

Inductive Cell Balancer IC with Balancing Current Up to 2A

DESCRIPTION

ETA3001 is an inductive cell balancer. Unlike conventional passive balancing technique, ETA3001 utilizes a control scheme with an inductor to shuffle currents between two cells until the cells are balanced. Due to the switching nature, the heat and power dissipation generated in conventional linear balance technique are greatly reduced. The balance time is also significantly reduced due to higher balancing current not being limited by package thermal dissipation.

ETA3001 consumes only 2µA ultra-low current from batteries in standby mode, extending the battery shelf time. The final balanced voltages of both cells are also highly accurate which enhances the performance and lifetime for the batteries connected in series. ETA3001 can also be used in multiple cells stacking with even number of cells. ETA3001 includes protection features similar to precondition in battery charging, that is when one cell's voltage is grossly lower than the other, the balancing current is reduced to a safe level until the lower voltage cell is charged up.

FEATURES

- Inductive, switching control scheme
- Up to 90% charger transfer efficiency
- Accurate balanced voltages down to 30mV
- Auto detect unbalance and auto balance
- Low sleeping supply current, 2μA
- Programmable balancing current up to 2A
- Precondition balancing current
- Status indications
- Battery over voltage protection
- Support small size inductor

APPLICATIONS

- Multi-cells System
- Battery Pack
- Portable Equipment and Instrumentation
- Battery Backup Systems
- E-Cigarette

ETA3001 is available in DFN2x2-8 package.

TYPICAL APPLICATION

Figure 1: Typical Application Circuit

ORDERING INFORMATION

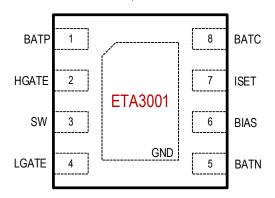
PART No.

PACKAGE

TOP MARK

Pcs/Reel

ETA3001D2I


DFN2x2-8L

G3<u>YW</u>

3000

PIN CONFIGURATION

DFN2x2-8

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

Recommended Operating Conditions

(Note: The device is not guaranteed to function outside its operating conditions.)

Ambient Temperature Range-40°C to 85°C Junction Temperature Range-40°C to 125°C

ELECTRICAL CHARACTERISTICS

 $(T_A=25\,^{\circ}C, L=1\mu H, C_{BOT}=C_{TOP}=10\mu F \text{ if not specified})$

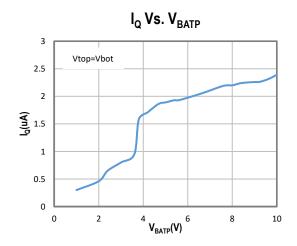
	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
SUPPLY					
	Quiescent current	V _{BATP} =8V,	2		
SUPPLY	Quiescent current	VBATP-VBATC=VBATC-VBATN			μA
ISUPPLY	Operating supply current	V _{BATP} =8V, in balancing	900		
	Operating supply current	mode, No Switching	900		μΑ
V _{BATP}	VBATP operating voltage			10	V
V _{BATC}	VBATC operating voltage			5	V
UVLO	Under lock-out voltage threshold	V _{BATP} Rising	3.75		V
UVLO_HYS	UVLD hysteresis		200		mV
DETECTION					
TSLEEP	Detection interval timer	Part sleeps during	2		S
	Detection interval timel	TSLEEP			3
T _{ALLOW}	Unbalance detection	Unbalance status is	3.85		mS

