Philips Components

Data sheet			
status	Product specification		
date of issue	June 1990		

FEATURES

- Operating supply voltage 5 V ± 10%
- · Inputs and outputs ESD protected
- Automatic power-down after a completed read access
- Access time: 55 ns and 70 ns
- Low current consumption: active 70 mA max. standby (TTL) 3 mA max. standby (CMOS) 100 μA max. (L-version) standby (CMOS) 1 μA max. (LL-version)
- Suitable for battery back-up operation: (FCB61C65L/LL only) data retention voltage 2 V min. data retention current 50 μA max. (L-version) data retention current 1 μA max. (LL-version)
- Latched data outputs giving stable data between consecutive accesses
- · Easy memory expansion
- Common data I/O interface
- All inputs and outputs TTL and CMOS compatible
- All inputs have a Schmitt trigger switching action
- Three-state outputs
- Operating temperature 0 °C to +70 °C

FCB61C65(L/LL) 8 K x 8 Fast CMOS low-power static RAM

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

GENERAL DESCRIPTION

The FCB61C65(L/LL) is a 65536-bit fast, low-power, static random access memory organized as 8192 words of 8 bits each.

The chip enable inputs $\overline{CE1}$ and CE2 are available for memory expansion and to control the low-power/ standby mode.

The device operates from a 5 V power supply and has an access time of 55 ns and 70 ns.

The FCB61C65(L/LL) is ideally suited for memory applications where fast access time, low power and ease of use are required.

The FCB61C65(L/LL) is a CMOS device which uses a 6 transistor memory cell.

The IC is fabricated in a CMOS double-metal single-poly process using ion-implanted silicon gate technology.

ORDERING AND PACKAGE INFORMATION

EXTENDED	PACKAGE					
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE		
FCB61C65 (L/LL)-XXP	28	DIL (600 mil)	plastic	SOT117		
FCB61C65 (L/LL)-XXT	28	SO28XL (330mil)	plastic	SOT213		

www.DataSheet.in

FCB61C65(L/LL)

Fig.1 Block diagram.

www.DataSheet.in

FCB61C65(L/LL)

TRUTH TABLE

CE1	CE2	ŌĒ	WE	MODE	IDD	I/O PIN	REF. CYCLE
Н	х	Х	X	not selected	I _{SB} *	HIGH Z	
X	L	٠X	X	not selected	I _{SB} *	HIGH Z	
L	Н	L	н	read	IDD/IDD1*	DOUT	read
L	н	н	Ĺ	write	IDD	DIN	write
L	н	L	L	write	IDD	DIN	write
L	н	н	н	ready-read	IDD/IDD1*	HIGH Z	

* Including L/LL versions if input levels are CMOS.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
A12	2	address input
A7 to A0	3 to 10	address inputs
I/O 1 to I/O 3	11 to 13	data inputs/outputs
V _{SS}	14	ground
I/O 4 to I/O 8	15 to 19	data inputs/outputs
CE1	20	chip enable 1
A10	21	address input
ŌĒ	22	output enable
A11, A9, A8	23 to 25	address inputs
CE2	26	chip enable 2
WE	27	write enable
V _{DD}	28	+5 V supply

FCB61C65(L/LL)

