EM88F758N

8-BIT Microcontroller

Product Specification

Doc. Version 1.1

ELAN MICROELECTRONICS CORP.

March 2016

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM.

Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2016 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible to any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising out of the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977

Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG

Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-Tech Industrial Park South Area, Shenzhen CHINA 518057

Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

USA:

Elan Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

Elan Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 elan-sh@elanic.com.cn

1	General Des	cription	1			
2	Features					
	2.1 Selection	on Table	3			
3	Pin Configu	ration	4			
4	Pin Descript	ion	8			
5	-	Block Diagram				
		scription				
6						
6.1	Operational	Registers				
	6.1.1	R0: IAR (Indirect Addressing Register)				
	6.1.2	R1: BSR (Bank Selection Control Register)	13			
	6.1.3	R2: PCL (Program Counter Low)				
	6.1.4	R3: SR (Status Register)	19			
	6.1.5	R4: RSR (RAM Select Register)	20			
	6.1.6	Bank 0 R5 ~ RA (Port 5 ~ Port A)	20			
	6.1.7	Bank 0 RB IOCR5 (I/O Port 5 Control Register)	20			
	6.1.8	Bank 0 RC IOCR6 (I/O Port 6 Control Register)	20			
	6.1.9	Bank 0 RD IOCR7 (I/O Port 7 Control Register)	20			
	6.1.10	Bank 0 RE: OMCR (Operating Mode Control Register)	20			
	6.1.11	Bank 0 RF: EIESCR (External Interrupt Edge Select Control Register)				
	6.1.12	Bank 0 R10: WUCR1 (Wake-up Control Register 1)	23			
	6.1.13	Bank 0 R11: WUCR2 (Wake-up Control Register 2)	24			
	6.1.14	Bank 0 R12: WUCR3 (Wake-up Control Register 3)				
	6.1.15	Bank 0 R13: (Reserved)				
	6.1.16	Bank 0 R14: SFR1 (Status Flag Register 1)	25			
	6.1.17	Bank 0 R15: SFR2 (Status Flag Register 2)				
	6.1.18	Bank 0 R16: SFR3 (Status Flag Register 3)	26			
	6.1.19	Bank 0 R17: SFR4 (Status Flag Register 4)	27			
	6.1.20	Bank 0 R18: (Reserved)				
	6.1.21	Bank 0 R19: SFR6 (Status Flag Register 6)	28			
	6.1.22	Bank 0 R1A: (Reserved)	28			
	6.1.23	Bank 0 R1B: IMR1 (Interrupt Mask Register 1)	28			
	6.1.24	Bank 0 R1C: IMR2 (Interrupt Mask Register 2)	29			
	6.1.25	Bank 0 R1D: IMR3 (Interrupt Mask Register 3)				
	6.1.26	Bank 0 R1E: IMR4 (Interrupt Mask Register 4)				
	6.1.27	Bank 0 R1F: (Reserved)				
	6.1.28	Bank 0 R20: IMR6 (Interrupt Mask Register 6)				
	6.1.29	Bank 0 R21: WDTCR (Watchdog Timer Control Register)				
	6.1.30	Bank 0 R22: TCCCR (TCC Control Register)	33			

