FOOVUV/roOAVV/ Iroonuv
8-Bit Microprocessing Unit

7=5247

Microprocessor Product

Description

The F6800 is a monolithic 8-bit microprocessing unit (MPU)
forming the central control function for the Fairchild F6800
family, Compatible with TTL, the F6800, as with all F6800
system parts, requires only one +5.0 V power supply and no
external TTL devices for bus interface.

The F6800 is capable of addressing 65K bytes of memory
with its 16-bit address lines. The 8-bit data bus is
bidirectional as well as 3-state, making direct memory
addressing and multiprocessing applications realizable.

8-Bit Parallel Processing

Bidirectional Data Bus

16-Bit Address Bus — 65K Bytes of Addressing

72 Instructions — Variable Length

7 Addressing Modes — Direct, Relative, Immediate,

Indexed, Extended, Implied and Accumulator

Variable Length Stack

Vectored Restart

Maskable Interrupt Vegtor

Separate Non-Maskable Interrupt — Internal Registers

Saved in Stack

@ 6 Internal Registers — 2 Accumulators, Index
Register, Program Counter, Stack Pointer, and
Condition Code Register

o Direct Memory Addressing (DMA) and Multiple
Processor Capability

o Simplified Clocking Characteristics

® Clock Rates 1 MHz (F6800), 1.5 MHz (F68A00), and
2 MHz (F68B00)

o Simple Bus Interface Without TTL

@ Halt and Single Instruction Execution Capability

Pin Names
Dg-D7 Bidirectional Data Bus
HALT Halt Input
@1, P2 Clock inputs
iRQ Interrupt Request input
NMI Non-Maskable Interrupt Input
DBE Data Bus Enable input
TSC 3-State Control Input
RESET Reset Input
VMA Valid Memory Address Output
BA Bus Available Output
Ap-Ags Address Bus Outputs
R/W Read/Write Output
Voo +5 V Power Supply Input
Vss Ground
2652 A-01

5-11

Logic Symbol
T
Dg D4 D2 Oa Dy Ds Ds Dy rob—
A p—10
J et 1 ab—n
37 ——q &2 Agp—12
Ap—-13
2 —0f HALT Asp— 14
Agf—15
4—olIrRa Fas00 Arl— 16
§—O{NMI Asl—17
Agp— 18
36 —1 DBE Ao p— 19
Anp—20
39— T8C rab—22
40— RESET Aap——123
Aup—2u
VMA BA RW Ais—26
L1
Vee=Pin8
Vss=P|l‘l$ 1,21
Connection Diagram
40-Pin DIP
vt~ almeser
HALT] 2 39 3 1sc
ST s] 38 I NC.
RG] 4 a7l
VAl s 36 [Joae
i) s as ance.
BAl 7] rW
vec] @ 33 [J0o
[¥Yam ¥ 32 30,
A 10 o,
Aaldn 3]0,
Al 12 29 [] 04
a3 2800
As] 14 27] 0y
LYY= BH) 28 Dy
ArT] 18 25 1 Ass
Al 17 24 [A
AT] 18 23 3 Ay
A 18 22 1 A2
A] 20 21] ves
(Top View)

~~ g S SR Y U

e ® -

F6800/F68A00/F68B00

LI
749+ 706

Block Diagram

A5 AraArz Az A1y Ao A Ag

EEEREEE

A7 Ag As Ay Ay Az M Ao

EENEEERE

l OUTPUT BUFFERS

QUTPUT BUFFERS

CLOCK, &1 PROGRAM | PROGRAM
CLOCK, 52 — COUNTER y COUNTER |
AESET —»]
NON-MASKABLE INTERRUPT (NMI) —»
Aact —»f instrucTion STACK STACK
STRUCTI PoINTER W} POINTER
INTERRUPT REQUEST {iAG) —»f PECOS
3-STATE CONTROL (TSC) —»] CONTROL
INDEX [INDEX
DATA BUS ENABLE (DBE) —w REGISTER y }— REGISTER |
BUS AVAILABLE (BA) — -
VALID MEMORY ADDRESS (VMA) —»]
READ/WRITE (R/W) —»] ACGUMULATCR
INSTRUCTION AGCUMULATOR
. REGISTER 8
CONDITION
COD
REGISTER
DATA =
BUFFER ALY

!

Dy

4

!

Dy

MPU Signal Description

Proper operation of the MPU requires that certain control and
timing signals be provided to accomplish specific functions
and that other signal lines be monitored to determine the
state of the processor.

Clocks Phase One and Phase Two ($1,42)
Two pins are used for a 2-phase non-overlapping clock that
rung at the Vgg voltage level.

Figure 27 shows the microprocessor clocks, and the Clock
Timing table shows the static and dynamic clock
specifications. The HIGH level is specified at V¢ and the
LOW level is specified at V) ¢. The allowable clock
frequency is specified by f (frequency). The minimum ¢1 and
¢2 HIGH level pulsé widths are specified by PWgy (pulse
width HIGH time). To guarantee the required access time for
the peripherals, the clock up time, t,, is specified. Glock
separation, tq, is measured at a maximum voltage of Vgy
(overtap voltage). This allows for a multitude of clock
variations at the system frequency rate.

—

2653 a-02

512

Address Bus (Ag-A1s) -

Sixteen pins are used for the address bus. The outputs are
3-state bus drivers capable of driving one standard TTL load
and 90 pF. When the output is turned off, it is essentially an
open circuit. This permits the MPU to be used in DMA
applications. Putting TSC in its HIGH state forces the
address bus to go into the 3-state mede.

Data Bus (Do-D7)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has 3-state output buffers capable of driving
one standard TTL load and 130 pF. The data bus is placed in
the 3-state mode when DBE is LOW.

Data Bus Enable (DBE)

This input is the 3-state control signal for the MPU data bus
and will enable the bus drivers when in the HIGH state. This
input is TTL-compatible; however, in normal operation it
would be driven by the phase two clock. During an MPU read
cycle, the data bus drivers will be disabled internally. When it
is desired that another device control the data bus, such as

e

T A ST

F6800/F68A00/F68B00

T=H9A 7O

Fig. 1 MPU Flow Chart

1|
o~ BA
VECTOR—»PC
FFFE
VECTOR— PG napnnoBan
NMI] FFFC
SW1_ | FFFA TERE" 18T
Q| FFFe |_J surrerREGisTER
A

Notes

1. Reset is recognized at any position in the flowchart.

2. Instructions which affect the I-Bit act upon a one-bit buffer
register, “ITMP". This has the effect of delaying any clearing of the
1-Bit one clock time. Selting the 1-Bit, however, 1s not delayed.

3. Refer to tables 8 through 13 for details of Instruction execution.

2654 a-g3 513

F6800/F68A00/F68B00 7’.'.9?,/7,0&

in Direct Memory Access (DMA) applications, DBE should be
held LOW.

if additional data set-up or hold time is required on an MPU
write, the DBE down time can be decreased as shown in
Figure 29 (DBE # ¢2). The minimum down time for DBE is
t5aE as shown and must occur within ¢1 up time. The
minimum delay from the trailing edge of DBE to the trailing
edge of ¢1 is tpgep. By skewing DBE with respect to E in this
manner, data set-up or hold time can be increased.

Bus Available (BA)

The Bus Available signal will normally be in the LOW state; -
when activated, it will go to the HIGH state, indicating that
the microprocessor has stopped and that the address bus is
available. This will occur if the HALT line is in the LOW state
or the processor is in the WAIT state as a result of the
execution of a WAIT instruction. At such time, all 3-state
output drivers will go to their OFF state and other outputs to
their normally inactive level. The processor is removed from
the WAIT state by the occurrence of a maskable (mask bit |
= “0") or nonmaskable interrupt. This output is capable of
driving one standard TTL load and 30 pF. if TSG is in the
HIGH state, Bus Available will be LOW.

Read/Write (R/W)

This TTL-compatible output signals the peripherals and
memory devices whether the MPU is in a Read (HIGH) or
Write (LOW) state. The normal standby state of this signal is
Read (HIGH). 3-State Control (TSC) going HIGH will turn
Read/Write to the OFF (high-impedance) state. Also, when
the processor is halted, it will be in the OFF state. This
output is capable of driving one standard TTL load

and 90 pF.

Reset (RESET)

The RESET input is used to reset and start the MPU from a
power-down condition resulting from a power failure or initial
start-up of the processor. This input can also be used to
reinitialize the machine at any time after start-up.

if a HIGH level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset
sequence, the contents of the last two locations (FFFE,
FFFF) in memory will be loaded into the program counter to
point to the beginning of the reset routine. During the reset
routine, the interrupt mask bit is set and must be cleared
mer program control before the MPU can be interrupted by
IRQ. While RESET is LOW (assuming a minimum of eight
clock cycles have occurred) the MPU output signals will be
in the following states: VMA = LOW, BA = LOW, data bus =
high impedance, R/W = HIGH (read state), and the address
bus will contain the reset address FFFE. Figure 2 illustrates
a power-up sequence using the RESET contro! line. After the
power supply reaches 4.75 V a minimum of eight clock

cycles are required for the processor to stabilize in
preparation for restarting. During these eight cycles, VMA
will be in an indeterminate state so any devices that are
enabled by VMA which could accept a false write during this
time (such as a battery-backed RAM) must be disabled until
VMA is forced LOW after eight cycles. RESET can go HIGH
asynchronously with the system clock any time after the
eighth cycle.

Reset timing is shown in Figure 2 and the Read/Write Timing
table. The maximum rise and fall transition times are
specified by tpcr and tpcy. If RESET is HIGH at tpcs
(processor control set-up time) as shown in Figure 2 in any
given cycle, then the restart sequence will begin on the next
cycle as shown. The RESET control line may also be used to
reinitialize the MPU system at any time during its operation.
This is accomplished by pulsing RESET LOW for the duration
of a minimum of three complete ¢2 cycles. The Reset pulse
can be completely asynchronous with the MPU system clock
and will be recognized during ¢2 if set-up time tpcg is met.

Interrupt Request (IRQ) .

This level-sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait
until it completes the current instruction that is being
executed before it recognizes the request. At that time, if the
interrupt mask-bit in the condition code register is not set,
the machine will begin an interrupt sequence. The index
register, program counter, accumulators, and condition code
register are stored away on the stack. Next the MPU wili
respond to the interrupt request by setting the interrupt mask
bit HIGH so that further interrupts may occur. At the end of
the cycle, a 16-bit address will be loaded that points to a
vectoring address which is located in memory locations

-FFF8 and FFFQ. An address loaded at these locations

causes the MPU to branch tc an interrupt routine in memory.
Interrupt timing is shown in Figure 3.

The HALT line must be in the HIGH state for interrupts to be
serviced. Interrupts will be latched internally while HALT
is LOW.