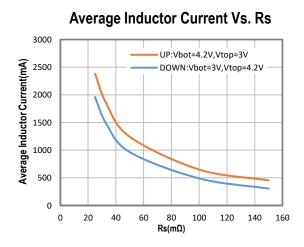
	acknowledgment timer	accepted after T _{ALLOW}		
	_	when enter CHECK		
		state.		
		IC get back to		
т	Maxima una cuale al ance ale action a time	sleeping mode if don't	7.60	C
Тснеск	Maximum unbalance checking time	detect unbalance	7.68	mS
		after T _{CHECK}		
		Maximum switching		
T_{DONE}	Finishing Timer	skip before enter	62	mS
		sleep mode		
		Balancing only work if		
VKICK	Unbalance detection threshold	OVP>VBATP>UVLO	100	mV
VINOR	Chibalance detection threshold	and V _{KICK} Detected	100	""
		between 2 cells		
		Error voltage between		
Verror	Balancing Accuracy	2 cells after balancing	-70 70	mV
		finish		
BALANCE CONT			T	1
FREQ	Switching Frequency	PWM Clock	1	MHz
AVERAGE	Average Inductor current Regulation		1	Α
PRECOND	Precondition current Regulation	$R_S = 50 \text{m}\Omega$	100	mA
BATTERY PROTE				T
TOP_OVP	Top Cell over voltage protection threshold	V _(BATP-BATC) Rising	5	V
TOP_OVP_HYST	TOP_OVP hysteresis	V _(BATP-BATC) Falling	350	mV
BOT_OVP	Bottom Cell over voltage protection	V _(BATC-BATN) Rising	5	V
BO1_OVF	threshold	V(BAIC-BAIN) INSING	CTOR	v
BOT_OVP_HYST	BATC_OVP hysteresis	V _(BATC-BATN) Falling	350	mV
TOP_PRECOND	Top battery precondition threshold	V _(BATP-BATC) Rising	2.8	V
TOP_PREC_HYS T	TOP_PRECOND hysteresis	V _(BATP-BATC) Falling	150	mV
BOT_PRECOND	Bottom battery precondition	V _(BATC-BATN) Rising	2.8	V
BOT PREC HYS				
BOT_PREC_HYS	threshold	V F.P	450	
BOT_PREC_HYS T	BOT_PRECOND hysteresis	V _(BATC-BATN) Falling	150	mV
	BOT_PRECOND hysteresis	V _(BATC-BATN) Falling	150	mV
T BALANCE PROT	BOT_PRECOND hysteresis ECTION	V _(BATC-BATN) Falling DOWN direction:		
Т	BOT_PRECOND hysteresis		150 4.5	mV A
T BALANCE PROT	BOT_PRECOND hysteresis ECTION Top cell drive current limit	DOWN direction:	4.5	A
T BALANCE PROT	BOT_PRECOND hysteresis ECTION	DOWN direction: V(BATP-BATC)> V(BATC-BATN)		
T BALANCE PROT	BOT_PRECOND hysteresis ECTION Top cell drive current limit Lower cell drive current limit	DOWN direction: V(BATP-BATC)> V(BATC-BATN) UP direction:	4.5	A

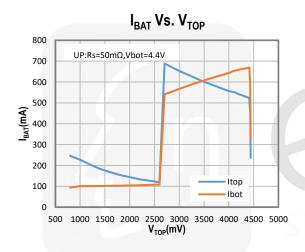
TSD HYST	TSD Hysteresis	30	°C

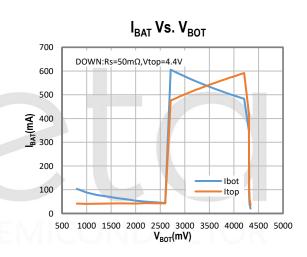
PIN DESCRIPTION

PIN#	NAME	DESCRIPTION				
1	BATP	Sense voltage input for top cell. Connect a 10µF capacitor between BATP				
		and BATC.				
2	HGATE	Control high side external MOSFET.				
3	SW	Switching node. Connected to an inductor.				
4	LGATE	Control low side external MOSFET.				
5	BATN	Negative terminal sense voltage input and common Ground pin.				
6	BIAS	Bias pin. Connect a 10nF capacitor from BIAS to SW.				
7	ISET	Balancing current setting pin. Connect a resistor from SW to an inductor to program the balancing current. Under an extremely high noise environment, a 1nF capacitor between ISET pin and SW pin can improve the ISET voltage stability, so a capacitor position reservation here is				
		recommended.				
8	BATC	Sense voltage input for bottom cell. Connect a 10µF capacitor between				
9	DATO	BATC and BATN.				
Exposed Pad	EP	Connect it to GND.				

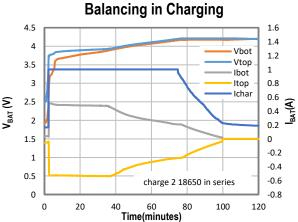

FUNCTIONAL BLOCK DIAGRAM BATP <u>VDD</u> 1uA ВАТС Bandgap & VDD Battery **UVLO** Sense BIAS & BIAS & OVP Timer & TSD Upper Cell HGATE Control Driver Balance ¹∏sw Control Balance Lower Cell **ISET** Current Driver Sense LGATE ETA3001 BATN


Figure 2: Functional Block Diagram




TYPICAL PERFORMANCE CHARACTERISTICS


(TA=25°C, unless otherwise specified)

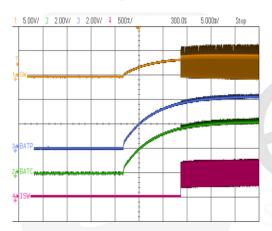


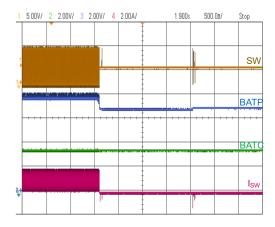
300.0% 5.000%/ Trig'd?