DC CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $T_{amb} = 0$ to 70 °C. Typical readings taken at $V_{DD} = 5 V$; $T_{amb} = 25$ °C. All voltages are referenced to V_{SS} (0 V) unless otherwise specified. DC characteristics are valid after thermal equilibrium has been established.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
input leakage current	$V_{I} = V_{SS}$ to V_{DD}	-1	-	1	μA
output leakage current	$\overline{CE1} \text{ or } \overline{OE} = V_{IH} \text{ or } CE2 = V_{IL};$ $V_{I/O} = V_{SS} \text{ to } V_{DD}$	-1	-	1	μA
average operating current	cycle time 55 ns; 100% duty factor; note 1 $I_{VO} = 0$ mA	-	40	70	mA
average operating current	cycle time 70 ns; 100% duty factor; note 1 $I_{I/O} = 0$ mA	-	35	60	mA
DC operating current	$\overline{WE} = V_{IH}; I_{I/O} = 0 \text{ mA}; f = 0 \text{ Hz}$	-	3	6	mA
	$\overline{WE} = CMOSH; V_i = CMOS;$ note 2				
FCB61C65L only FCB61C65LL only		-	2 0.05	100 1.0	μΑ μ Α
standby current	$\overline{CE1} = V_{H}$ or $CE2 = V_{IL}$	-	1.5	3.0	mA
	\overline{CE} 1 = CMOSH and CE2 = CMOS or CE2 = CMOSL				
FCB61C65L only FCB61C65LL only		-	2 0.05	100 1.0	μ Α μΑ
output voltage LOW output voltage LOW output voltage HIGH output voltage HIGH	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 20 \mu\text{A}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -20 \mu\text{A}$	- - 2.4 V _{DD} 0.2	-	0.4 0.2 -	
	input leakage current output leakage current average operating current average operating current DC operating current FCB61C65L only FCB61C65LL only Standby current FCB61C65LL only FCB61C65LL only output voltage LOW output voltage LOW output voltage HIGH	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} \mbox{input leakage current} & V_I = V_{SS} \mbox{to} V_{DD} & -1 \\ \hline \mbox{output leakage current} & V_I = V_{SS} \mbox{to} V_{DD} & -1 \\ \hline \mbox{output leakage current} & V_I = V_{SS} \mbox{to} V_{DD} & -1 \\ \hline \mbox{average operating current} & cycle time 55 \mbox{ns; } 100\% \mbox{duty} \\ \mbox{factor; note 1} \\ \mbox{l}_{I/O} = 0 \mbox{mA} & - \\ \hline \mbox{average operating current} & cycle time 70 \mbox{ns; } 100\% \mbox{duty} \\ \mbox{factor; note 1} \\ \mbox{l}_{I/O} = 0 \mbox{mA} & - \\ \hline \mbox{cycle time 70 \mbox{ns; } 100\% \mbox{duty} \\ \mbox{factor; note 1} \\ \mbox{l}_{I/O} = 0 \mbox{mA} & - \\ \hline \mbox{DC operating current} & WE = V_{IH}; \mbox{l}_{I/O} = 0 \mbox{mA; } f = 0 \mbox{Hz} & - \\ \hline \mbox{WE} = CMOSH; \mbox{V}_I = CMOS; \\ \mbox{note 2} & - \\ \hline \mbox{FCB61C65L only} & - \\ \hline \mbox{FCB61C65L only} & CE1 = V_{IH} \mbox{ or } CE2 = V_{IL} & - \\ \hline \mbox{CE1} = CMOSH \mbox{and } CE2 & - \\ \hline \mbox{CE1} = CMOSH \mbox{and } CE2 & - \\ \hline \mbox{CE1} = CMOSH \mbox{and } CE2 & - \\ \hline \mbox{CE1} = CMOSH \mbox{and } CE2 & - \\ \hline \mbox{CE1} = CMOSH \mbox{and } CE2 & - \\ \hline \mbox{cuput voltage LOW} & l_{OL} = 20 \ \mu A & - \\ \hline \mbox{output voltage HGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage LOW} & l_{OL} = 20 \ \mu A & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage LOW} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage HIGH} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage LOW} & l_{OH} = -1 \mbox{mA} & - \\ \hline \mbox{cuput voltage LOW} & l_{OH} = -1 \$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes to the DC characteristics

1. $I_{DD} \le 50$ mA at a cycle time of 100 ns and ≤ 45 mA at a cycle time of 120 ns.

2. CMOS = CMOSH: $V_{DD} - 0.2 \text{ V} \le \text{level} \le V_{DD} + 0.2 \text{ V}$ or CMOSL: $-0.2 \text{ V} \le \text{level} \le +0.2 \text{ V}$.

CAPACITANCES

f = 1 MHz; Tamb = 25 °C (parameters in this table are sampled and not 100% tested).

