EMI Filter with ESD Protection

EMI1051

The EMI1051 is an R-C EMI filter array with bidirectional ESD protection that integrates a Pi-filter (C-R-C) to suppress EMI/RFI Noise. EMI1051 includes ESD protection diodes on the input and output pins, and provides a very high level of protection for sensitive electronic components against possible electrostatic discharge (ESD). The ESD diodes connected to the filter ports safely dissipate ESD strikes of $\pm 30~\rm kV$.

Features

- Small Form Factor
- ±30 kV ESD Protection (IEC 61000-4-2, Contact Discharge)
- ±30 kV ESD Protection (IEC 61000–4–2, Air Discharge)
- Greater than 30 dB of Attenuation in the 600 MHz 1.55 GHz Range
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Mobile Phones
- Tablets
- Laptops

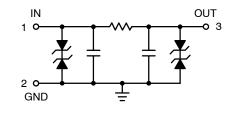
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
ESD Discharge: IEC 61000-4-2, Contact Discharge IEC 61000-4-2, Air Discharge	ESD	±30 ±30	kV kV
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com



MARKING DIAGRAM

A = Specific Device Code M = Month Code

BLOCK DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

See Application Note AND8308/D for further description of survivability specs.

1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V_{RWM}	I/O Pin to GND			5.5	V
Breakdown Voltage	V_{BR}	I _T = 1 mA, I/O Pin to GND		6.8	8.0	V
Reverse Leakage Current	I _R	V _{RWM} = 5.5 V, I/O Pin to GND		0.01	0.1	μΑ
Clamping Voltage TLP	V _C	I _{PP} = 8 A		7.7	8.8	٧
		I _{PP} = 16 A		8.5	10	
Reverse Peak Pulse Current	I _{PP}	IEC61000-4-5 (8x20 μs)		22.5		Α
Clamping Voltage	V _C	I _{PP} = 10 A, (8/20 μs pulse) I _{PP} = 18 A		8.5 10.5	10	V
Dynamic Resistance	R_{DYN}	100 ns TLP Pulse		0.1		Ω
Series Channel Resistance	R _{CH}	Pins A1 to A3		100	120	Ω
Cut-off Frequency	F _C	50 Ω Termination		65		MHz
Stop Band Attenuation	F _{atten}	600 MHz	30	35		dB
		1 GHz	30	35		1
		1.55 GHz	30	35		1
Second Harmonic Floor	H _{F2}	f = 710 MHz, 900 MHz, 1.9 GHz, 2.5 GHz @ 5 dBm	-85			dB
		f = 710 MHz, 900 MHz, 1.9 GHz, 2.5 GHz @ 25 dBm	-40			1
Third Harmonic Floor	H _{F3}	f = 710 MHz, 900 MHz, 1.9 GHz, 2.5 GHz @ 10 dBm	-110			dB
		f = 710 MHz, 900 MHz, 1.9 GHz, 2.5 GHz @ 25 dBm	-60			
Junction Capacitance	CJ	V _R = 0 V, f = 1 MHz		80		pF
Insertion Loss	ΙL	f = 1 MHz		-6		dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

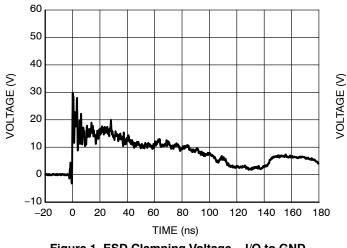


Figure 1. ESD Clamping Voltage – I/O to GND, +8 kV Contact per IEC61000-4-2

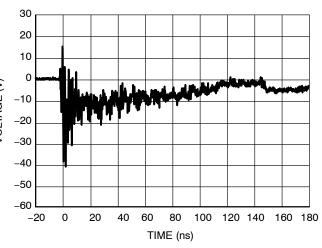


Figure 2. ESD Clamping Voltage – GND to I/O, -8 kV Contact per IEC61000-4-2

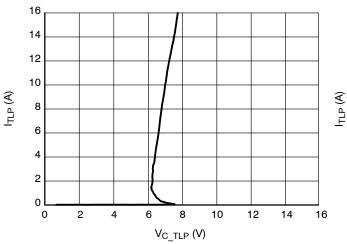


Figure 3. 100 ns TLP I-V Curve - I/O to GND

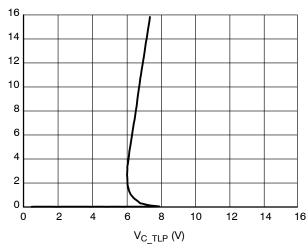


Figure 4. 100 ns TLP I-V Curve - GND to I/O

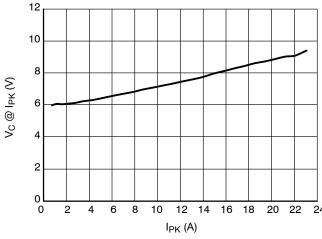


Figure 5. Clamping Voltage vs. Peak Pulse Current – I/O to Gnd (t_p = 8/20 μ s)