The IRQ has a high-impedance pullup device internal to the
chip; however, a 3 kQ external resistor to Vcg should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMi) and Wait for Interrupt (WAI)
The F6800 is capable of handling two types of interrupts:
maskable (IRQ) as described earlier, and non-maskable
(NMD). IRQ is maskable by the interrupt mask in the condition
code register while NMI is not n..skable. The handiing of
these interrupts by the MPU is the same except that each
has its own vector address. The behavior of the MPU when
interrupted is shown in Figure 3 which details the MPU
response to an interrupt while the MPU is executing the

#

2655 A-04

5-14

F6800/F68A00/F68B00 5ﬁ;64¢vc71929

Fig. 2 Reset Timing

ICYCLE 2 I LE] l #7 I 3 l #9 I n ln+1|n+2|n+3ln+4|n+5| m |m+1| I |
. S
POWER ON 5 3 3
SWITCH J
POWER — 525V SS Ssﬁ 55
SUPPLY ﬁ'wsv __I e tpcs ?1 | thcs
RESET 5m / i\
———| tocr f— tecs
soereee NN OO XK
FFFE FFFE FFFE FFFE FFFF NEWPC FFFE FFFE
- T iy N XY
vma §§§§®§§§§§§§&, A 4 @t:x________
SIS S, S e S S ar, Smw " o
PC 8-15 PC Q-7 FIRST
INSTRUCTION
» MM o e
DAY = INDETERMINATE
Fig. 3 Interrupt Timing
ICVCLE 2 I 3 | 4 | 113 l X6 l L1 I 48 I 9 | Mo | #11 l "2 | 13 I H#14 I #s I

s _ L rrirufiriruriirierisr

ADDRESS
BUS

D Gl G0 GED I GED GlD G ¢

X X X X X

NEXT INST SP(n) SP(n- 1) SP(n - 2) SP(n - 3) SP(n - 4} SP(n - 5) SP(n - 6)SP(n - 7) FFF8 FFF9 NEW PC
FETCH ADDRESS ADDRESS ADDRESS
TAQ OR NMi \
—b{ t— tpcs
INTERRUPT
MASK /

DATA BUS 3 X X X XX

AX_A__A

INST (x) PCO-7 PC8-15 XO0-7

X 8-15

ACCA AcCcCH CCR NEW PC 8-15 NEW PC 0-7 FIRST INST OF

ADDRESS ADDRESS INTEARUPY ROUTINE

2656 a—0a5

5-15

|

NVWUVV/ T VUMV / | VLSV

Wit ad a4

control program. The interrupt shown could be either IRG or
NMI and can be asynchronous with respect to ¢2. The
interrupt is shown going LOW at time tpgg in cycle # 1 which
precedes the first cycle of an instruction (OP code fetch).
This instruction is not executed, but instead, the program
counter (PC), index register {IX), accumulators {(ACCX), and
the condition code register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts. The
address of the inte’rﬂ)j service routine is then fetched from
FFFC, FFFD for an NMI interrupt and from FFF8, FFEQ for an
1RQ interrupt. Upon completion of the interrupt service
routine, the execution of RTi will pull the PC, IX, ACCX, and
CCR off of the stack; the Interrupt Mask bit is restored to its
condition prior to Interrupts. ~

Figure 4 is a similar interrupt sequence, except in this case,
a WAIT instruction has been executed in preparation for the
interrupt. This technique speeds up the MPU’s response to
the interrupt because the stacking of the PC, IX, ACCX, and
the CCR is already done. While the MPU is waiting for the
interrupt, Bus Available will go HIGH indicating the following
states of the controf lines: VMA is LOW, and the address
bus, R/W and data bus are all in the high impedance state.
After the interrupt occurs, it is serviced as

previously described.

Table 1 Memory Map for Interrupt Vectors

Vector
MS LS Description
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 4 for program flow for lnterrupts.

3-State Control (TSC)

When the 3-State Control (TSC) line is a Ioglc oy, the
address bus and the R/W line are placed in a high
impedance state, VMA and BA are forced LOW when TSC =
“1" to prevent false reads or writes on any device enabled
by VMA. it is necessary to delay program execution while .
TSC is held HIGH. This is done by insuring that no transitions
of ¢1 (or ¢2) occur during this period. (Logic levels of the
clocks are irrelevant so long as they do not change.) Since
the MPU is a dynamic device, the ¢1 clock can be stopped
for a maximum time PW¢H without destroying data within the
MPU. TSC then can be used in a short Direct Memory
Accesc ‘DMA) application.

Figure 5§ ..ows the effect of TSC on the MPU. TSC must
have its transitions at tygg (3-state enable) while holding ¢1
HIGH and ¢$2 LOW as shown. The address bus and R/W line

————

2657

R—Oﬁ

5-16

will reach the high impedance state at trgp (3-state delay),
with VMA being forced LOW. In this example, the data bus is
also in the high impedance state while ¢2 is being held LOW
since DBE = ¢2. At this time, a DMA transfer could occur on
cycles #3 and #4. When TSC is returned LOW, the MPU
address and R/W lines return to the bus. Because it is too
late in cycle #5 to access memory, this cycle is dead and
used for synchronization, Program execution resumes in
cycle #6.

Valid Memory Address (VMA)

This output indicates to peripheral devices that there is a
valid address on the address bus. in normal operation, this
signal should be utilized for enabling peripheral interfaces
such as the PIA and ACIA. This signal is not 3-state. One
standard TTL load and 90 pF may be directly driven by this
active HIGH signal. .
HALT -

When this level sensitive input is in the LOW state, all
activity in the machine will be halted.

The HALT line provides an input to the MPU to allow control
of program execution by an outside source. if HALT is HIGH,
the MPU will execute the instructions; if it is LOW, the MPU
will go to a halted, or idle, mode. A response signal, Bus
Available (BA) provides an indication of the current MPU
status. When BA is LOW, the MPU is in the process of
executing the control program; if BA is HIGH, the MPU has
halted and all internal activity has stopped.

When BA is HIGH, the address bus, data bus, and R/W line
will be in a high impedance state, effectively removing the

MPU from the system bus. VMA is forced LOW so that the

floating system bus will not activate any device on the bus

that is enabled by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or IRQ interrupt occurs, it wili be latched into
the MPU and acted on as soon as the MPU is taken out of
the halted mode. If a RESET command occurs while the

MPU is halted, the following states occur: VMA = LOW,

BA = LOW, data bus = high impedance, R/W = HIGH (read
state), and the address bus will contain address FFFE as
long as RESET is LOW. As soon as the HALT line goes HIGH,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 6 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a 1-byte, 2-cycle
instruction such as CLRA. When HALT goes LOW, the MPU
will halt after completing execution of the current instruction,
The transition of HALT must occur tpgs before the trailing
edge of ¢1 of the last cycle of an instruction (Point A of

F6800/F68A00/F68B00 7= 47-/7-O7

Fig. 4 Wait Instruction Timing

|CV.C‘:LE azl n | £ I nl uel 3] | l10| n,|n+1ln+2|n+3|n+4ln+5|
ezr‘r'lrlrlllllllll

. NEW PC

ADDRESS

ADDRESS
BUS x

INSTRUCTION

) G D D G

_SP(H) SP(n - 1)} SP(n -4) §P(n - §) SP(n B

£C /_

" J—

S N G D G ¢

SP(n-7) FFF8 FFF9

s/

/S

D
v _
INTERRUPT / -
MASK 5 o) S
FIRST INST
55 ' OF INTERRUPT
. ROUTINE
IRG OR HMI

A

DATA BUS x

WAIT
INST

X XXC

PC0-7 PCB8-15 ACCA ACCH CCR

£C

XO———_X

N\

Note

27

— T3

Midrange waveform indicates high-impedance state.

517

e— tecs

X

NEW PC 8-15 NEW PC 0-7
ADDRESS ADDRESS

[rese—

F6800/F68A00/F68B00
T=4/%/7-0l

Fig. 5 "3-State Control Timing

| CYCLE |
) [l 82

&1

PWstimax |
— tat—- trsp trso o
angress) XXX
mv_vy D ¢

VMA x

DATA BUS

X
&2 =DBE __l_.1

15C - Iﬁ

o fe— s

trsg —»] |<—

Fig. 6 Halt and Single Instruction Execution for System Debug

LAST CYCLE
OF CURRENT
INSTRUCTION

I I T B e B

|<— tecs

]
2 S |

tect ‘

INSTAUCTION
EXECUTE |

INSTRUCTION

FETCH
tea -——

— o

" /
wa XY \

s V2N G

e

L&, -

X -

FETCH EXECUTE

55 N O—
——t” AD
] o < ADDR M + 1 Yoo

ADDRESS \
Sus x ADDR M x x)— -

£¢

8us

INST
X

Note
Midrange waveform indicates high impedance state.

2659 A-08

=
INST

SRRSO -]

5-18

T WA WWIARWWS 1 WAl

7=99-/7vy,

Figure 6). HALT must not go LOW any time later than the
minimum tpgg specified.

The fetch of the OP code by the MPU is the first cycle of the
instruction. If HALT had not been LOW at Paint A, but went
LOW during ¢2 of that cycle, the MPU would have halted
after completion of the following instruction. BA will go HIGH
by time tga (bus available delay time) after the last
instruction cycle. At this time, VMA is LOW and R/W,
address bus, and the data bus are in the

high-impedance state.

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must be
brought HIGH for one MPU cycle and then returned LOW as
shown at Point B of Figure 6. Again, the transitions of HALT
must occur tpcg before the trailing edge of the next ¢1,
indicating that the Address Bus, Data Bus, VMA and R/W
lines are back on the bus. A single-byte, 2-cycle instruction
such as LSR is used for this example also. During the first
cycle, the instruction Y is fetched from address M + 1. BA
returns HIGH at tg on the last cycle of the instruction
indicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA LOW time would have been
increased by one cycle.

MPU Registers

The MPU has three 16-bit registers and three 8-bit registers
available for use by the programmer (Figure 7).

Program Counter

The program counter is a 2-byte (16 bits) register that points
to the current program address.

Stack Pointer

The stack pointer is a 2-byte register that contains the
address of the next available location in an external push-
down/pop-up stack. This stack is normally a random access
read/write memory that may have any location (address)
that is convenient. In those applications that require storage
of information in the stack when power is lost, the stack must
be nonvolatile.

Index Register

The index register is a 2-byte register that is used to store
data or a 16-bit memory address for the Indexed mode of
memory addressing.

Accumulators
The MPU contains two 8-bit accumulators that are used to
hold operands and resuits from an arithmetic logic unit (ALU).

Condition Code Register
The condition code register indicates the results of an

2660 A-09

arithmetic logic unit operation: negative (N), zero (2),
overflow (V), carry from bit 7 (C), and half carry from bit 3
(H). These bits of the condition code register are used as
testable conditions for the conditional branch instructions. Bit
4 is the interrupt mask bit (). The unused bits of the
condition code register (bit 6 and bit 7) are ones.

MPU Instruction Set

The F6800 instructions are described in detail in the FE800
Programming Manual, This section will provide a brief
introduction and discuss their use in developing F6800
control programs. The F6800 has a set of 72 different
executable source instructions. Included are binary and
decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditiona! branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into one to three bytes of machine
code. The number of bytes depends on the particular
instruction and on the addressing mode. (The addressing
modes which are available for use with the various executive
instructions are discussed later.)

The coding of the first {(or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 2. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes
contain(s) an operand, an address, or information from which
an address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: (1) memory reference, so calied
because they operate on specific memory locations; (2)
operating instructions that function without needing a memory
reference; (3) 1/0 instructions for transferring data between
the microprocessor and peripheral devices.

In many instances, the F6800 performs the same operation
on both its internal accumutators and the external memory
locations. In addition, the F6800 interface adapters (PIA and
ACIA) allow the MPU to treat peripheral devices exactly like
other memory locations, hence, no 1/0 instructions as such
are required. Because of these features, other
classifications are more suitable for introducing the F6800's
instruction set: (1) accumulator and memory operations; (2)
program control operations; (3) condition code

register operations.

rFOOUV/FOOAVV/ FUvLVY 7:’,7/7%'

Fig. 7 Programming Model of The Microprocessing Unit
7-

I ACCA ACCUMULATOR A

I ACCB

ACCUMULATOR B

15

INDEX REGISTER

15 -

PROGRAM COUNTER

1%

r =

0
Lloful]s]z]v]e] Rearea™ e
CARRY (FROM BIT 7)
OVERFLOW
ZERO
NEGATIVE
INTERRUPT MASK
HALF CARRY (FROM BIT 3)

STACK POINTER.