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
Ci Ci	input capacitance CE1, CE2, WE, OE all other inputs		8 7	pF pF
C _{I/O}	input/output capacitance	$V_{I/O} = 0 V$	8	pF

FCB61C65(L/LL)

TIMING CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $T_{amb} = 0$ to 70 °C; inputs pulse levels = 0.4 to 2.4 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V and output loading as in Figure 3; unless otherwise specified.

			55 1	YPE	70 TYPE		
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	
Read cyc	le						
t _{RC}	read cycle time		55	-	70	-	ns
taa	address access time		-	55	-	70	ns
tACE	chip enable access time		-	55	-	70	ns
tOE	output enable access time		-	30	-	35	ns
tCLZ	chip enable to output LOW Z	note 6	5	-	5	-	ns
toLZ	output enable to output LOW Z	note 6	5	-	5	-	ns
tCHZ	chip disable to output HIGH Z	note 6	-	30	-	30	ns
tonz	output disable to output HIGH Z	note 6	-	30	-	30	ns
ton	output hold time		10	-	10	-	ns
Write cyc	le						
twc	write cycle time		55	-	70	-	ns
tcw	chip enable to end of write	note 11	50	-	65		ns
taw	address valid to end of write		50	-	65	-	ns
t _{AS}	address set up time		0	-	0	-	ns
twp	write pulse width	note 9	30	-	35	-	ns
twn	write recovery time	note 10	0	-	0	-	ns
twnz	write enable to output HIGH Z	note 16	-	20	-	25	ns
tow	data to write time overlap		25	-	30	-	ns
t _{DH}	data hold from write time		5	-	5	-	ns
tow	end of write to output LOW Z	note 16	5	-	5	-	ns

Output load

Product specification

8 K x 8 Fast CMOS low-power static RAM

FCB61C65(L/LL)

WRITE CYCLE 1 - WRITE ENABLE CONTROLLED (see notes 9 and 10) - twc address input — ^twr tCW -CE1 CE2 t_{AW} twhz WE ōE / tow ^tonz twp note 13 note 14 tAS data output ^tDH t_{DW} -note 15 HIGH Z HIGH Z data stabie data input WRITE CYCLE 2 - CHIP ENABLE CONTROLLED (see notes 9, 10 and 12) - twc address input twn tcw CE1 - ^tas -CE2 HIGH Z data output -^tDH |← – ^tow data stable data input 7Z28215 Fig.5 Write cycle timing.

FCB61C65(L/LL)

FCB61C65(L/LL)

Notes to the timing characteristics

Read cycle (see Fig.4)

- 1. $\overline{\text{WE}}$ is HIGH for read cycle.
- 2. Device is continuously selected, CE1 is LOW and CE2 is HIGH.
- 3. Address is valid prior to or coincident with $\overline{CE1}$ LOW or CE2 HIGH transition.
- 4. When CE1 is LOW and CE2 HIGH, the address inputs may not be floating.
- 5. OE is LOW.
- C_L = 5 pF for t_{CLZ}, t_{CHZ}, t_{OLZ}, output transition measured at ± 200 mV from preceding steady state. These
 parameters are sampled and not 100% tested.
- t_{CLZ} and t_{ACE} are measured from the last CE1 going LOW or CE2 going HIGH. t_{CHZ} is measured from the first of CE1 going HIGH or CE2 going LOW.
- 8. If D OUT in two consecutive read cycles is the same, D OUT remains stable.

Write cycle (see Fig.5)

- 9. A write occurs during an overlap of LOW CE1, a HIGH CE2 and a LOW WE.
- 10. two is measured from the earlier of CE2 going to LOW or CET or WE going HIGH at the end of a write cycle.
- 11. If the CE1/CE2 transition occurs simultaneously to or after the WE LOW transition the outputs remain in a high impedance state.
- 12. \overline{OE} is continuously LOW.
- 13. D OUT is in the same phase as the write data of this write cycle.
- 14. D OUT is the read data of the next address.
- 15. If CE1 is LOW (CE2 is HIGH) and I/O pins are in the output state during this period then input data signals of opposite phase to the outputs must not be applied.
- C_L = 5 pF for t_{WHZ} and t_{OW}, measured at ± 200 mV from steady state. These parameters are sampled and not 100% tested.

