

Single Inductor, 3A Switch Mode Battery Charger with 2.5A USB OTG

DESCRIPTION

ETAGO85 is a switching Li-lon battery charger capable of delivering up to 3A of charging current to the battery and also capable of delivering up to 2.5A in boost OTG operation, with extremely high efficiency in both charging mode and OTG mode. For charging, it uses a proprietary control scheme that eliminates the current sense resistor for conventional constant current control, maximizing efficiency, reducing charging time and reducing costs. It can also output a 5V voltage in the reversed direction by boosting from the battery. It only needs a single inductor to provide power bi-directionally. ETAGO85 is truly an ideal all-in-one solution for battery charging and discharge applications, such as power banks, smart phones, and tablets with only one USB port that can be used for both charging battery and USB OTG function.

ETA6085 is suitable for charging a 4.2V Li-ion battery.

ETA6085 is in QFN3x3-20 FC package.

FEATURES

- Bi-Directional Power conversion with Single Inductor
- Switching Charger
- 5V Synchronous Boost
- Up to 95% Efficiency
- Up to 3A Max charging current and 2.5A discharging
- No-Battery detection
- No External Sense resistor
- NTC thermistor input

APPLICATIONS

- Tablet, MID
- Smart Phone
- Power Bank

ORDERING INFORMATION

PART	PACKAGE	TOP MARK	
ETA6085F3W	QFN3x3-20	ETA6085	
		<u>YWW</u> 2L	

PIN CONFIGURATION

ABSOLUTEMAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

ELECTRICAL CHACRACTERISTICS

(V_{IN} = 5V, unless otherwise specified. Typical values are at TA = 25oC.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
BUCK MODE					•	
IN Range		4.5		5.5	۷	
IN UVLO Voltage	Rising, Hys=500mV		4.5		۷	
IN to OUT MOSFET RDSON			40		mΩ	
IN to OUT Input current limit	Default		5		А	
IN to OUT Hiccup threshold when OUT		IU			А	
Short		IU				
INSNS Clamp Voltage			6.4		٧	
INSNS OVP Voltage	Hys=450mV		6.05		٧	
INGT Dutput driving capability	l(INGT)=1mA		0.065	0.2	٧	
OUT to IN reversed leakage current			10		μA	
OUT to IN reversed Voltage threshold	ld (50		тV			
IN Quiescent current (Without BUCK)			50		μA	
	Switcher Enable, Switching		5		mA	
UUT Uperating Lurrent as BULK	Switcher Enable, No Switching		500		μA	
BATTERY CHARGER						
Battery CV Voltage	l _{BAT} =OmA, default	4.16	4.2	4.24	٧	
Charger Restart Threshold	From DONE to Fast Charge		-150		тV	
Battery Pre-Condition Voltage	VBAT Rising Hys=200mV		3		۷	
Pre-Condition Charge Current			200		mA	

ETA6085

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Fast Charge Current	Riset =62KQ. Icharge=145700V/Riset	2.1	2.35	2.6	A	
Charge Termination Current			200		mA	
Charge Termination Blanking time			10		S	
Pre-Condition Timer			1		hour	
Fast-Charge Timer			24		hour	
BOOST MODE						
BATT Ok Threshold	Rising, HYS=0.5 V		3.2		V	
Output Voltage Range		5.0	5.05	5.1	٧	
Shutdown Supply Current At BATT			10	15	μA	
Switching Frequency	VIN<4.3V	0.8	1.0	1.2	MHz	
Inductor Current Limit	Riolim=200K		4		Α	
Maximum Duty Cycle			90		%	
Highside Pmos Rdson	lsw =500mA		40		mΩ	
Lowside Nmos Rdson	lsw =500mA		40		mΩ	
Short Circuit Hiccup Current			3.5		Α	
	On Time		5			
Short Circuit Hiccup Timer	Off Time		200		ms	
IOLIM, ISET						
IOLIM Voltage			0.8		V	
ISET Voltage			0.8		٧	
VSYS						
	VIN=5V (Isys=10mA)		3.2		٧	
VSYS Voltage	VIN not connected, VBATT=3.6V	3.54		V		
	(lsys=10mA)				V	
	When Short to GND		50	100	mA	
A747 WAX IONE			50	100	mA	
VSYS Reversed Leakage Current			0	10	uА	
NTC THERMISTOR MONITOR						
NTC Threshold, Cold	Charger Suspended		52		%V _{sys}	
NTC Threshold, Hot	Charger Suspended		13		%V _{sys}	
NTC Threshold Hysteresis			2		%V _{sys}	
NTC Disable Threshold	Tie NTC to VSYS					
NTC Input Leakage			0	5	μA	
LOGIC INPUT ENBST, VTERM						
Logic Input High		1.2			٧	
Logic Input Low				0.6	۷	
THERMAL PROTECTION						
Charging Thermal Regulation threshold			85		.₀₽	