-
I I I O I G I

Table 2 Microprocessor Instruction Set—Alphabetic Sequence

ABA Add Accumulators CLV Ciear Overflow ROR Rotate Right

ADC Add with Carry CMP Compare RTI Return from Interrupt

ADD Add © COM Complement RTS Return from Subroutine

AND Logical And CPX Compare Index Register SBA Subtract Accumulators

ASL Arithmetic Shift Left DAA Decimal Adjust SBC Subtract with Carry

ASR Arithmetic Shift Right DEC Decrement SEC Set Carry

BCC Branch if Carry Clear DES Decrement Stack Pointer SEl Set Interrupt Mask

BCS Branch if Carry Set DEX Decrement Index Register SEV Set Overflow

BEQ Branch if Equal to Zero EOR Exclusive OR STA Store Accumulator

BGE Branch if Greater or Equal Zero STS Store Stack Register

BGT Branch if Greater than Zero ING Increment) STX Store Index Register

BHI Branch if Higher INS Increment Stack Pou?ter SUB Subtract

BIT Bit Test INX Increment Index Register SWI Software Interrupt

BLE Branch if Less or Equal JMP Jump TAB Transfer Accumulators

BLS Branch if Lower or Same JSR Jump to Subroutine TAP Transfer Accumulators to Condition

g‘d :ranc: ': Ih.de'ss than Zero LDA Load Accumulator Code Reg.

BNE Branch ff N":uEs o2 LDS Load Stack Pointer TBA Transfer Accumulators :

BPL B:::zh !' PI° qual to Zero. LDX Load Index Register TPA Transfer Condition Code Reg. to
i Flus LSR Logical Shift Right Accumulator

BRA Branch Always . TST Test

BSR Branch to Subroutine NEG Negate .

. T8X Transfer Stack Pointer to Ind
8vVC Branch if Overfiow Clear NOP No Operation Rr:;ister a inerto fnde
BVS Branch if Overflow Set ORA Inclusive OR Accumulator TXS Transfer Index Register to Stack
CBA Compare Accumulators PSH Push Data Pointer :
cLe Clear Carry -PUL Pull Data WAl Wait for Interrupt
CL! Clear interrupt Mask RO R Left tt for Interrup
CLR Clear L otate Le

*
2661 a-10 520

ot i

F6800/F68A00/F68B00O

799/ 7-0%

Table 3 Hexadecimal Values of Machine Codes

co * 3B RTI 76 RCR EXT B1 CMP A EXT EC *
01 NOP 3C . 77 ASR EXT B2 SBC A EXT ED *
02 ¢ 3D * 78 ASL EXT B3 * EE LDX IND
03 ‘ 3E WAI 79 ROL EXT B4 AND A EXT EF STX IND
04 . 3F swi 7A DEC EXT B5 BIT A EXT FO SUB B EXT
05 * 40 NEG A 7B . B6 LDA A EXT Ft CMP B EXT
06 TAP 41 * 7G INC EXT B? STA A EXT F2 SBC B EXT
07 TPA 42 7D TST EXT B8 EOR A EXT F3 *
08 [NX 43 COM A 7E JMP EXT B9 ADC A EXT F4 AND B EXT
09 DEX 44 LSR A 7F CLR EXT BA ORA A EXT F5 BIT B EXT
0A CLV 45 ¢ 80 SUB A IMM BB ADD A EXT F6 LDA B EXT
0B SEV 46 ROR A 81 CMP A IMM BC CPX EXT F7 STA B EXT
0C CLC 47 ASR A 82 SBC A IMM BD JSR EXT F8 ADC B EXT
0D SEC 48 ASL A 83 . BE LDS EXT F9 ADC B EXT
0E GLI 43 ROL A 84 AND A IMM BF STS EXT FA ORA B EXT
OF SEI 4A DEC A 8 BIT A IMM CO SUB B MM FB ADD B EXT
10 SBA 4B . 86 LbA A IMM C1 CMP B MM FC *
11 CBA 4C INC A 87 ‘ C2 SBC B IMM FD *
12 . 4D TST A 88 EOR A IMM C3 * FE LDX EXT
13 * 4E * 89 ADC A IMM C4 AND B IMM FF 8TX EXT
14 * 4F GCLR A 8A ORA A IMM (C5 BIT 8 IMM
15 * 50 NEG B 88 ADD A IMM C6 LDA B IMM
i6 TAB 51 . 8C CPX A IMM C7 *
17 TBA 52 . 8D B8SR REL GC8 EOR B IMM
18 * 53 COM B 8E LDS IMM C3 ADC B IMM
19 DAA 54 LSR B 8F * CA ORA B MM
1A . 55 . 80 SUB A DIR CB ADD B IMM
iB ABA 56 ROR B 91 CMP A DIR GG *
iC - 57 ASR B 92 SBC A DIR CD ‘
iD - 68 ASL B 93 * CE LDX IMM
1E . 59 ROL B 94 AND A DIR CF *
iF . 5A DEC B g5 BIT A DR DO SUB B DIR
20 BRA REL 5B . 9% LDPA A DIR D1 CMP B DIR
21 . 5C INC B 97 STA A DIR D2 SBC B DIR
22 BHI REL 5D TST 8 98 EOR A DIR D3 *
23 BLS REL 5E * 99 ADC A DIR D4 AND B DIR
24 BCC REL 5F CLR B 9A ORA A DIR D5 BIT B DIR
25 BCS REL 60 NEG IND 9B ADD A DIR D6 LDA B DIR
26 BNE REL 61 ‘ 9C CPX DIR D7 STA B DIR
27 BEQ REL 62 * 9D * D8 EOR B DIR
28 BVC REL 63 COM IND 9E LDS DIR D9 ADC B DIR
29 BVS REL 64 LSR IND 9F S§TS DIR DA ORA B DIR
2A BPL REL 65 * A0 SUB A IND OB ADD B DIR
2B BMI REL 66 ROR IND A1 CMP A IND DC N
2C BGE REL 67 ASR IND A2 SBC A IND DD ¢
2D BLT REL 68 ASL IND A3 . DE LDX DIR
2E BGT REL 69 ROL IND A4 AND A IND DF STX DIR
2F BLE REL 6A DEC IND A5 BIT A IND EO SUB B IND
30 TSX . 6B * A6 LDA A IND E1 CMP B IND.
31 INS 6C INC IND A7 STA A IND E2 SBC B IND
32 PUL A 6D TST IND A8 EOR A IND E3 *
33 PUL B 6E JMP IND A3 ADC A IND E4 AND B IND
34 DES 6F CLR IND AA ORA A IND E5 BIT B IND
35 TXS 70 NEG EXT AB ADD A IND E6 LDA B IND
38 PSH A 71 * AC CPX IND E7 STA * B IND
37 PSH B 72 AD JSR IND E8 EOR B IND
38 N 73 GCOM EXT AE LDS IND E9 ADC B IND
39 RTS 74 LSR EXT AF STS IND EA ORA B IND
3A . 75 ‘ B0 SUB A EXT EB ADD B IND
Notes
1. Addressing Modes: A = Accumulator A) IMM = Immediate REL = Relative
B = Accumulator 8 DIR = Direct IND = Indexed

2. Unassigned cods indicated by an asterisk (*)
L~ Y
§5-21)
2662 A-11 .

/=777 /o

Table 4 Accumulator and Memory Operations
The accumulator and memory operations and their effect on the CCR are shown in Table 4.
Included are Arithmetic Logic, Data Test and Data Handling instructions.

Addrassing Modas Boaolean/Arithmetic Operation Cond, Code Reg. *
Operations Mnemonic Immed Direct Index Extnd Implied {All register iabels 541327110
oP - =lop - =loP ~ =|OP ~ =|OP -~ = refer to contents iInlzlv
Add ADDA (8B 2 2|98 3 2 |AB 2|BB 4 3 A+M-A tlefr| 1]
AODB |CcB 2 21!pB 3 2}EB 5 2|FB 4 3 B+M-~B tjefjvjurprfs
Add Acmltts ABA . 1B 2 1 |A+B—-A tlef1)]t
Add with Carry ADCA 80 2 2|99 3 2|(a9 5 2(BG 4 3 A+M+C-A t(ej byt
ADCB8 co9 2 2iD9 3 2{E9 5 2{F9 4 3 B+M+C-8B AR
And ANDA |84 2 2]94 3 2|A4 5 2|B4 4 3 AeM -~ A eje|1|1|R}e
ANDB |ca 2 2|D4a 3 2[{E4 5 2|F4 4 3 B:M-B ejeit|{t1|R|e
Bit Test BITA g5 2 2|95 3 2jA5 5 2(B5 4 3 AeM e|e|[1|1|R]|e
BITB c5 2 21iD5 3 2|5 5 2|F5 4 3 8+M ejeo| 1|1 |[R|e®
Clear CLR 6F 7 2|7F & 3 0 - M e|®iRIS|R|R
CLRA 4F 2 1 |00-A e|e®|R|S|AIR
CLRB 5F 2 1 {00-~B e/ e|R|[S|R|R
Compare CMPA |81 2 2|91 3 2(Aa1 5 2|B1 4 3 A-M ejeo i1
cMPB |[Cct 2 2|D1 3 2|Et 5 2([F1 4 3 B-M eje|1| 1|t}
Compare Acmltrs CBA 11 2 1 |A-B eje |1ty
Complement, 1s COM 63 7 2|73 6 3 M-M o|e |1 |t|R]|S
COMA 43 2 1 |A-A eie| 1|1 |R}S
coms 53 2 1 |B-—-8 ejle|I1{I|R|S
Complement, 2s NEG 60 7 2|70 6 3 00-M—M e|left]|1]1]2
{Negate) NEGA 40 2 1]|00-A-A elel 1 |1|1]2
NEGS8 50 2 1 |{00-B—~B ejei1 1|12
Decimal Adjust, A DAA 19 2 1 | Converts Binary Add. of BCD e|lo |t |1]1}3
Characters into BCD Format
Decrement DEC 6A 7 2(7A 8 3 M-1-M e|efti1|4]e
DECA A 2 1]A-1-A efle|i1f1]d]e
DECB 5A 2 1 |B-1-8B eje|i1it|afe
Exclusive OR EORA g8 2 2]98 3 2|A8 5 2|B8 4 3 A+ M-A e(ejt|1|R|e
EQRB cs 2 2|pbs 3 2|€8 5 2}F8 4 3 8 + M-B e|o|1|1iR}]e®
Increment INC 6C 7 2|7 6 3 M+1-M eje|i|1]|5}e
INCA aC 2 1 |A+1-A eje|1j1]|5]e
INCB ¢ 2 1|B+1-B e|e |1 |1 |5]e
Load Acmitr LDAA 86 2 2|96 3 2|A6 5 2|8 4 3 M- A e|le!l | |R|e®
LDAB c6 2 2106 3 2|E6 5 2]F6 4 3 M-B ejie i1 |R]|e
Or, Inclusive ORAA |8A 2 2|9A 3 2|AA 5 2|BA 4 3 A+M-A e(e|i|1jR}e
ORAB |CA 2 2|DA 3 2|EA 5 2|FA 4 3 8+M-B e|lefI |1 |[R]e
Push Data PSHA 9 4 1 |A—-Msp,SP-1-8P (AR RERE BN NN
PSHB a7 4 1 |B—~Msp,SP-1-~5P o o |eajeje}e
Pull Data PULA a2 4 1 1SP+1—-8P Mgp—~A e|lo|ojo |0 e
PULB 33 4 1t 1SP+1—-8SP,Msp—8 ejo|eo|ojo (e
5—3’3_— e —————
5-22

2663 aA-12

F6800/F68A00/F68B00

7=49-/2.04,

Table 4 Accumulator and Memory Operations (Cont.)

Addressing Modes Boolean/Arithmetic Op Cond. Code Reg. *
Operations Mnemonic Immed Direct index Extnd Implied (All register fabals 5143|2110
OP - =joP -~ =loP -~ =]oOP -~ =|OP -~ = refer to contents H| 1 [n]zlv]e

Rotate Left ROL 63 7 2|79 6 3 M e @ |1]|1]|6{t
ROLA 49 2 1 (A }l—D <—I T <] elel {161
ROLB 59 2 1|8 e|e® |1 |1]86]1

Rotate Right ROR 66 7 2|76 6 3 M eje | |1 |61
RORA 6 2 1]A] e o |t |ti6 |1
RORB 56 2 1|8 "° o|loli|i|6]:

Shift Left, ASL 68 7 2|78 6 3 M — ®ie |]t |61t
Arithmetic ASLA 8 2 1A J -— EEEEEI:D]«O e|le[1]ii6 |1
ASLB 8 2 1|8 bo e|left|t]8]:

Shift Right, ASR 67 7 2177 6 3 M — ®|® 11|61}
Arithmetic ASRA 47 2 1|A }L_LLEED:EEEI -0 ele |1t |6]1
ASRB . 57 2 1|8 80 ¢ elofili]86]:
Shift Right, LSRR 64 7 2|74 6 3 M ¢Je|R| 1|61t
Logic LSRA 4 2 1|A } ~ITTTITT]—L[] [e|e|R|t]|6]|1
LSR8 54 2 1|B B0 C lelelr|i|6]t
Store Acmitr STAA 97 4 2]A7 6 2|B7 5 3 A-M s|/®| |1|R]|e
STAB D7 4 2|/E7 6 2{F7 5 3 B-M oo |1 |1 |R|e
Subtract SUBA 60 2 2(90 3 2}JA0 5 2f80 4 3 A-M-A ejle il
suBs Co 2 2|00 3 2|E0 5 2|FO 4 3 B-M-B i@ | 1|t |t
Subtract Acmltrs SBA 10 2 1 |A-B-A e|le |1 |1 |1
Subfr. with Carry SBCA 82 2 2}92 3 A2 5 2{B2 4 3 A-M-C-~A LN L I I O O I O
SBCB C2 2 2|D2 3 2|E2 5 2|F2 4 3 B-M-C-8B e |® | ¢ |11l
Transfer Acmltrs TAB . 6 2 t|A~-8B e/eitjt1|R|e
TBA 17 2 1 |8—A e|le |t |1 (Rie
Test, Zero TST 6D 7 2(7D 6 3 M- 00 e|e | |!|R]|R
of Minus TSTA 4D 2 1 |A-Q0 ele i1 I1IR|R
TSTB sb 2 1 }B-00 ®|e |1 |R|R
H{TIN!IZ|V]C

Note
Accumulator addressing mode instructions are included in the column for IMPLIED addressing
*See condition code register notes page 26

Legend: Condition Code Symbols:
op Operation Code (Hexadecimal); H Half-carry from bit 3;
~ Number of MPU Cycles; i Interrupt mask
-4 Number of Program Bytas; N Negative (sign bit)
+ Arithmetic Plus; 4 Zero (byte)
- Arithmetic Minus; v Overflow, 2's complement
. Boolean AND; c Carry from bit 7
Mgp Contents of memory location R Reset Always
pointed to be Stack Pointer; s Set Always
+ Boolean Inclusive OR; Test and set if true, cleared otherwise
@ Boolean Exclusive OR; ¢ Not Affected
M Complement of M;
- Transfer Into;
0 8it = Zaro;
00 Byte = Zero;

N
2664 A-13 . 523

A lL oLlTLVNVINY LU0V dJdoCd

S |G 2]

F6800/F68A00/F68B00
T =49/ 700

Program Control Operations

Program Control operation can be subdivided into two
categories: (1) index register/stack pointer instructions; (2)
jump and branch operations. .

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s index
register and stack pointer are summarized in Table 5.
Decrement (DEX, DES), increment (INX; INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The compare instruction, CPX, can be used to compare
the index register to a 16-bit value and update the condition
code register accordingly.

The TSX instruction causes the index register to be loaded
with the address of the last data byte put onto the stack.
The TXS instruction loads the stack pointer with a value
equal to one less than the current contents of the index

register. This causes the next byte to be pulled from the
stack to come from the location indicated by the index
register. The utility of these two instructions can be clarified
by describing the stack concept relative to the

F6800 system.

The stack can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The stack pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out (LIFO) basis in contrast
to the random access mode used by the MPU’s other
addressing modes.

The FB800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instructions
can be used to establish one or more stacks anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Table 5 Index Register and Stack Pointer Instructions
Cond. Code Reg.*
Pointer) Immed Direct Index Extend Implied Boolean/Arithmetic sTalalal 0
Operations | Mnemonic Operation
OP| ~ | #|OP|~| # |OP| ~ | # |OP #|OPl~ | # Hl1iIN|Z]V

Compare cpx+ |8c]3 |3|ec|4| 2]ac| 6|2 |BC 3 Xn-MX -M+1 [o|e]|®D] .
Index Reg
Decrement DEX 0941 | X~-1-X e|o|o |1 (o]
index Reg
Decrement DES 34|(4|1]|SP-1-S8P oloejloejojo e
Stack Pntr
Increment INX 8|4 |t|[X+1-X ele|ol 1 |o|e@
Index Reg
Increment INS 314118 +1-8P oo 0|0 0
Stack Pntr
Load LDX CE{3 {3|DE|4| 2 |[EE| 6 | 2 |FE 3 M — Xy, (M + 1) = X L J O@ t{R|®
Index Reg
Load LDS {8E|3 |3|9E|4| 2]AaE| 6 |2 |BE 3 M—-SP(M+1)—~SP |olel@|t[R]e
Stack Pntr .
Store STX DF}|5| 2 |[EF| 7 | 2 [FF 3 XH~-MXL—-(M+1) e @ t|{R]|®
Index Reg
Store STS 9F |56 | 2 |AF{ 7 | 2 |BF 3 SPH - M, SPL—-(M + 1) o @ t1{R|®
Stack Pntr .
indx Reg — TXS 3Blaj1|X-1-8P o|o|o|e@|eie
Stack Pntr
Stack Pntr — TSX 0|4 |1]{SP+1-X e|o|ejo|0]e
indx Reg

*See condition code register notes page 26

2665

A-14 5-24

FOOVV/ FOOAUV/FOOLUVU

749/ 7-05

Operation of the stack pointer with the push and pull
instructions is illustrated in Figures 8 and 9. The push
instruction (PSHA) causes the contents of the indicated
accumulator (A in this example) to be stored in memory at
the location indicated by the stack pointer. The stack pointer
is automatically decremented by one following the storage
operation and is “pointing” to the next empty stack location.
The puli instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
stack pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte
stacked rather than the next empty location. Note that the
pull instruction does not remove the data from memory; in the
example, 1A is still in location (m + 1) following execution of
PULA. A subsequent push instruction would overwrite that
[ocation with the new pushed data.

Execution of the branch to subroutine (BSR) and jump to
subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 11 through 13. The
stack is decremented after each byte of the return address

is pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended (three bytes) addressing mode.
Before it is stacked, the program counter is automatically
incremented the correct number of times to be pointing at the
location of the next instruction. The return from subroutine
instruction, RTS, causes the return address to be retrieved
and loaded into the program counter as shown in Figure 14.

There are several operations that cause the status of the

MPU to be saved on the stack. The software interrupt (SWI)

and wait for interrupt (WAI) instructions as well as the

maskable (IRQ) and non-maskable (NMI) hardware interrupts

all cause the MPU's internal registers (except for the stack u
pointer itself) to be stacked as shown in Figure 16. MPU

status is restored by the return from interrupt, RTI, as shown

in Figure 15. .

Fig. 8 Stack Opefaﬂon, Push Instruction

MPy
weor] QT
/
m-2
m-1 2
£
SP —»m :
. <
previousLy |{™ ! L a
STACKED {m +2 63
. OATA |+ 3 —
ac
e ———————
pc—{ psia_ K
NEXT INSTR | N
\ L~

{&) BEFORE PSHA

2666 B—-01

MPY -
reor [2]
/
m-2
SP——pm -1
NEW DATA m 7]
previousLy [™ ! i
STACKED {m + 2 63
DATA m+3 FD
ac
]
e ———
PSHA
pc—»] NEXT INSTR

{b) AFTER PSHA

FGBOO/FGSAOO/FGSBOO'ﬁ 4¢—/ 7- ”9

Fig. 9 Stack Operation, Pull Instruction

MPU " WPU

acch N scar 1]
m
m-2 m-2
m-1 m-1
SP~=—mm m
previousLy{™ *1 1A 8p— m+1 1A
STACKED {m +2 ac PREVIOUSLY {1 + 2 5C
DATA STACKED
m+3 0§ DATA{m +3]
€C €C
|y
PC] PULA PULA
NEXT INSTR pC—>| NEXT INSTR
L~
{a) BEFORE PULA {b) AFTER PULA

Fig. 10 Program Flow for Jump and Branch Instructions

PC MAIN PROGRAM

PC MAWN PROGRAM MAN PROGRAM
al 7E =JMP
n] 6E = JMP 1 n 2¢ = BRA
n+ 1]KH=NEXT ADDRESS|
n+ 1] K= OFFSET n+ 1 K = OFFSET"
INDXD EXTND n + 2 |KL =NEXT ADDRESS)

°
X + K |NEXT INSTRUCTION (n+ 2) £K | NEXT INSTRUCTION
K [NEXT NSTRUCTION

‘K = SIGNED 7-8iT VALUE
(s) JUMP {b} BRANCH

Fig. 11 Program Flow for BSR

:4 —]
m-2 SP—-m-2
m-% m-1 (n +2)H
SP—» m m {n +2)L
m+1 7€ m+1 78
e
P
PC—» n BSR n BSR
n+1] *K=OFFSET* n+1 +K = OFFSET
n +2 NEXT MAININSTR n +2 [NEXT MAIN INSTH
"N e
*K =SIGNED 7-BIT m——————
VALUE
pc—=(n +2) =K [1STSUBR INSTR
(a) BEFORE EXECUTION
—/—

(b} AFTER EXECUTION

FOOUUW/IFOOAVV/Troobuv

V47777

Fig. 12 Program Flow for JSR (Extended)

m-2 m-3
m-1 SP—wmm - 2
$p—wm m-1 (n+3)H
m+1 7E m YT
m+2 7A mE1 7
70 m+2 7A
/ —
PC—n JSR = BD
n+1]| Si=SUBRADDR n JSR
n+2 | S =SUBRADDR n+1] Sy =SUBRADDR
n+3 | NEXT MAIN INSTR n+2 § S = SUBRADDR
n+3 | NEXT MAIN INSTR
e
f
(a) BEFORE EXECUTION
PC—»5 | 15T SUBR INSTR
(S FORMED FROM
SHAND §) o —

{b) AFTER EXECUTION

Fig. 13 Program Flow for JSR (Indexed)

m-2 -
m-1
SP—m
m+1 7E
/M-\
PC—n JSR = AD
nt1 K = OFFSET*
n +2 |} NEXT MAIN INSTR
*K =8-8IT

UNSIGNED VALUE

(a) BEFORE EXECUTION

2668 8-03

SP—am-2
m-1 {n + 2)H
m {n +2)L
m+1 7E
7A
n JSR = AD
n+t K = OFFSET
n+2 | NEXT MAIN INSTR
PC— X*+K 1ST SUBR INSTR

(b) AFTER EXECUTION

527

*CONTENTS OF
INDEX REGISTER

1y 7 e St bt T T e e W RS —

| ||
F6800/F68A00/F68B00 »
7T-49-/ 7O
Fig. 14 Profiram Flow for RTS
$P—m-2 m-2
m-1 {(n+3H m-t
m {n +3I)L SP—pm
m+i TE m+1 7€
TA TA
Y L—-—’\
n JSR = BD L] J8R = 8D
n+1 | 8y = SUBRADOR n+1 | Su=8UBRADDR
n+2 | SL=SUBRACDR n+2 | 8. =8UBRADDR
n+3 §NEXT MAININSTR PC—=mn +3 | NEXT MAIN INSTR
M
LAST SUBR INSTR LAST SUBR INSTR
PC—8, RTS 8n RTS
f_‘

{a) BEFORE EXECUTION

(b} AFTER EXECUTION

Fig. 15 Program Flow for RT!

SP —

n+t

Sa JLAST INTER INSTR

PC ——=

2669 B-04

7

L} CCR
s ACCS
4 - ACCA
3

2

1
m

Xy (INDEX REG)
Xy (INDEX REG)
PC(n +)H
BC{n + 1)L
7€

NEXT MAIN INSTR

ATl

—/-\

(s) BEFORE EXECUTION

———m—

m-7
m-8 CCR
m-§ ACCB
m-4 ACCA
m-3 Xu
m-2 X
m-1 PCH
SP—»m PCL
7E

PC—s-n + 1 | NEXT MAIN INSTR
N—."‘_ﬁ
LAST INTER INSTR
Sn RTI

{b) AFTER EXECUTION _

. *

5-28

g

S e - . R N
F6800/F68A00/F68B00

T249-17-C

Fig. 16 Program Flow for Intetrupts

WAIT FOR HARDWARE INTERRUPT OR
SOFTWARE INTERRUPT INTERRUPT NON-MASKABLE INTERRUPT (NMI)
MAIN PROGRAM MAIN PROGRAM MAIN PROGRAM
n n 3E = WAl NO
NEXT MAIN INSTR n+ 1] NEXT MAIN INSTR n { LAST PROG BYTE

CONTINUE MAIN PROG
YES n+ 1| NEXT MAIN INSTR
STACK
SP—m-7 -
REGISTER CONYENTS m-8 CONDITION cooe

m-5 ACMLTR B
m-4 ACMLTR A
m-3 | INDEXREGISTER (X4)
m-2 | INDEX REGISTER (x)
m-1 PC(n - NH

m PC{n +)L

) &

Swi HDWR WAl NMI RESTAAT
INT ()

NMI
Toor)—"

WAIT

FFFA FFF8 FFFC FFFE
FFFB FFF9 FFFD FFFF
INTERRUPT MEMORY Y
ASSIGNMENT! SET INTERRUPT
FFFs | CONSTANT, HDWARE | Ms MASK (CCR 4)
FFF9 | CONSTANT, HDWARE | LS FIRST INSTR {
LOAD INTERRUPT
FFFA SOFTWARE Ms ADDR FORMED VECTOR INTO
:Lﬁ;ﬂmﬁ' PROGRAM COUNTER
FFFB SOFTWARE Lis PER MEM
ASSIGN

FFFC §} NON-MASKABLE INT | MS
INTERRUPT PROGRAM

FFFD § NON-MASKABLE INT [LS

18T INTERRUPT INSTR

FFFE RESTART MS

FFFF RESTART LS

Note
MS = Most Significant Address Byte
LS = Least Signiticant Address Byte

. 2670 8=-405

'F6800/F68A00/F68B00

T-9/270%

Jump and Branch Operation

The jump and branch instructions are summarized in Table 6.

These instructions are used to control the transfer of
operation from one point to another in the contro! program.

The no operation instruction, NOP, while included here, is a
jump operation in a very limited sense. Its only effect is to
increment the program counter by one. it is useful during
program development as a stand-in for some other
instruction that is to be determined during debuag. |t is also
used for equalizing the execution time through alternate
paths in a control program.

Table 6 Jump and Branch Instructions

Execution of the jump instruction, JMP, and branch always,
BRA, affects program flow as shown in Figure 10. When the
MPU encounters the jump (indexed) instruction, it adds the
oftset to the value in the index register and uses the result
as the address of the next instruction to be executed. In the
extended addressing mode, the address of the next
instruction to be executed is fetched from the two locations
immediately following the JMP instruction. The branch always
(BRA) instruction is simitar to the JMP (extended) instruction
except that the relative addressing mode applies and the
branch is limited to the range within —125 or +127 bytes of
the branch instruction itself. The opcode for the BRA
instruction requires one less byte than JMP (extended) but
takes one more cycle to execute.

Relative Index Extend Implied Cond. Code Reg.

Operations M ic Branch Test 5/4(3]2/170

N OP|~| # {OPj ~ | # [OP| ~ | #]OP| ~ [# HltIN|Z]lV]C
Branch Always BRA 20(4f2) None e|o|oja|e]le
Branch if Carry Clear BCC 24142 cC=0 (A BEEE RE BR
Branch if Carry Set BCS 25412 C=1 ejo o008 |0
Branch if = Zero BEQ 27142 Z=1 e|lejoleo|(o]e
Branch if = Zero BGE 2C| 4|2 N + V=0 [EEBE R BE BN
Branch if > Zero BGT 2E| 4] 2 Z+(N + V=0 oo |0o|e|eoje
Branch if Higher BHI 22)412 C+2=0 (A EE B BN BN
Branch if < Zero BLE 2F | 4| 2 Z+ (N + V=i ejloe|o|e 0 0
Branch if Lower or Same BLS 231412 cC+zZ=1 o|(lojo|e® 0 0
Branch if < Zero BLT 2014 | 2 N + V=1 [(BE RE RN BE BN J
Branch if Minus BMI 2B(4| 2 N=1 [BERE NN X NN]
Branch if not Equal Zero 8NE 26412 Z=0 o|o | |0 0@
Branch if Overflow Clear BVC 2814 2 V=20 eioj0|jo (00O
Branch if Overflow Set BVS 29{4} 2 v=+1 [BE EEERE B BN
Branch if Plus BPL 2A |41 2 N=0 [(EERE IR BE BN
Branch to Subroutine BSR 8Dj8 | 2 [(AERERE R BE
Jump . JMP 6E| 41 217E13 3 } See Special Operations e|ojeje o e
Jump to Subroutine JSR AD|8 | 2|BD|9 |3 AR REEE R BN)
No Operation NOP 01| 2! 1 | Advances Prog.Cntr.Only (e e |e e [® @
Return from Interrupt RTI 3B |10] 1
Return from Subroutine RTS 39}i5|1 . eo|ejojo 0|0
Software Interrupt Swi 3F [12] 1 ’ See Special Operations (AN SRR AR R4
Wait for interrupt® WAI 3E| 9|1 lo|@io|o]oje

+WAI puts address bus, R/W., and data bus in the 3-state mode while VMA is held LOW.

$See condition code register notes page 26.

5-30

Frvm—

F6800/F68A00/F68B00

Ty 7-00

The effect on program fiow for the jump to subroutine (JSR)
and branch to subroutine (BSR) is shown in Figures 11
through 73. Note that the program counter is properly
incremented to be pointing at the correct return address
before it is stacked. Operation of the branch to subroutine
and jump to subroutine (extended) instruction is similar
except for the range. The BSR instruction requires less
opcode than JSR (2 bytes versus 3 bytes) and also executes
one cycle faster than JSR. The return from subroutine, RTS,
is used at the end of a subroutine to return to the main
program as indicated in Figure 14.

The effect of executing the software interrupt, SWI, and the
wait for interrupt, WAI, and their relationship to the hardware
interrupts is shown in Figure 15. SWI causes the MPU
contents to be stacked and then fetches the starting address
of the interrupt routine from the memory locations that
respond to the addresses FFFA and FFFB, Note that as in
the case of the subroutine instructions, the program counter
is incremented to point at the correct return address before
being stacked. The return from interrupt instruction, RTI,
(Figure 185) is used at the end of an interrupt routine to
restore control to the main program. The SWI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

Fig. 17 Conditional Branch Instructions

BMI: N=1; BEQ: Z=1;
BPL: N=¢; BNE: Z=¢;
BVC: V=¢; BCC: C=¢;
BVS: V=1; BCS: C=1;

BHI: C+Z=¢; BLT: N® V=1;

BLS: C+2Z=1; BGE: N@® V=4¢;
BLE: Z+(N® V) =1;
BGT: Z+(IN® V)=¢:

The conditional branch instructions, Figure 17, consist of
seven pairs of complementary instructions. They are used to
test the resuits of the preceding operation and either
continue with the next instruction in sequence (test fails), or
cause a branch to another point in the program

(test succeeds).

Four of the pairs are used for simple tests of status bits N, Z,
V, and C:
1. Branch on minus (BMI) and branch on plus (BPL)
tests the sign bit, N, to determine if the previous result

R ——

2672 8=07

was negative or positive, respectively,

2. Branch on equal (BEQ) and branch on not equal
(BNE) are used to test the zero status bit, Z, to
determine whether or not the result of the previous
operation was equal to zero. These two instructions are
useful following a compare (CMP) instruction to test for
equality between an accumulator and the operand.
They are also used following the bit test (BIT) to
determine whether or not the same bit positions are set
in an accumulator and the operand.

3. Branch on overflow clear (BVC) and branch on
overflow set (BVS) tests the state of the V bit to
determine if the previous operation caused an
arithmetic overflow.

4. Branch on carry clear (BCC) and branch on carry
set (BCS) tests the state of the C bit to determine if
the previous operation caused a carry to occur. BCC
and BCS are useful for testing relative magnitude when
the values being tested are regarded as unsigned
binary numbers, that is, the values are in the range 00
(lowest) to FF (highest). BCC following a comparison
(CMP) will cause a branch if the (unsigned) value in the
accumulator is higher than or the same as the value of
the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, branch on higher (BHI) and
branch on lower or same (BLS) are in a sense complements
to BCC and BCS. BHI tests for both C and Z = 0; if used
following a CMP, it will cause a branch if the value in the
accumulator is higher than the operand. Conversely, BLS wilt
cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two's
complement numbers. This differs from the unsigned binary
case in the following sense: In unsigned, the orientation is
higher or lower; in signed two's complement, the comparison
is between larger or smaller where the range of values is
between —128 and +127.

Branch on less than zero (BLT) and branch on greater than
or equal zero (BGE) test the status bits for N @ V = 1"
andN @ V = “0", respectively. BLT will always cause a
branch following an operation in which two negative numbers
were added. In addition, it will cause a branch following a
CMP in which the value in the accumulator was negative and
the operand was positive. BLT will never cause a branch
following a CMP in which the accumulator value was positive
and the operand negative. BGE, the complement to BLT, wilt
cause a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, branch on less than or equal zero (BLE) and

F6800/F68A00/F68B00

T=45) 7-0&

branch on greater than zero (BGT) test the status bits for Z

@ (N+V)=“1"and Z@® (N+ V)= "0" respectively.

The action of BLE is identical to that for BLT except that a
branch will also occur if the result of the previous result was
zero. Conversely, BGT is similar to BGE except that no

branch will occur following a zero result.

Condition Code Register Operations

The condition code register (CCRY) is a 8-bit register within

Table 7 Condition Code Register Instructions

the MPU that is useful in controlling program flow during
system operation. The bits are defined in Figure 18.

The instructions shown in Table 7 are available to the user
for direct manipulation of the CCR. In addition, the MPU
automatically sets or clears the appropriate status bits as
many of the other instructions on the condition code register
were indicated as they were introduced.

imolied Cond. Code Reg.*

m

Operations Mnemonic plie Boolean Operation 5§ |43]21}1 0
oP | -~ | # H | N|Z|V]C

Clear Carry CLC oc |2 |1 0-C e|e | e e | e R

Clear Interrupt Mask CcLui OE 2 1 0—-1 [) R [®))

Clear Overflow CLV OA | 2 1 0-V e | e e |e | R | @

Set Carry SEC oD 2 1 1-C °] °] ° S

Set Interrupt Mask SEl OF 2 1 1 -1 [] S [) [[

Set Overflow SEV oB 2 1 1-V [] [) [S [

Acmitr A — CCR TAP 06 | 2 | 1 A - GCR @

CCR — Acmitr A TPA 07 2 1 CCR - A o|o|o|o|p|o

R = Resst
8= Set
e = Not affected

1 (ALL) Set according to the contents of Accumulator A.

*See Condition Code Reglster notes below

Condition Code Register Notes: (Bit set if test is true and
cleared otherwise)

1 (Bif V) Test: Result = 100000007

2 (Bit C) Test: Result = 000000007

3 (Bit C) Test: Decimal value of most significant BCD
character greater than nine? (Not cleared if

previously set.)

4 (Bit V) Test: Operand = 10000000 prior to execution?

5 (Bit V) Test: Operand = 01111111 prior to execution?

6 (Bit V) Test: Set equal to result of N @ C after shift
. has occurred.