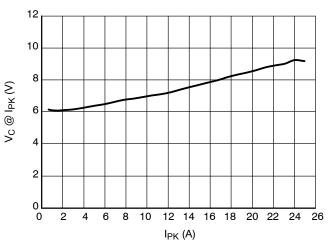


Figure 6. Clamping Voltage vs. Peak Pulse Current – Gnd to I/O (t_p = 8/20 μ s)

TYPICAL CHARACTERISTICS

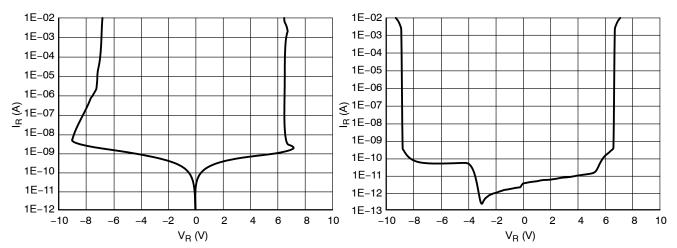


Figure 7. Breakdown Voltage - I/O to GND

Figure 8. Reverse Leakage Current - I/O to GND

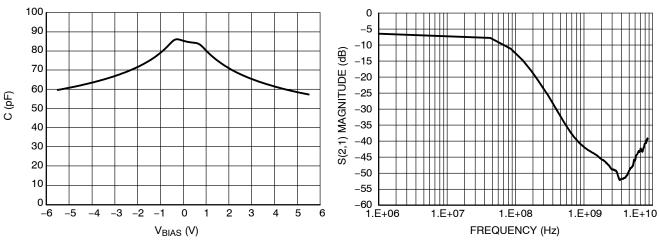


Figure 9. Line Capacitance, f = 1 MHz

Figure 10. Attenuation

ESD VOLTAGE CLAMPING

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to On Semiconductor Application Notes AND8307/D and AND8308/D.

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

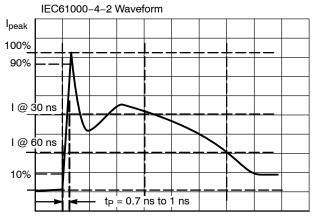


Figure 11. IEC61000-4-2 Spec

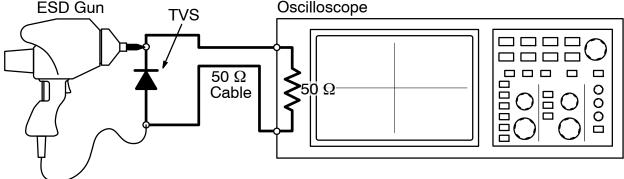


Figure 12. Diagram of ESD Test Setup

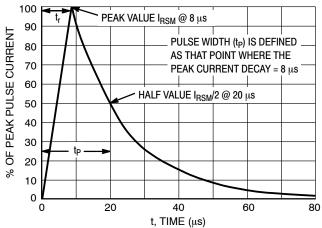


Figure 13. 8 x 20 μs Pulse Waveform

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 14. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 15 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels.

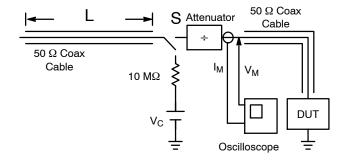


Figure 14. Simplified Schematic of a Typical TLP System

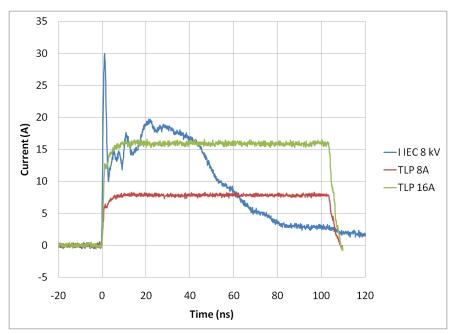
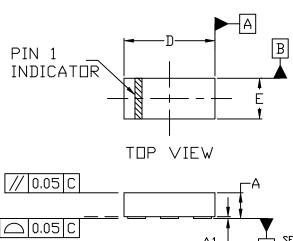


Figure 15. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

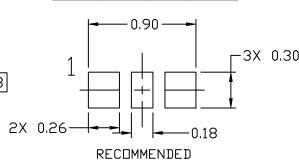
ORDERING INFORMATION


Device	Package	Shipping [†]
EMI1051FCT5G	DSN3 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS - EMI1051 (01005)

DSN3 0.76x0.34 (0301)


CASE 152BA **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO ALL PADS

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.17	0.20	0.23	
A1	0.00		0.03	
b	0.22	0.24	0.26	
D	0.73	0.76	0.79	
E	0.31	0.34	0.37	
е	0.275 BSC			
L	0.13	0.15	0.17	

MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SEATING Α1 PLANE NDTE 3 SIDE VIEW 3X b 0.05 C A B 3X L BOTTOM VIEW

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative