peak Forward Current (1 μs pulse,

330 pps) 3.0 A

PD Power Dissipation at T_A = 25°C 100 mW Derate Linearly from 50°C 2 mW/°C

Output Transistor (Each Channel)

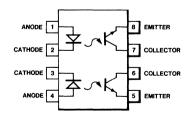

V_{CE} Collector-to-Emitter
Voltage 30 V
V_{FC} Emitter-to-Collector


Voltage 6.0 V PD Power Dissipation

Power Dissipation at $T_A = 25$ °C 150 mW Derate Linearly from 25°C 2 mW/°C

I_C Collector Current 30 mA

Package Outline



Notes

All dimensions in inches **bold** and millimeters (parentheses) Tolerance unless specified = $\pm .015$ ($\pm .381$) Package weight is 0.4 gram

Connection Diagram DIP (Top View)

Pin		
1	Anode	Channel #1
2	Cathode	Onamici # 1
3	Cathode	Channel #2
4	Anode	Chamber #2
5	Emitter	Channel #2
6	Collector	Chamilei #2
7	Collector	Channel #1
8	Emitter	Chamber # 1

Typical Electrical Characteristics

FCD880 FCD885

Electrical Characteristics—Input Diode $T_A = 25$ °C

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _F	Forward Voltage		1.25	1.5	٧	I _F = 60 mA
V _R	Reverse Voltage	3.0	5.5		V	$I_{R} = 10 \mu A$
CĴ	Junction Capacitance		100		pF	V _F = 0 V

Electrical Characteristics—Output Transistor $T_A = 25$ °C

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _{CEO}	Collector-to-Emitter Voltage FCD880, FCD885	30	65		v	I _C = 1.0 mA, I _F = 0
V _{ECO}	Emitter-to-Collector Voltage FCD880, FCD885	6.0	10		V	$1_{\rm C} = 100 \mu A$
ICEO	Collector-to-Emitter Leakage Current FCD880, FCD885		5.0	100	nA	V _{CE} = 10 V,
C _{CE}	Collector-to-Emitter Capacitance		8.0		pF	I _F = 0 V _{CE} = 0

Electrical Characteristics—Coupled $T_{\Delta} = 25^{\circ}C$

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _{IO} V _{CE(sat)}	Input-to-Output Voltage Collector-to-Emitter Saturation Voltage	2500	4000		V	
CL(Sat)	FDC880		0.24	0.4	V	I _C = 2.0 mA, I _E = 16 mA
	FCD885		0.2	0.3	V	$I_{\rm C} = 250 \mu{\rm A},$ $I_{\rm E} = 20 {\rm mA}$
IC/IF(CTR)	Collector Current Transfer Ratio (Note 1)			1		'
	FCD880	30	50		%	$V_{CE} = 10 \text{ V},$ $I_{F} = 10 \text{ mA}$
	FCD885	10	20		%	V _{CE} = 10 V, I _F = 10 mA
R _{IO}	Input-to-Output Resistance		1011		Ω	$V_{10} = 500 \text{ V}$
CiO	Input-to-Output Capacitance		1.0		pF	f = 1.0 MHz
	Collector Rise and Fall Times (Note 2)		2.0		μs	$I_C = 2.0 \text{ mA},$ $V_{CE} = 10 \text{ V},$ $R_1 = 100 \Omega$

Notes

1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

^{2.} Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to decrease from 90% to 10% of peak value.