7 (Bit N) Test: Sign bit of most significant (MS) byte = 17

P I 2 2

2673 8—-08

8 (Bit V) Test: 28 complement overtlow from subtraction of
MS bytes?

9 (Bit N} Test: Result less than “0"? (Bit 16 = 1}

10 (Al Load condition code register from stack.
(See Special Operations)

11 (Bit 1) Set when interrupt occurs. If previously set,
a non-maskable interrupt is required to exit
the walit state.

12 (Al}) Set according to the contents of
accumulator A.

5-32

' F6800/F68A00/F68B00

T=Y 9/ 7Ol

Fig. 18 Condition Code Register Bit Definition

b5~ bs ba b2 by bo
[nl v [nfz]v]ec]

H = Half-carry; set whenever a carry from bg to.b,; of the
resuit is generated by ADD, ABA, ADC; cleared if no bg
to by carry; not affected by other instructions.

I = Interrupt Mask; set by hardware or software interrupt or
SEl instruction; cleared by CLI instruction. (Normally not
used in arithmetic operations.) Restored to a zero as a
result of an RTI instruction if i, stored on the stack is
LOW. :

Negative; set if high order bit (by) of result is set;

N= cleared otherwise

Z = Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there were arithmetic overflow as a
result of the operation; cleared otherwise.

C = Carry; set if there wére a carry from the most

significant bit (b7} of the resuit; cleared otherwise.

A GLI-WAI instruction sequence operated properly with early
F6800 processors only if the preceding instruction were odd.
(Least Significant Bit = “1".) Similarly it was advisable to
precede any SEl instruction with an odd opcode —such as
NOP. These precautions are not necessary for F6800
processors indicating manufacture in November, 1977

or later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

Addressing Modes

The MPU operates on 8-bit binary numbers presented to it
via the data bus. A given number (byte) may represent either
data or an instruction to be executed, depending on where it
is encountered in the control program. The F6800 has 72
unique instructions; however, it recognizes and takes action
on 197 of the 256 possibilities that can occur using an 8-bit
word length. This larger number of instructions results from
the fact thal many of the executive instructions have more
than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU’s internal registers and all of the external

memory locations.

L e

Selection of the desired addressing mode is made by the
user as the source.statements are written. Translation into
appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the immediate, direct, indexed,
and extended modes may all be used with the ADD
instruction. The proper mode is determined by selecting
(hexadecimal notation) 8B, 98, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to gen-
erate the-opcode. For instance, the immediate mode is
selected by the assembler whenever it encounters the “#”
symbol in the operand field. Similarly, an “X" in the operand
field causes the indexed mode to be selected. Only the
relative mode applies to the branch instructions; therefore,
the mnemonic instruction itself is enough for the assembler
to determine addressing mode.

For the instructions that use both direct and extended
modes, the assembler selects the direct mode if the operand
value is in the range 0-255 and extended otherwise. There
are a number of instructions for which the extended mode is
valid but the direct is not. For these instructions, the
assembler automatically selects the extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 19.

Inherent (Includes “Accumulator Addressing”) Mode

The successive fields in a statement are normally separated
by one or more spaces. An exception to this rule occurs for
instructions that use dual addressing in the operand field and
for instructions that must distinguish between the two
accumulators. In these cases, A and B are “operands” but
the space between them and the operator may be omitted.-
This is commonly done, resulting in apparent four character
mnemonics for those instructions.

The addition instruction, ADD, provides an example of dual
addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12
TO ACCA
or ADDB MEM12 ADD CONTENTS OF MEM 12
] TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “accumulator
addressing mode” to designate which of the two
accumulators is being tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

| 2674 B=09

5-33

2675

NATL SEFLCONDY UF/ZLALS BE==

-
F6800/F68A00/F68B00

T-49-17-0

A nuimber of the instructions either alone or together with an
accumulator operand contain all of the address information
that is required, that is, “inherent” in the instruction itself.
For instance, the instruction ABA causes the MPU to add the
contents of accumulators A and B together and place the
result in accumulator A. The instruction INCB, another
example of “accumulator addressing”, causes the contents
of accumulator B to be increased by one. Similarly, INX,
incrementing the index register, causes the contents of the
index register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 20 and 21. In these figures, the general case is
shown on the left and a specitic example is shown on the
right. Numerical examples are in decimal notation.
Instructions of this lype require only one byte of opcode.
Cycle-by-cycle operation of the inherent mode is shown
in Table 8.

Direct and Extended Addressing Modes

In the direct and extended modes of addressing, the operand
field of the source statement is the address of the value that
is to be operated on. The diract and extended modes differ
only in the range of memory locations to which they can
direct the MPU. Direct addressing generates a gingle 8-bit
operand and, hence, can address only memory locations O
through 255; a two byte operand is generated for extended
addressing, enabling the MPU to reach the remaining
memory locations, 256 through 65635. An example of direct
addressing and its effect on program flow is illustrated

in Figure 23.

The MPU, after encountering the opcode for the instruction
LDAA (direct) at memory location 5004 (program counter =
5004), looks in the next location, 5005, for the address of
the operand. It then sets the program counter equal to the

Fig. 19 Addressing Mode Summary

DIRECT: n 00 INSTRUCTION

EXAMPLE: §UBB 2 n+ 1| 2= OPRND ADDRESS

ADDR. RANGE = 0-255

NEXT INSTA

A nt2

.
.

.

{X = ONE-BYTE OPRND)
oA

v]

(K = TWO-BYTE OPERAND) Z Ky = OPERAND

zZ+1 KL = OPERAND

IF Z =< 255, ASSEMBLER SELECT DIRECT MODE
F 2 > 255, EXTENDED MODE iS SELECTED

EXTENDED: n FO INSTRUCTION
EXAMPLE:CMPAZ n+ 1|2 = OPRND ADDRESS
ADDR. RANGE:
M + =
A 256-65535 n+2 | 2L = OPAND ADDRESS
nt3 NEXT INSTR

.
{K =ONE-BYTE OPRND}
OR

z VK OPERAND

(K = TWO-BYTE OPERAND) 2 Kn = OPERAND

Z+1 Ki = OPERAND

IMMEDIATE: L] INSTRUCTION
EXAMPLE: LOAA #K nt+1 K = OPERANO
(K = ONE-BYTE OPRND}
at+2 NEXT INSTR
OR
{K = TWO-BYTE OPRND) a INSTRUCTION

{CPX, LDX, AND LDS)

n+1 Ky = OPERAND
nt+2 KL = OPERAND

n+3 NEXT INSTR
RELATIVE: n INSTRUCTION
EXAMPLE:BNE K n+ 1] =K = BRNCH OFFSET

{K=S5IGNED 7-BIT YALUE) n+2

NEXT INSTR /\

ADDR. RANGE: .
-125TO +129 [
RELATIVE TO n. .

/A 1¥ ERNCH Tet FALSE, /2\ ¥ BRNCH Tst TRUE.

INDEXED: n INSTRUCTION
EXAMPLE: ADDA 2, X nt1 Z = OFFSET
ADDR. RANGE: nt2 NEXT INSTR
0-255 RELATIVE TO

INDEX REGISTER, X .

(Z = 8-BIT UNSIGNED
VALUE)

[N

F6800/F68A00/F68B00

T=47-/7-0&

Table 8 [nherent Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RW
and Instructions Cycles # Line Address Bus Line Data Bus
Inherent
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2 1 Op Code Address +1 1 Op Code of Next Instruction
ASR INC SEV
CBA LSR TAB
CLC NEG TAP 2
cL NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
DEX 4 2 1 Op Code Address +1 1 Op Code of Next Instruction
INS 3 1] Previous Register Contents 1 Irrelevant Data (Note 1)
INX 4 [V} New Register Contents 1 lrrelevant Data (Note 1)
PSH 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 | Stack Pointer —1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Codea of Next Instruction
3] Stack Pointer 1 Irrelevant Data (Note 1)
4 1 Stack Pointer +1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 0 New Index Register 1 lrrelavant Data (Note 1)
TXS 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Op Code of Next Instruction
3 [} Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Irrelevant Data (Note 2}
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
5 4 1 Stack Pointer +1 1 Address of Next Instruction
(High Order Byte)
5 1 Stack Pointer +2 1 Address of Next Instruction
(Low Order Byte)
2676 B-11 5-35

I

F6800/F68A00/F68B00

T -G+ 7-0@

Table 8 Inherent Mode Cycle-by-Cycle Operation (Cont.)

Address Mode Cycle | VMA RIW ;
and Instructions Cycles # Line Address Bus Line Data Bus.
Inherent (Cont'd)
WAl 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer -1 0 Return Address (High Order Byte)
9 5 1 Stack Pointer —2 0 Index Register (Low Order Byte
6 1 Stack Pointer -3 0 index Register (High Order Byte)
7 1 Stack Pointer ~4 (] Contents of Accumulator A
8 1 Stack Pointer -5 0 Contents of Accumulator B
9 1 Stack Pointer —6 (Note 3) 1 Contents of Cond, Code Register
RTI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Irrelevant Data (Note 2)
3 0 Stack Pointer 1 frrelevant Data (Note 1)
4 1 Stack Pointer +1 1 Contents of Cond. Code Register from
Stack
5 1 Stack Pointer +2 1 Contents of Accumulator B from Stack
) 1 Stack Pointer +3 1 Contents of Accumulator A from Stack
10 7 1 Stack Pointer +4 1 Index Register from Stack
(High Order Byte)
8 1 Stack Pointer +5 1 Index Register from Stack
{Low Order Byte)
9 1 Stack Pointer +6 1 Next Instruction Address from Stack
(High Order Byte)
10 1 Stack Pointer +7 1 Next Instruction Address from Stack
(Low COrder Byte)
SWI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (Note 1)
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer -1 0 Return Address (High Order Byte)
5 1 Stack Polnter ~2 0 Index Register (Low Order Byte)
12 6 1 Stack Pointer -3 0 Index Reglster (High Order Byte)
7 1 Stack Pointer -4 0 Contents of Accumutator A
8 1 Stack Pointer -5 (¢} Contents of Accumulator B
9 1 Stack Pointer -6 0 Contents of Cond. Code Register
10 0 Stack Pointer =7 1 Irrelevant Data (Note 1)
11 1 Vector Address FFFA (Hex) 1 Address of Subroutine {High Order Byte)
12 1 Vector Address FFFB (Hex) 1 Address of Subroutine (Low Order Byte}
Notes

1.

2.
3.

If device which is addressed during this cycle uses VMA, then the data

capacitance, data from the previous cycle may be retained on the data bus.

Data is ignored by the MPU.
Whila the MPU is waiting for the interrup

R/W, and data bus are all in the high impedance state.

26177

B-12

bus will go to the high impedance 3-atate condition. Depending on bus

t, Bus Available will go HIGH indicating the tallowing states of the control lines: VMA is LOW; address bus,

5-36

« TS0

Flg. 20 lnhoren@ Addressing Fig. 22 Immediate Addressing Mode

MPY A upfj N o MPU Co . My~

RAM R ‘- RAM - - ~ RAM RAM

—— —_—— ' r\

C: o : - - - - PROGRAM : X . PROGRAM
. R I R - MEMORY MEMORY

LA . T —

PROGRAM = -) “ PROGRAM" PC INSTR : PC = 5002 LDA A" :

|

|

|

i

¥

i

!

MEMORY _ MEMORY - DATA 25 i
GENERAL FLOW . EXAMPLE i

#c INSTR PC=8000 | - INX _ i A . T i

—4Jd : "7 " 'Fig. 23 Direct Addressing Mode

GENERAL FLOW s L et EXAMPLE . - . WPU : MPU .. -

- - ACCA - -~
Fig.21 Accumulator Addressing = - . . A R <}‘
1 S : <-RAM - - | . RAM

‘MPY - e weU T g - . N

Ao T aces o . 7. -aooR] DATA G ADDA = 160 35
j e I e pe—— - .