TYPICAL PERFORMANCE CHARACTERISTICS Cont'd

(TA=25°C, unless otherwise specified)

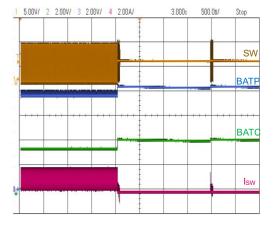
 V_{BOT} plug-in Start-Up , V_{TOP} = Floating , R_S = $50m\Omega,$ $V_{BOT} = 4.3V$


 V_{BOT} plug-in Start-Up , V_{TOP} = Shorted , R_S = $50m\Omega$, $V_{BOT} = 4.3V$


 V_{TOP} plug-in Start-Up , V_{BOT} = Shorted , R_S = $50m\Omega$, $V_{TOP} = 4.3V$

300.0% 5.000%/

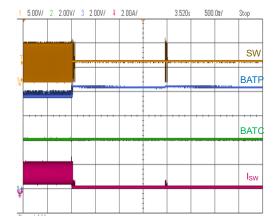
 V_{TOP} plug-in Start-Up , V_{BOT} = Floating , R_{S} = $50 m \Omega,$

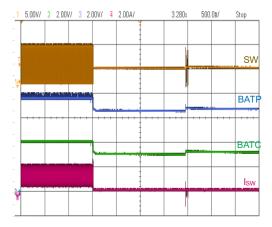


 V_{TOP} plug-out, DOWN Condition, $R_S = 50 \text{m}\Omega$, V_{TOP} = 4.3V, V_{BOT} = 3.5V

1 5.00V/ 2 2.00V/ 3 2.00V/ 4 1.00A/

 V_{BOT} plug-out, DOWN Condition, $R_S = 50 m\Omega$, $V_{TOP} = 4.3V$, $V_{BOT} = 3.5V$




TYPICAL PERFORMANCE CHARACTERISTICS Cont'd

(TA=25°C, unless otherwise specified)

 V_{TOP} plug-out, UP Condition, $R_S = 50m\Omega$, $V_{BOT} = 4.3V$, $V_{TOP} = 3.5V$

 V_{BOT} plug-out, UP Condition, $R_S = 50m\Omega$, $V_{BOT} = 4.3V$, $V_{TOP} = 3.5V$

FEATURE DESCRIPTION

The ETA3001 is a battery cell balancer with lossless inductive architecture based on ETA's proprietary technology. The technology is developed by ETA Solutions and any copy without ETA's agreement will be forbidden.

During operation, ETA3001 detects the difference between 2 cells then start balancing if the difference exceeds V_{KICK} . Once detected V_{KICK} , ETA3001 will discharge the higher voltage cell, store that discharging energy in the inductor then charge that energy to the lower voltage cell. ETA3001 keeps balancing until there is no difference between 2 cells.

ETA3001 technology allows balancing in either charge or discharge phases of the battery with minimized loss. Without unbalanced condition, ETA3001 operates in sleep mode with low supply current. This is an advantage to extend battery pack life time.

STATE MACHINE

The ETA3001 provides a completed state machine that controls whole operation intelligently. With this state machine, ETA3001 is equipped with self-protection from any accident during balancing. It also keeps the part stay asleep as much as possible until unbalance detected.

ETA3001 always starts from CHECK state when battery is plugged in.

Any fault always forces ETA3001 back to SLEEP State where ETA3001 burns only $2\mu A$ (typically) from BATP.

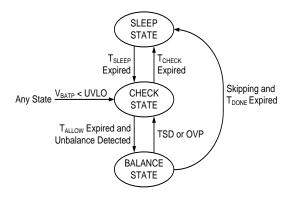


Figure 3: State Machine Diagram

ETA3001 Rev 1.2

The ETA3001 timing diagram for state machine is shown in following figure.

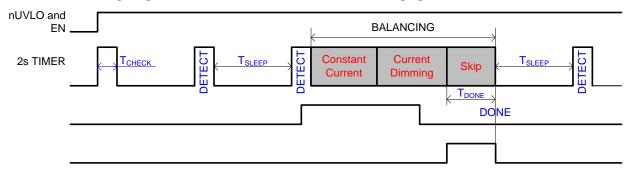


Figure 4: Timing Profile

UNBALANCE DETECTION

When state is in CHECK State, ETA3001 detects V_{KICK} difference between 2 cells to enter BALANCE State. If the top cell voltage is higher, balancing will be "DOWN", meaning discharge the top cell to charge to bottom cell. And if the bottom cell voltage is higher, balancing will be "UP", meaning discharge the bottom cell to charge to top cell.