ETA6085

|--|

PIN DESCRIPTION

PIN #	NAME	DESCRIPTION
		Battery Temperature Monitoring input pin. It sets the valid temperature operating range for
ļ	NIL	both battery charging and discharging.
ŋ	ПШМ	Boost inductor current limit setting pin. Connect a resistor between this pin and analog
L		ground to set the current level.
3	G	Analog Ground pin.
		Charge Termination Voltage adjust pin for Battery impedance compensation. Connect a
4	RCOMP	resistor between this pin and analog ground to set the amount of voltage compensation.
		When floating, adjustment voltage is OmV.
5	IGET	Buck Charging current setting pin. Connect a resistor between this pin and analog ground to
<u> </u>	IJLI	set the current level.
С		External high voltage OVP MOSFET gate drive pin. This pin can be used to control an external
	וטאו	MOSFET for DVP purpose. This pin can sustain Voltage up to 20V.
7	STAT	Charge status indication pin. When in charging, STAT is pulled low. And STAT become
		high-impedance when charging is completed.
		USB 5V output during boost and Current limited input pin during charging. This is a power pin,
0,14	UUI	by pass with 2x22uF ceramic caps closed to the pin and PGND.
9,10,11	GP	Power Ground pin
12,13	SM	Switching Pin. Connect with an inductor between this pin and BATT.
1E	BATS	Battery Voltage sense pin. Connect to the battery positive terminal with a separate sensing
כו		wire to avoid voltage drop to achieve accurate battery CV charging
16,17	IN	DC input pins. Bypass with a 22uF capacitor from this pin to ground.
18	ENBST	Manual Force Boost operation pin. This function is enabled when MODE pin is forced high.
		When ENBST=1, force Boost Operation. When ENBST=0, Boost Operation is disabled.
19	VSA2	System voltage supply pin. It can supply up to 30mA. It gets power from IN when IN is present
		and from BATT when there is no IN power connected.
7 0		Input sense pin. Internally clamped to 6.4V.Connect a resistor from INSNS to IN, and IuF cap
ZU	11/2/1/2	to Analog ground.

ETA6085

Efficiency in Boost mode

TYPICAL CHARACTERISTICS

(Vin=5V, $T_A=25^{0}$ C, unless otherwise specified)

0.00

50.00

Output current in Boost mode

APPLICATION SUPPORT

2

2.5

3

Please contact local distributor or ETA solutions for detail engineering support.

3.5

VBAT (V)

4

4.5

www.etasolution.com

150.00

TIME(min)

100.00

250.00

PACKAGE OUTLINE

QFN3x3-20

Note: The backside exposed inner leads or pads of ETA6085 are for internal leadframe connection. Please DONOT draw a heat dissipation pad underneath the IC when doing the PCB layout for ETA6085, as the exposed heat dissipation pad on PCB will short the leads of ETA6085. Only connecting leads located at the outer ring is good enough for the best performance of ETA6085. Please contact ETA application engineer in case of any question or confusion.

Sumbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	0.500	0.600	0.020	0.024	
A1	0.000	0.050	0.000	0.002	
A3	0.152	REF.	0.00	06 REF.	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
b	0.150	0.250	0.006	0.010	
b1	0.150	0.150 REF.		06 REF.	
b2	0.295	0.395	0.012	0.016	
b3	0.050	0.150	0.002	0.006	
e	0.400 BSC.		0.016 BSC.		
L	0.324	0.476	0.013	0.019	
L1	1.194	1.346	0.047	0.053	
L2	0.794	0.946	0.031	0.037	
L3	0.544	0.696	0.021	0.027	
k	0.388 REF.		0.015REF.		
k1	0.300 REF.		0.012 REF.		
k2	0.222	0.222 REF. 0.009 REF.		09 REF.	
k3	0.250	REF.	0.010 REF.		

A recommended PCB pad layout is shown below for reference.