FCB61C65(L/LL)

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

(FCB61C65L/LL only)

Tamb = 0 to +70 °C; IDRL/LL measurements are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply			_			r :
VDR	supply voltage for data retention	$\overline{CE}1 = CMOSH$ or CE2 = CMOSL with other V _I = CMOS; note 1	2.0		5.5	v
	supply current during data retention	$V_{DR} = 3 V;$ CE2 = CMOSL; other V _I = CMOS or CE1 = CMOSH; other V _I = CMOS				
I _{DRL} I _{DRLL}	FCB61C65L only FCB61C65LL only			2 0.05	50 1	μΑ μΑ
Timing				· · · · · · · · · · · · · · · · · · ·	·	
tCDR	chip disable to data retention time		0	-	-	ns
t _R	recovery time to fully active	note 2	t _{RC}	-	-	ns

Notes to the data retention characteristics

- 1. CMOS = CMOSH: $V_{DR} 0.2 V \le \text{level} \le V_{DR} + 0.2 V \text{ or}$ CMOSL: $-0.2 V \le \text{level} \le +0.2 V.$
- 2. t_{RC} = read cycle time.

June 1990

-This Page Intentionally Left Blank-

Philips Components

Data sheet			
status	Product specification		
date of issue	August 1990		

FEATURES

- Operating supply voltage 5 V ± 10%
- Inputs and outputs ESD protected
- Automatic power-down after a completed read access
- Access time: 85 ns
- Low current consumption: active 60 mA max. standby (TTL) 3 mA max. standby (CMOS) 200 µA max.

(L-version)

4 µA max.

(LL-version)

standby (CMOS)

- Suitable for battery back-up operation: (FCF61C65L/LL only) data retention voltage 2 V min. data retention current 100 μA max. (L-version) data retention current 4 μA max. (LL-version)
- Latched data outputs giving stable data between consecutive accesses
- Easy memory expansion
- Common data I/O interface
- All input and outputs TTL and CMOS compatible
- All inputs have a Schmitt trigger
 switching action
- Three-state outputs
- Operating temperature -40 °C to +85 °C

FCF61C65(L/LL) 8 K x 8 Fast CMOS low-power static RAM for extended temperature range

FOR DETAILED INFORMATION SEE RELEVANT DATA BOOK OR DATA SHEET

GENERAL DESCRIPTION

The FCF61C65(L/LL) is a 65536-bit, fast, low-power, static random access memory organized as 8192 words of 8 bits each.

The chip enable inputs $\overline{CE1}$ and CE2 are available for memory expansion and to control the lower-power/ standby mode.

The device operates from a 5 V power supply and has an access time of 85 ns.

The FCF61C65(L/LL) is ideally suited for memory applications for the extended temperature range of -40to $+85^{\circ}$ C where fast access time, low power and ease of use are required.

The FCF61C65(L/LL) is a full CMOS device using a 6 transistor memory cell.

The IC is fabricated in a CMOS double-metal single-poly process using ion-implanted silicon gate technology.

ORDERING AND PACKAGE INFORMATION

EXTENDED	PACKAGE				
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
FCF61C65					
(L/LL)-85T	28	SO28XL(330mil)	plastic	SOT213	

FCF61C65(L/LL)

8 K x 8 Fast CMOS low-power static RAM for extended temperature range

FCF61C65(L/LL)

TRUTH TABLE

CE1	CE2	ŌĒ	WE	MODE	IDD	I/O PIN	REF. CYCLE
н	Х	х	X	not selected	I _{SB} *	HIGH Z	
Х	L	Х	X	not selected	I _{SB} *	HIGH Z	
L	н	L	н	read	IDD/IDD1*	DOUT	read
L	н	н	L	write	IDD	DIN	write
L	н	L	L	write	IDD	DIN	write
L	н	н	н	ready-read	IDD/IDD1*	HIGH Z	