BALANCING PROFILE

ETA3001 balancing always starts with "Constant Current Regulation" phase since it is always with high voltage difference. Constant current is set by R_{ISET}.

When the detected difference at IC pin is almost zero, but due to battery equivalent series resistance, real difference is not zero, then current is not immediately zero but reduced slowly depend on battery capacitance. This condition is called "Current Dimming" phase.

When two cell voltages are equal, balancing current becomes almost zero, when this persist for a time period of T_{DONE} , the balancing finishes one cycle, and ETA3001 goes back to SLEEP State.

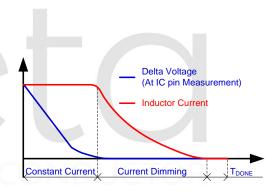


Figure 5: Balancing Profile

PROTECTION

ETA3001 provides full protection to batteries that extend the life time of the batteries:

- ➤ Short and Low Voltage Protection: When either of the cell voltage below V_{PRECOND}, maximum balancing current will be re-defined to 10% of the level set by ISET pin resistor.
- ➤ Open and Over Voltage Protection: When either of the cell voltage is greater than V_{OVP}, ETA3001 will stop balancing, and go back to SLEEPING. Part will wake up after T_{SLEEP}.
- ➤ Thermal Shutdown: When part gets hotter than 160°C, ETA3001 will stop balancing, and go back to SLEEPING. Part will wake up after T_{SLEEP}.
- Current Limit Protection: Maximum of the peak of inductor current is allowed to 5.5A.

ETA3001 Rev 1.2

APPLICATION INFORMATION

BALANCING CURRENT SETTING

Balancing current is defined as the average inductance current. Average inductance current is regulated following ISET resistor configuration.

AVERAGE	RECOMMENDED COMPONENT							
INDUCTION CURRENT	ISET RESSITOR	ISET CAPACITOR	INDUCTOR	BATTERY CAPACITOR				
500mA	100mΩ	0pF – 10nF	0.47-1µH	4.7μF – 10μF				
625mA	80mΩ	0pF – 10nF	0.68-1µH	4.7μF – 10μF				
800mA	62.5mΩ	0pF – 10nF	0.68-1µH	4.7μF – 10μF				
1000mA	50mΩ	0pF – 10nF	0.68-1µH	4.7μF – 10μF				
1250mA	40mΩ	0pF – 10nF	0.68-1µH	10μF				
1515mA	33mΩ	0pF – 10nF	0.68-1µH	10μF				
1667mA	30mΩ	0pF – 10nF	1μH	10μF				
2000mA	25mΩ	0pF – 10nF	1µH	10μF				

RESTRICTED CONDITIONS

ETA3001 does not allow following restricted conditions:

- Reverse battery connection
- Short SW to any of BATN, BATP, BATC
- Exceed the absolute maximum rating of each IC pin

MOSFETs SELECTION

External N-type MOSFETs must meet the condition of $V_{DS}>12V$. The value of Qg should range from 1nC to 3nC, which can make the MOSFETs respond faster.

MULTI-CELLS BALANCING SOLUTION

It is also possible to use several ETA3001 ICs in application to balance multi-cell series battery, such as shown in the Figure 6 (n cells).

For example, Figure 6 shows a typical solution for 4-cell-battery in laptop battery pack.

Each ETA3001 manages balancing of 2 neighbor cells. Each ETA3001 operates independently.