R . PROGRAM ° PROGRAM
RAM : : RAM e _MEMORY °) MEMORY

’ ST ’ _Lee INSTR , © PC =004 LDA A
: .) . 3 .. :PC+1§ _ADDR . 5005 100
. . ot - - - - N . .

ADDR - 0 <255
_ GENERAL FLOW - : EXAMPLE

PROGRAM PROGRAM
MEMORY . MEMORY

PC INSTR < PC = 5001 INC B K

e r——

GENERAL FLOW EXAMPLE

25371

o i g e . . bt

P

Table 9 Immediate Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Immediate : -
ADC EOR 1. 1 ...| Op Code Address 1 Op Code
ADD. LDA 2 1 Op Code Address + 1 1 Operand Data
AND ORA 2 ’
BIT SBC
CMP SuUB N]
CPX) 1 1. | Op Code Address 1. | Op Code .
LDS 3 2 1 Op Code Address +1 -1 | Operand Data (High Order Byte)
LDX 3 1 Op Code address +2 1+ | Operand Data (Low Order Byte)
Table 10 Direct Mode Cycle-by-Cycle Operation
Address Mode Cycle | vMA RIW]
and Instructions Cycles # Line Address Bus Line Data Bus
Direct)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand
AND ORA 3 3 1 Address of Operand 1 Operand Data
BIT SBC ~ ’ - A
CMP SUB -
CPX ¥ > 1 Op Code Address 1 Op Code :
LOS 4 2 1 Op Code Address + 1 1 Address of Operand
LDX 3 - 1 Address of Operand 1 Operand Data (High Order Byte)
: 4 1" | Operand Address +1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address +1 1 Destination Address
3 0 Destination Address 1 trrelevant Data (Notse)
4 - 1 Destination Address 0 Data from Accumulator
STS 1 1 Op.Code Address 1 Qp Code .
STX 2 1 Op.Code Address +1 1 Address of Operand
5 3 . 0 Address of Operand 1 trrelevant Data (Note)
4 1 Address of Operand] Register Data (High Order Byte)
5 1 Address of Operand +1 0 Register Data (Low Order Byte)
Note

It device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycle may be retained on the data bus.

{T=HG9/7-00.

value found there (100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For.instructions requiring a 2-byte
operand such as LDX (ioad the index register), the operand
bytes would be retrieved from locations 100 and 101. Table
10 shows the cycle-by-cycle operations for the direct mode
of addressing.

Extended addressing, Figure 24, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after
the LDAB. (extended) opcode shows up in location 5006.
Extended addressing can be thought of as the standard
addressing mode, that is, it is a method of reaching any
place in memory. Direct addressing, since only one address
byte is required, provides a faster method of processing data
and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data
buffering and temporary storage of system variables, the
area in which faster addressing is of most value. Cycle-by-
cycle operation is shown in Table 711 for extended
addressing.

Fig. 2;1 Extended Addressing Mode_

MPU - MPU

: ACCB :
RAM - RAM
ADDR DATA 4 ADDR = 300 45 K
e
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC =5008 LDA B
PC ADDR /[—‘
300
ADDR N—
5009
- b ——
ADDR 256
GENERAL FLOW EXAMPLE

mmediate Addressing Mode
n the immediate addressing mode, the operand is the value
hat is to be operated on. For instance, the instruction

Comment
LOAD 25 INTO ACCA

Operator
LDAA

Operand
#25

sauses the MPU to “immediately load accumulator A with the
ralue 25™; no further address reference is required. The
mmediate mode is selected by preceding the operand value

e St

2480

with the “#" symbol. Program flow for this addressing mode
is illustrated in Figure 22,

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX,
and LDS, the operand may be any value in the range O to
265, Since compare index register (CPX), load index register
(LDX),-and load stack pointer (LDS), require 16-bit values,
the immediate mode for these three instructions requires
twa-byte operands. In the immediate addressing mode, the
"address” of the operand is effectively the memory location
immediately following the instruction itself. Table 9 shows the
cycle-by-cycie operation for the immediate addressing mode.

Relative Addressing Mode

In both the direct and extended modes, the address obtained
by the MPU is an absolute numerical address. The relative
addressing mode, implemented for the MPU’s branch
instructions, specifies a memory location relative to the
program counter’s current location, Branch instructions
generate two bytes of machine code, one for the instruction
opcode and one for the “relative” address. (See Figure 25.)
Since it is desirabie to be able to branch in either direction,
the 8-bit address byte is interpreted as a signed 7-bit value;
the 8th bit of the operand is treated as a sign bit, “0" = plus
and *1" = minus. The remaining seven bits represent the
numerical value. This resuits in a relative addressing range of
+ 127 with respect to the location of the branch instruction
itself. However, the branch range is computed with respect
to the next instruction that would be executed if the branch
conditions are not satisfied. Since two bytes are generated,
the next instruction is located at PC + 2. If D is defined as
the address of the branch designation, the range is then: -

(PC+2)—127 <D < (PC+ 2) + 127
or PC—125 =D <PC+ 129

that is, the destination of the branch instruction must be
within —- 126 to + 129 memory locations of the branch
instructions itself. For transterrring control beyond this range,
the unconditional jump (JMP), jump to subroutine (JSR), and
return from subroutine (RTS) are used.

In Figure 25, when the MPU encounters the opcode for BEQ
(branch if result of last instruction was zero), it tests the zero
bit in the condition code register, If that bit is “0", indicating
a non-zero result, the. MPU continues execution with the next

- instruction (in location §010 in Figure 25). If the previous

result were zero, the branch condition is satisfied and the
MPU adds the offset, 15 in this case, to PC + 2 and
branches to location 5025 for the next instruction.

T4 206

Table 11 Extended Mode Cycle-by-Cycle Operation

Address Mode Cycle | VMA
and Instructions Cycles L Line Address Bus Line Data Bus
Extended
STS t |1 Op:Code Address 1 |Op Code
STX 2 R Op. Code Address +1 1 Address of Operand (High Order Byte)
6 3 ~1 | Op Code Address +2 1 Address of Operand (Low Order Byte)
4 0 | Address of Operand i irrelavant Data (Note 1)
. 5 1 . | Address of Operand 0 Operand Data (High Order Byte)
6 .] Address of Operand +1 0 Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 .| Op Code
2 1 Op Code Address + 1 1 Address of Subroutine (High Order Byte)
3 1 Op Code Address +2 1 Address of Subroutine (Low Order Byte)
4 o1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pointer 0 Return Address (Low Order Byte)
6 1 Stack Pointer —1 0 Return Address (High Order Byte)
7 0 Stack Pointer —2 1 Irrelevant Data (Note 1)
8 0 Op Code Address +2 1 Irrelevant Data (Note 1)
9 1 Op Code Address +2 1 Address of Subroutine (Low Order Byte)
JMP 1 1 Op Code Address 1 Op Code - ’
3 2 1 Op Code Address +1 1 Jump Address (High Order Byte)
3 1 Op Code Address +2 1 Jump Address {Low Order Byte)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
AND ORA 4 3 1 Op Code Address +2 1 Address of Operand (Low Order Byte)
BIT SBC 4 1 | Address of Operand | Operand Data
CMP -SUB) o
CPX 1 1 Op Code Address ‘1 .} Op Code
LDsS 2 1 Op Code Address +1 1 Address of Operand (High Order Byte)
LDX 5 3 1 Op Code Address +2 1- | Address of Operand {Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand +1 1 Operand Data (Low Order Byte)
STA A 1 Op Code Address i Op Code
STA B 2 1 Op Code Address +1 1 Destination Address {High Order Byte)
5 3 1 Op Code Address +2 1 Destination Address (Low Order Byte}
4 0 Operand Destination Address hi Irrelevant Data (Note 1)
5 1 Operand Destination Address 0 Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address 1 1 Address of Operand (High Order Byte)
CLR ROL 3 1 Op Code Address +2 1 Address of Operand (Low Order Byte)
COM ROR 6 4 1 Address of Operand 1 Curent Operand Data
DEC TST : 5 0 | Address of Operand 1 trrelevant Data (Note 1)
INC 6 1i0 | Address of Operand 0 New Operand Data (Note 2)
- | {Note
2)
Notes

1. If device which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycle may. be retained on the data bus.
2. For TST, VMA = "0~ and operand data does not change.

5-40

TGS 08

The branch instructions allow the programmer to efficiently

direct the MPU to ofie point or another in.fhe.control program ~

depending on the outcome of test resuits. Since the control
program is normally in-read-only memory ‘and cannot be
changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown In Table 12 fot relative addressing,

Indexed Addrossing Mode -

With indexed addressing, the numerical address is variable
and depends on the current contents of the index register. A
source statement such as

Operand " Commaent

Operator i
STAA X Put A in Indexed
Location

. - illystrated in Figure-28.

The operand field can also contain a nimerical value-that wifl
be automaticaly added to X during execution. This format is

When the MPU encounters the LDAB (Indexed) opcode in
location 50086, it looks in the next memory focation for the
value to be added to X (5.in the example) and calculates the

" required addreas by addmg &to the presenf index register

value of 400. In the operand format, the offget may be
represented by a labél or a numerical vajue in the range O-

. -265 as in the example. In the earlier example, STAA X, the :

operand is equivalent.to 0, X, that is, the 0 may be omitted

when the desired address is equal to X, Table 13 shows the
cyclg-by-cy’cle operation for the indexed mode of addressing.

"Indexed Addresslng Mode

. Fig. 26
causes the MPU to store the contents of accumulator- A in ’ ry
the memory location specified by the contents of the index MPU —
register (recall that the label “X" is reserved to designate] -
the index register). Since there are instructions for 3 [s] Y
. . N . INDEX
manipulating X during program execution (LDX, INX, DEX,
etc.), the indexed addressing mode provides a dynamlc on- ek bR . |
the-fly way to modify program activity. AAM RAM
i . . T ‘DD"O;'F';:.’,(- DATA - ADDR =405 59 -
Fig. 25 Relative Addressing Mode *
MPU T . WpU - . PROGRAM PROGRAM
R, MEMORY MEMORY
N " s [T msTh i PC = 5008 LDAB
RAM ; P OFFSET 5 K
OFFSET = 255 -
1 : B GENERAL FLOW EXAMPLE.
PROGRAM N
MEMORY . -
pC INSTH k -
OFFSET PC 5008 BEQ
(Pc +2) | NEXT INSTR) 1S
PC 5010 | NEXTINSTR
*c+2) %
+ (oFFsET) [NEXTINSTR PC 5025 | NEXT INSTR
\J \l
2682 c—-03 5-41

i

oy

Table 12 Relative Mode Cycle-by-Cycle Operation

Address Mode Cycle” | VMA _ RIW ,
and Instructions Cycles # Line Address Bus - Line Data Bus
Relative -)
BCC BHI BNE -1 -t Op Code Address ‘1- | Op Code -
BCS BLE BPL 4 2 1 Op Code Address +1 1 Branch Offset
BEQ BLS BRA . 3 0 Op Code Address +2 1 trrelevant Data (Note)
BGE BLT .BVC 4 1] Branch Address 1 irrelevant Data (Note)
BGT BMI BVS . -)) N
BSR 1 1 Op Code Address -4 Op Code
.2 1 Op Code Address + 1 1 | Branch Offset
3 0 Return Address of Main Program 1 Irrelevant Data (Note)
8 4 1 Stack Pointer 0 | Return Address (Low Order Byte)
5 1 Stack Pointer —1 [} Return Address (High Order Byte)
6 0 Stack Pointer —2 1 Irrelevant Data (Note)
7 0 Return Address of Main Program 1 Irrelevant Data (Note)
8- 0 Subroutine Address 1 Irrelevant Data (Note)
Note

it device which is addressed during this cycle uses VMAi then the data

capacitance, data from the previous cycle may be retained on the data bus.