6.1.31	Bank 0 R23: TCCD (TCC data register)	.34
6.1.32	Bank 0 R24: TC1CR1 (Timer/Counter 1 Control Register 1)	.34
6.1.33	Bank 0 R25: TC1CR2 (Timer/Counter 1 Control Register 2)	.35
6.1.34	Bank 0 R26: TC1DA (Timer/Counter 1 Data Buffer A)	.37
6.1.35	Bank 0 R27: TC1DB (Timer/Counter 1 Data Buffer B)	.37
6.1.36	Bank 0 R28: TC2CR1 (Timer/Counter 2 Control Register 1)	.37
6.1.37	Bank 0 R29: TC2CR2 (Timer/Counter 2 Control Register 2)	.38
6.1.38	Bank 0 R2A: TC2DA (Timer/Counter 2 Data Buffer A)	.39
6.1.39	Bank 0 R2B: TC2DB (Timer/Counter 2 Data Buffer B)	.39
6.1.40	Bank 0 R2C: TC3CR1 (Timer/Counter 3 Control Register 1)	.40
6.1.41	Bank 0 R2D: TC3CR2 (Timer/Counter 3 Control Register 2)	.41
6.1.42	Bank 0 R2E: TC3DA (Timer/Counter 3 Data Buffer A)	.42
6.1.43	Bank 0 R2F: TC3DB (Timer/Counter 3 Data Buffer B)	.42
6.1.44	Bank 0 R30: I2CCR1 (I2C Status and Control Register 1)	.42
6.1.45	Bank 0 R31: I2CCR2 (I2C Status and Control Register 2)	.43
6.1.46	Bank 0 R32: I2CSA (I2C Slave Address Register)	.44
6.1.47	Bank 0 R33: I2CDB (I2C Data Buffer Register)	.45
6.1.48	Bank 0 R34: I2CDAL (I2C Device Address Register)	.45
6.1.49	Bank 0 R35: I2CDAH (I2C Device Address Register)	.45
6.1.50	Bank 0 R36: SPICR (SPI Control Register)	.45
6.1.51	Bank 0 R37: SPIS (SPI Status Register)	.46
6.1.52	Bank 0 R38: SPIR (SPI Read Buffer Register)	.47
6.1.53	Bank 0 R39: SPIW (SPI Write Buffer Register)	.47
6.1.54	Bank 0 R3A ~ R3D: (Reserved)	.47
6.1.55	Bank 0 R3E: ADCR1 (ADC Control Register 1)	.48
6.1.56	Bank 0 R3F: ADCR2 (ADC Control Register 2)	.49
6.1.57	Bank 0 R40: ADISR (Analog to Digital Converter Input Channel Selection Register)	.50
6.1.58	Bank 0 R41: ADER 1 (Analog to Digital Converter Input Control Register 1)	51
6.1.59	Bank 0 R42: (Reserved)	.51
6.1.60	Bank 0 R43: ADDL (Low Byte of Analog to Digital Converter Data)	.52
6.1.61	Bank 0 R44: ADDH (High Byte of Analog to Digital Converter Data)	.52
6.1.62	Bank 0 R45 ADCVL (Low Byte of Analog to Digital Converter Comparison)	.52
6.1.63	Bank 0 R46 ADCVH (High Byte of Analog to Digital Converter Comparison)	52 (
6.1.64	Bank 0 R47 ~ R4F (Reserved)	.53
6.1.65	Bank 1 R5 IOCR8 (I/O Port 8 Control Register)	.53
6.1.66	Bank 1 R6 IOCR9 (I/O Port 9 Control Register)	.53
6.1.67	Bank 1 R7 IOCRA (IO Port A Control Register)	.53
6.1.68	Bank 1 R8: P5PHCR (Port 5 Pull-high Control Register)	.53
6.1.69	Bank 1 R9: P6PHCR (Port 6 Pull-high Control Register)	.54
6.1.70	Bank 1 RA: P789APHCR (Port 7~A Pull-high Control Register)	.54
6.1.71	Bank 1 RB: P5PLCR (Port 5 Pull-low Control Register)	.55
6.1.72	Bank 1 RC: P6PLCR (Port 6 Pull-low Control Register)	.55
6.1.73	Bank 1 RD: P789APLCR (Ports 7~A Pull-low Control Register)	.56

6.1.74	Bank 1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)	56
6.1.75	Bank 1 RF: P6HDSCR (Port 6 High Drive/Sink Control Register)	56
6.1.76	Bank 1 R10: P789AHDSCR (Ports 7~A High Drive/Sink Control Register)	57
6.1.77	Bank 1 R11: P5ODCR (Port 5 Open-Drain Control Register)	57
6.1.78	Bank 1 R12: P6ODCR (Port 6 Open-Drain Control Register)	57
6.1.79	Bank 1 R13: P789AODCR (Ports 7~A Open-Drain Control Register)	58
6.1.80	Bank 1 R14: DeadTCR (Dead Time Control Register)	58
6.1.81	Bank 1 R15: DeadTR (Dead Time Register)	59
6.1.82	Bank 1 R16: PWMSCR (PWM Source Clock Control Register)	59
6.1.83	Bank 1 R17: PWMACR (PWMA Control Register)	60
6.1.84	Bank 1 R18: PRDAL (Low byte of PWMA period)	61
6.1.85	Bank 1 R19: PRDAH (High Byte of PWMA Period)	61
6.1.86	Bank 1 R1A: DTAL (Low Byte of PMWA Duty)	61
6.1.87	Bank 1 R1B: DTAH (High Byte of PMWA Duty)	62
6.1.88	Bank 1 R1C: TMRAL (Low Byte of Timer A)	62
6.1.89	Bank 1 R1D: TMRAH (High byte of Timer A)	62
6.1.90	Bank 1 R1E: PWMBCR (PWMB Control Register)	62
6.1.91	Bank 1 R1F: PRDBL (Low byte of PWMB Period)	63
6.1.92	Bank 1 R20: PRDBH (High byte of PWMB period)	
6.1.93	Bank 1 R21: DTBL (Low Byte of PMWB Duty)	64
6.1.94	Bank 1 R22: DTBH (High Byte of PMWB Duty)	
6.1.95	Bank 1 R23: TMRBL (Low Byte of Timer B)	
6.1.96	Bank 1 R24: TMRBH (High Byte of Timer B)	
6.1.97	Bank 1 R25 ~ R39: (Reserved)	
6.1.98	Bank 1 R40: WCR and EECR1 (Watch Timer and EEPROM	
	Control Register 1)	65
6.1.99	Bank 1 R41: EECR2 (EEPROM Control Register 2)	65
6.1.100	Bank 1 R42: EERA (EEPROM Address)	66
6.1.101	Bank 1 R43: EERD (EEPROM Data)	66
6.1.102	Bank 1 R44: FLKR (Flash Key Register for Table Write Use)	66
6.1.103	Bank 1 R45: TBPTL (Table Point Low Register)	66
6.1.104	Bank 1 R46: TBPTH (Table Point High Register)	67
6.1.105	Bank 1 R47: STKMON (Stack Point)	67
6.1.106	Bank 1 R48: PCH (Program Counter High)	67
6.1.107	Bank 1 R49: LVDCR (Low Voltage Detector Control Register)	68
6.1.108	Bank 1 R4D TBWCR (Table Write Control Register)	68
6.1.109	Bank 1 R4E: TBWAL (Table Write Start Address Low Byte)	69
6.1.110	Bank 1 R4F: TBWAH (Table Write Start Address High Byte)	69
6.1.111	Bank 2 R5 TPEPCR1 (Touch Key Group A Enable Pin Control Register 1) .	70
6.1.112	Bank 2 R6 TPEPCR2 (Touch Key Group A Enable Pin Control Register 2) .	71
6.1.113	Bank 2 R7 TPEPCR3 (Touch Key Group B Enable Pin Control Register 3).	71
6.1.114	Bank 2 R8 TPEPCR4 (Touch Key Group B Enable Pin Control Register 4).	72
6.1.115	Bank 2 R9 TPCCR (Touch Key Charge Discharge Current Control Register	r)73
6.1.116	Bank 2 RA TPCR1 (Touch Key Control Register 1)	73
6 1 117	Bank 2 RB TPCR2 (Touch Key Control Register 2)	75