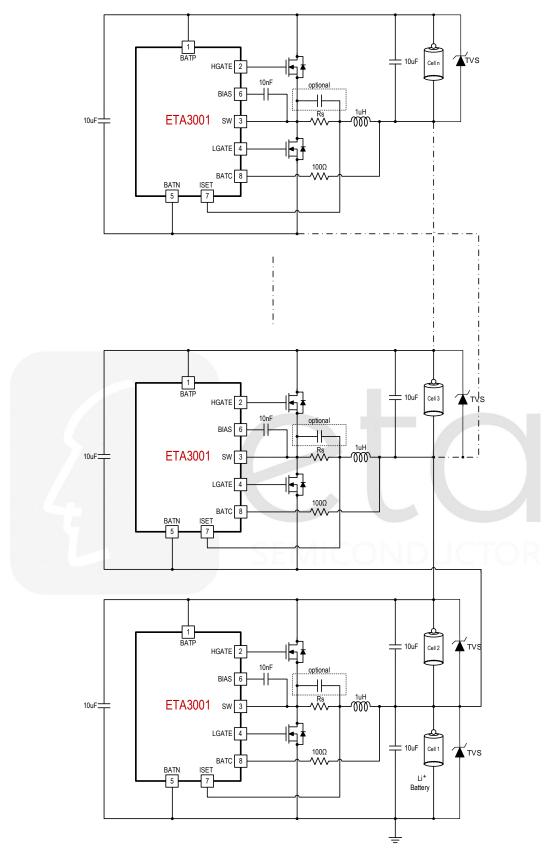
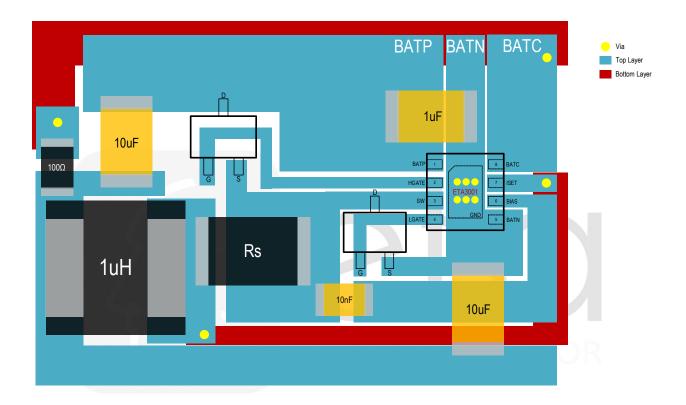
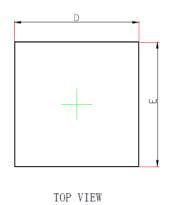


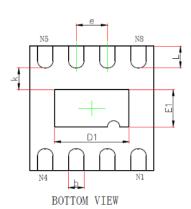
Figure 6: Multi-Cell Balancing Solution

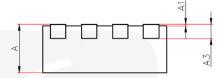

ETA3001 Rev 1.2

PCB DESIGN GUIDELINE

In an UP case that bottom cell voltage is greater than top cell voltage, bottom cell becomes input and top cell becomes output of the switching regulation. In a DOWN case that top cell voltage is greater than bottom cell voltage, top cell becomes input and bottom cell becomes output. These mean parallel battery capacitors are always output capacitor or input capacitor for regulator. So please require to locate as close as possible to IC pins to minimize series resistance.

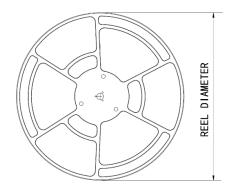

Please try to get the order of battery pins are BATP – BATC – BATN to make an easy battery connection.

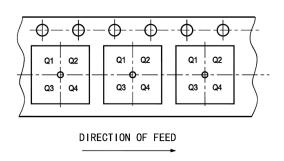


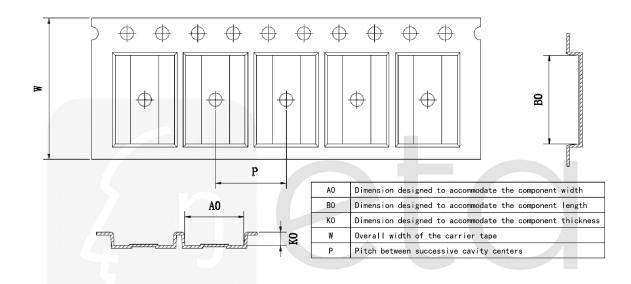


PACKAGE OUTLINE

Package: DFN2x2-8




SIDE VIEW


Symbol		sions In neters	Dimensions In Inches			
	Min	Max	Min	Max		
Α	0.700	0.800	0.028	0.031		
A1	0.000 0.050		0.000	0.002		
A3	0.203	REF	0.008 REF			
D	1.924	2.076	0.076	0.082		
Е	1.924	2.076	0.076	0.082		
D1	1.100	1.100 1.300		0.051		
E1	0.500	0.700	0.020	0.028		
k	0.200) MIN	0.008 MIN			
b	0.200	0.300	0.008	0.012		
е	0.500 TYP		0.020 TYP			
L	0.274	0.426	0.011	0.017		

TAPE AND REEL INFORMATION

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P (mm)	W (mm)	Pin1 Quadrant
ETA3001D2I	DFN2x2-8	8	3000	180	9.5	2.3	2.3	1.1	4	8	Q1