Table 13- - Indexed Mode Cycle-by-Cycle Operation

bus will go to the high' impedance 3-state condition. Dapending on bus

Address Mode Cycle | VMA RIW
and Instructions Cycles # Line Address Bus Line Data Bus
Indexed) .
JMP 1 1 Op Code Address i Op Code
2 1 Op Code Address + 1 - 1 .| Offset -
4 3 - .0 . |.index Register i - 1 trrelevant Data (Note 1)
- 4 0 Index Register Plus Offset 1 irrelevant Data (Note 1)
: (wlo Carry)
ADC - ‘EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 | Op Code Address +1 1 Offset
AND ORA 5 3 0 Index Register 1 {rrelevant Data (Note 1)
BIT SBC 4 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
CMP SUB {wio Carry)
5 1 Index Reglster Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Qp Code
LDS 2 1 Op Code Address +1 1 Offset
LDX 3 0 index Register 1 Irrelevant Data (Note 1)
6 4 0 index Ragister Plus Offsst 1 Irrelevant Data (Note 1)
(w/o Carry) i
5 1 Index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 Index Register Plus Offset +1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1. Offset
3 0 Index Register 1 | trrelevant Data (Note 1)
6 4 0 index Registet Plus Offset 1 | Irrelevant Data {Note 1)
(wlo Carry) N
5 0 Index Register Plus Offset 1" | Irrelevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data

2683

c-04

N

- merk i e e

\ T

.

Table 13 Indexed Mode Cycle-by-Cycle Operation (Cont.)

Address Mode Cycle | VMA | AW .
and Instructions Cycles #- - | Line Addreas Bus Line Data Bus
indexed (Cont.)
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Offset
CLR ROL 3 [} Index Register 1 Irrelevant Data (Note 1)
COM ROR 4 0 Index Register Plus Offset 1 Irralevant Data {Note 1) -
DEC TST (wlo Carry) -
INC 7 5 1 index Register Plus Offset 1 Current Operand Data
6 0 Index Register Plus Offset 1 Jrrelevant Data (Note 1)
7 1/0 | Index Register Plus Offset 0 New Operand Data (Note 2)
(Note .
2) :
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address +1 1 -] Oftset .-
3 0 | Index Register 1 irrelevant Data {Note 1)
7 4 0 index Register Plus Offset 1 lrrelevant Data (Note 1)
(wlo Carry)
5 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data (High Order Byte)
7 1 Index Register Plus Offset +1 0 Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address +1 1 Offset =~ =~
3 0 Index Register 1 Irrelevant Data (Note 1)
4 1 | Stack Pointer 0 Return Address (Low Order Byte)
8 5 1 Stack Pointer —1 0 Return Address (High Order Byte)
i 6 0 Stack Pointer -2 1 ‘Irrelevant Data {Note 1)
7 0 index Register . 1 Irrelevant Data (Note 1)
8 .0 Index Register Plus Offset 1 irrelevant Data (Note 1)
(w/o Carty} - -
Note

1. if davice which is addressed during this cycle uses VMA, then the data bus will go to the high impedance 3-state condition. Depending on bus
capacitance, data from the previous cycte may be retained on the data bus.

2. For TST, VMA = "0" and operand data does not change.

6-43

NI/ 706

Absolute Maximum Ratings

Supply Voltage -0.3V,+7.0V
Input Voltage -0.3V,+7.0V
Operating Temperature Range—T to TH

F5800, FBBADD, FE8B00 0°C, +70°C

F8800C, FBBA00C, F88B800C
FE8800DM, FBBA00DM, FE8BOODM
Storage Temperature Range

Thermal Resistance

Plastic Package
Ceramic Package

~40°C, +85°C
-55°C, +125°C
~55°C, +150°C

70°C/W
50°CIW

This device contains circuitry to protect the inputs againsi damage due to
high static voltages or electric fields; howevar, it is advised that normal
precautions be taken to avoid application of any voltags higher than

It

rated

ges 10 this high-imped circuit,

DC Characteristics Vee = 5.0V + 5%, Vgg =0, Ta = T, to Ty, uniess otherwise noted

Symbol | Characteristic Min Typ Max Unit | Conditions
Vi Input HIGH Voltage Logic {Vss + 2.0 Vee v
Ve ¢1,¢2 |Voc — 0.6 Vgo + 0.3
Vi Input LOW Voltage Logic {Vss — 0.3 Vgg+08] V
Vie] $1, 42 |Vgs — 0.3 Vgg + 0.4
In Input Leakage Current Logic 1.0 2.5 uA Viy= 0105.25 V, V¢ = Max
¢1, p2 100 Vin=01t058.256V,Vgec = 00V
lyst 3-State (OFF State) Do-D7 2.0 10 pA Vin = 0.4 10 2.4 V, Voo = Max
Input Current Ag-As. RIW 100
Vou Output HIGH Voltage _Do-Dy Vss + 2.4 v lLogd = —205 pA, Voo = Min
Ag-As. R/IW, VMA |Vgs + 2.4 ILoag = — 145 pA, Voo = Min
BA |Vgs + 2.4 Ioag = — 100 pA, Ve = Min
Voo Qutput LOW Voliage Vgg+ 04| V Yoad = 1.6 MA, Vgc = Min
Pp Powaer Dissipation 0.5 1.0 w
Cin Input Capacitance ¢ 25 35 pF
2 45 70 Vi =0, Ta = 25°C, 1 = 1.0 MHz
Do-07 10 12.5
Logic inputs 6.5 10
Cour Output Capacitance _
AQ-A|5, R/W., VMA 12 oF
N ~ STRTRERSEAR.
2685 c-06 5.44

X
.

TG/ 7 5

Clock Timing Vge = 5.0V £ 5%, Vgg = 0, Tp = Ty to Ty, uniess otherwise noted

Symbol | Characteristic Min Typ Max Unit | Conditions
f Frequency of Operation ’
F6800 0.1 1.0 MHz
FB88AC0 0.1 1.5
F68B00 0.1 2.0
teye Cycle Time (Figure 27) F8800 1.000 " 10 us
] FBBA00 0.666 10
F68B00 0.500 10
PW,y Cfock Pulse Width .
¢1, $2 - FE6800 400 9500 ns Ve — 0.6V
o1, 2 - FEBA00 230 9500
¢1, 2 - F68BOO 180 9500
tut Total ¢1 and ¢$2 F8800 800 ns
Up Time F68AC0 600
F688B00 440
tan tot Rise and Fali Times 100 ns Measured Between
Vgs+ 04Vand Vgc— 08V
14 Delay Time or Glock 0 9100 ns Voy=Vgs + 06 V@t =t < 100 ns
Separation (Figure 27) 0 9100 Voy=Vgs + 1OV@t =1t <36ns
Read/Write Timing (Reference Figures 28 through 32)
) F6800 F68A00 F68B00
Symbo! | Characteristit Min Typ | Max | Min Typ | Max | Min Typ { Max | Unit
tap Address Delay ’ ns
C=90pF 270 180 160
C =30pF 250 165 135
tace Peripheral Read Access Time 530 360 250 ns
tacc = tut — (tap + tpsr)
tosr Data Set-up Time (Read) 100 60 40 ns
ty Input Data Hold Time 10 10 10 ns
tH Output Data Hold Time 10 25 10 25 10 25 ns
tan Address Hold Time 30 50 3o 50 | 30 50 ns
(Address, R/W, VMA)
ten Enable HIGH Time for DBE Input 450 . 280 220 | ns
topw Data Delay Time (Write) 225 200 160 ns
Processor Controls
tecs Processor Control Set-up Time 200 140 110 ns
tecn tect Processor Controi Rise and
Fali Time 100 100 100 ns
tga Bus Avaitable Delay 250 ‘166 135 ns
trsg 3-State Enable 40 .40], 40 ns
trsp 3-State Delay 270 270 220 ns
t5BE Data Bus Enable Down Time
During ¢1 Up Time 150 120 -~ 76 ns
toeer tDBE! Data Bus. Enable Rise and
Fall Times 25 25 25 ns

2686

c=07

LTI

Fig..27 Clock Timing Waveform

- teyc
t
- tut
[793 [——— PWay—] taf
Vine
31
Yov

Yiee
ta 9
Viic
82
Vov
. Vue

tar ——l - PWyyy——— | tof
Fig. 28 Read Data From Memory or Peripherais
/snnr OF CYCLE
- 1
- VYoo ~06V
ot .
L 04V
— j— ¢t =25ns
Vec~0.6V
04V
AN,
f———tAp—— 1.
24V T
/W
S————— P . AN
24V
ADDRESS 20V
FROM MPU
0.4V b osv
[—— tag——
24V —f
YMA
—4—» th
- tap I tace -1 1SR
DATA 20V
FROM MEMORY DATA VALID
OR PERIPHERALS 08V

NN PATA NOT vALID

2687 c-08

5-46

- . _

O o

T=49I706

Fig. 29 Write in Memory or Peripherals

ADDRESS
FROM MPU

YMA

o
o
mi

DATA

/— START OF CYCLE

1,
Feye

/ Voo ~0.86V

oo [o]

FROM MPU

NN DATA KOT VALID

" 2688 c-09

5-47

DATA VALID

(T=49-47-0¢

Fig. 31 Typlcal READ/WRITE, VMA, and Address .

Fig. 30 Typicat Data Bus Output Delay
Output Delay vs Capacitive Loading (txp)

vs Capacitive Loading (tppw)

500

i
O T T T T T T 1. —1 . £ T T 11 ;
o = —205 RAMAX @ 24V - - i fon = 145 pA MAX @ 2.4 V| i
[lo = tSMAMAX @04V vz - e |l = LEMAMAX @ OAY H
Veo =50V - Vec =50V, |- | ;
4001, = 25°C) 400 |— 1T, = 25°C - H
- i
2 B ¢ : i
] 200 [o T B “Je A s ee 1 100 ot N T P H
g

g - 1/ 5 A !
»- [s F T
> ~ > .~ AoDrEss i
3 200 E 200 - Py I
o pren . a LT !
L~ - t
= r 1. .. H

1004 100 |~ / -

CLINCLUDES STRAY CAPACITANCE G INCLUDES STRAY CAPACITANCE
kil it 1 5
% 100 200 300 £00 500 90 L.<100 200 300 400 500

~-Cp < LUAD CAPACITANGE 2~pf =+ = 5. Cg ~ LOAD CAPACITANCE — oF

Fig. 32 Bus Timing TestLoads ~—~ = 7~ -~ - == - = 0 o)
Ty v h Test Conditlons 5. - -
i e The dynamic test load for the data bus is 130 pF and one
-standard TTL load, as shown. Tha Address, R/W, and VMA
A =22k outputs are tested under two conditions to allow optimum

operation in both butfered and uibutferad systems. The resistor
(R) is chosen to insure specified load currénts during
Von measurement.

-

INS14 B e, - -. .. Notice'that the data bus lines, the address lines, the interrupt

OR EQUIV 7 ‘request line, and the DBE line are all specitied and tested to
guarantee 0.4 V of dynamic noise Immunity at both “1= and *0"
logic levels.

© =130 pF for 0,-D;, €

i = 90 pF for Ag-Asg. R/W, and VMA s

ST En e C e — (except typ,) ,

- .. - .. . =30pFforAg-As, R/IW, and VMA . s
- (tap2 only) - H

- - e T = 30 pF for BA. i

R = 11.7 k2 for Dy-D;
= 16.5 k{2 for Ag-A . R/W, and VMA)
= 24 k{2 for BA : e,

<

T e W WS R W RS R R R W TR R R

T 7D

Ordering Information

Speed Order Code Temperature Range

1.0 MHz F8800P,S 0to +70°C
FB800CP,CS =40 to +85°C
F6800DM —-5510 +125°C

1.5 MHz FB88AO0P, S 0to +70°C
FB8A00C,CS —40 fo +85°C
F68A00DM -556 to +126°C

2.0 MHz F68BOOP, S 0to +70°C
F88B00C,CS —40 to +85°C
F88BOODM —55 to +125°C

P = plastic package, S=GER-DIP package.

Do SRR

2690 c-11

- 549

'- S . W“

e}
Pt

LY

vy