* Including L/LL versions if input levels are CMOS.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
A12	2	address input
A7 to A0	3 to 10	address inputs
I/O 1 to I/O 3	11 to 13	data inputs/outputs
V _{SS}	14	ground
I/O 4 to I/O 8	15 to 19	data inputs/outputs
CE1	20	chip enable 1
A10	21	address input
ŌĒ	22	output enable
A11, A9, A8	23 to 25	address inputs
CE2	26	chip enable 2
WE	27	write enable
V _{DD}	28	+5 V supply

FCF61C65(L/LL)

DC CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $T_{amb} = -40$ to +85 °C. Typical readings taken at $V_{DD} = 5 V$; $T_{amb} = 25$ °C. All voltages are referenced to vss (0 V) unless otherwise specified. DC characteristics are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
lu	input leakage current	$V_{I} = V_{SS}$ to V_{DD}	2	-	2	μA
ILO	output leakage current	$\overline{CE1}$ or $\overline{OE} = V_{IH}$ or $CE2 = V_{IL}$; $V_{I/O} = V_{SS}$ to V_{DD}	-2	-	2	μA
IDD	average operating current	cycle time 85 ns; 100% duty factor; note 1 $I_{1/Q} = 0$ mA	-	35	60	mA
IDD1	DC operating current	$WE = V_{H}$; $I_{I/O} = 0$ mA; f = 0 Hz	-	3	10	mA
		\overline{WE} = CMOSH; V ₁ = CMOS; notes 2 and 3				
	FCF61C65L only		-	2	200	μA
	FCF61C65LL only		-	0.05	4	μΑ
ISB	standby current	$\overline{CE1} = V_{IH}$ or $CE2 = V_{IL}$	· -	1.5	3.0	mA
		CE1 = CMOSH and CE2 = CMOS or CE2 = CMOSL; notes 2 and 3				
l	FCF61C65L only	01 0E2 = 01100E, 110100 E und 0		2	200	μA
ISBL ISBLL	FCF61C65LL only		-	0.05	4	μA
VOL	output voltage LOW	$I_{OL} = 4 \text{ mA}$	-	-	0.4	V
VOL	output voltage LOW	$I_{OL} = 20 \mu A$	-	-	0.2	V
VOL	output voltage HIGH	$I_{OH} = -1 \text{ mA}$	2.4	-	-	V
VOH	output voltage HIGH	$I_{OH} = -20 \mu A$	V _{DD} -0.2	-		V

Notes to the DC characteristics

- 1. $I_{DD} \le 55$ mA at a cycle time of 100 ns and ≤ 50 mA at a cycle time of 120 ns.
- 2. CMOS = CMOSH: V_{DD} 0.2 V \leq level \leq V_{DD} + 0.2 V or CMOSL: -0.2 V \leq level \leq +0.2 V.
- 3. At $T_{amb} = 70 \text{ °C}$: $|_{SBL}/|_{DDL} \le 100 \text{ }\mu\text{A}$ max. and $|_{SBLL}/|_{DDLL} \le 1 \text{ }\mu\text{A}$ max.

CAPACITANCES

f = 1 MHz; T_{amb} = 25 °C (parameters in this table are sampled and not 100% tested).

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
Cı Cı	input capacitance CE1, CE2, WE, OE all other inputs	Vi = 0 V Vi = 0 V	8 7	pF pF
CI/O	input/output capacitance	$V_{I/O} = 0 V$	8	pF

FCF61C65(L/LL)

TIMING CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $T_{amb} = -40$ to +85 °C; inputs levels = 0.4 to 2.4 V, input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V and output loading as in Figure 3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Read cycle	8				
t _{RC}	read cycle time		85	-	ns
t _{AA}	address access time		-	85	ns
t _{ACE}	chip enable access time		-	85	ns
tOE	output enable access time		-	40	ns
tcLZ	chip enable to output LOW Z	note 6	5	-	ns
tolz	output enable to output LOW Z	note 6	5	-	ns
tCHZ	chip disable to output HIGH Z	note 6	-	35	ns
tonz	output disable to output HIGH Z	note 6	-	35	ns
toн	output hold time		10	-	ns
Write cycl	8				
twc	write cycle time		85	-	ns
tcw	chip enable to end of write	note 11	70	-	ns
taw	address valid to end of write		70	-	ns
tas	address set-up time		0	-	ns
twp	write pulse width	note 9	40	-	ns
twn	write recovery time	note 10	5	-	ns
twnz	write enable to output HIGH Z	note 16	-	35	ns
tow	data to write time overlap		35	-	ns
t _{DH}	data hold from write time		5	-	ns
tow	end of write to output LOW Z	note 16	5	-	ns

Output load

FCF61C65(L/LL)

FCF61C65(L/LL)

FCF61C65(L/LL)

Notes to the timing characteristics

Read cycle (see Fig.4)

- 1. WE is HIGH for read cycle.
- 2. Device is continuously selected, CE1 is LOW and CE2 is HIGH.
- 3. Address is valid prior to or coincident with CE1 LOW or CE2 HIGH transition.
- 4. When CE1 is LOW and CE2 HIGH, the address inputs may not be floating.
- 5. OE is LOW.
- C_L = 5 pF for t_{CLZ}, t_{CHZ}, t_{OLZ}, output transition measured at ± 200 mV from preceding steady state. These
 parameters are sampled and not 100% tested.
- t_{CLZ} and t_{ACE} are measured from the last CE1 going LOW or CE2 going HIGH. t_{CHZ} is measured from the first of CE1 going HIGH or CE2 going LOW.
- 8. If D OUT in two consecutive read cycles is the same, D OUT remains stable.

Write cycle (see Fig.5)

- 9. A write occurs during an overlap of LOW CE1, a HIGH CE2 and a LOW WE.
- 10. t_{WR} is measured from the earlier of CE2 going to LOW or CE1 or WE going HIGH at the end of a write cycle.
- 11. If the CE1/CE2 transition occurs simultaneously to or after the WE LOW transition the outputs remain in a high impedance state.
- 12. OE is continuously LOW.
- 13. D OUT is in the same phase as the write data of this write cycle.
- 14. D OUT is the read data of the next address.
- 15. If CE1 is LOW (CE2 is HIGH) and I/O pins are in the output state during this period then input data signals of opposite phase to the outputs must not be applied.
- 16. $C_L = 5 \text{ pF}$ for t_{WHZ} and t_{OW} , measured at $\pm 200 \text{ mV}$ from steady state. These parameters are sampled and not 100% tested.

FCF61C65(L/LL)

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

(FCF61C65L/LL only)

 $T_{amb} = -40$ to +85 °C; $I_{DRL/LL}$ measurements are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V _{DR}	supply voltage for data retention	$\overline{CE1}$ = CMOSH or CE2 = CMOSL with other V _I = CMOS; note 1	2.0	-	5.5	V
	supply current during data retention	$V_{DR} = 3 V;$ <u>CE2</u> = CMOSL; other V _I = CMOS or <u>CE1</u> = CMOSH; other V _I = CMOS				
DRL	FCF61C65L only	note 2	-	2	100	μA
DRLL	FCF61C65LL only	note 2	-	0.05	4	μΑ
Timing						
t _{CDR}	chip disable to data retention time		0	-	-	ns
t _R	recovery time to fully active	note 3	t _{RC}	-	-	ns

Notes to the data retention characteristics

- 1. CMOS = CMOSH: V_{DR} 0.2 V \leq level \leq V_{DR} + 0.2 V or CMOSL: –0.2 V \leq level \leq +0.2 V.
- 2. At T_{amb} = 70 °C: I_{DRL} \leq 50 μA and I_{DRLL} \leq 1 $\mu A.$
- 3. t_{RC} = read cycle time.