	6.1.118	Bank 2 RC TPCR3 (Touch Key Control Register 3)	/6
	6.1.119	Bank 2 RD TPAHTH (Most Significant Byte of Group A High Wakeup Threshold)	77
	6.1.120	Bank 2 RE TPAHTL (Least Significant Byte of Group A High Wakeup Threshold)	
	6.1.121	Bank 2 RF TPALTH (Most Significant Byte of Group A Lower Wakeup Threshold)	77
	6.1.122	Bank 2 R10 TPALTL (Least Significant Byte of Group A Lower Wakeup Threshold)	77
	6.1.123	Bank 2 R11 TPBHTH (Most Significant Byte of Group B High Wake-up Threshold)	78
		Bank 2 R12 TPBHTL (Least Significant Byte of Group B High Wakeup Threshold)	78
		Bank 2 R13 TPBLTH (Most Significant Byte of Group B Lower Wakeup Threshold)	78
	6.1.126	Bank 2 R14 TPBLTL (Least Significant Byte of Group B Lower Wakeup Threshold)	78
	6.1.127	Bank 2 R15 TPAH (Most Significant Byte of A Group Touch Key Buffer)	79
	6.1.128	Bank 2 R16 TPAL (Least Significant Byte of A Group Touch Key Buffer)	79
	6.1.129	Bank 2 R17 TPBH (Most Significant Byte of B Group Touch Key Buffer)	79
	6.1.130	Bank 2 R18 TPBL (Least Significant Byte of B Group Touch Key Buffer)	79
	6.1.131	Bank 2 R19 TPSTH (Most Significant Byte of Sense Time)	79
	6.1.132	Bank 2 R1A TPSTL (Least Significant Byte of Sense Time)	80
	6.1.133	Bank 2 R1B~R46: (Reserved)	80
	6.1.134	Bank 2 R47 LOCKPR (Lock Page Number Register)	80
	6.1.135	Bank 2 R48 LOCKCR (Lock Control Register)	80
	6.1.136	R50~R7F, Banks 0~3 R80~RFF	80
6.2	TCC/W	DT and Prescaler	81
6.3	I/O Port	s	83
6.4	Reset a	nd Wake-up	87
	6.4.1	Reset	87
	6.4.2	Status of RST, T, and P of Status Register	91
6.5	Interrup	t	112
6.6		Сеу	
	6.6.1	Overview	
	6.6.2	Function Description	
	6.6.3	Normal Mode Programming	
6.7	A/D Co	nverter	
	6.7.1	ADC Data Register	
	6.7.2	A/D Sampling Time	
	6.7.3	A/D Conversion Time	
	6.7.4	ADC Operation during Sleep Mode	
	6.7.5	Programming Process/Considerations	
	6.7.6	Programming Process for Detecting Internal VDD	
			_

6.8	Timer		122
	6.8.1	Timer/Counter mode	.123
	6.8.2	Window Mode	.124
	6.8.3	Capture Mode	.125
	6.8.4	Programmable Divider Output Mode and Pulse Width Modulation Mode	.126
	6.8.5	PDO	.126
	6.8.6	PWM	.127
	6.8.7	Buzzer Mode	.127
6.9	PWM		128
	6.9.1	Overview	.129
	6.9.2	Increment Timer Counter (TMRX: TMRAH/TMRAL, TMRBH/TMRBL)	.131
	6.9.3	PWM Time Period (PRDX: PRDAL/H, PRDBL/H)	.131
	6.9.4	PWM Duty Cycle (DTX: DTAH/DTAL or DTBH/DTBL)	.132
	6.9.5	Dual PWM function	.132
6.10	SPI (Se	rial Peripheral Interface)	134
	6.10.1	Overview and Features	.134
	6.10.2	SPI Function Description	.136
	6.10.3	SPI Signal and Pin Description	.138
	6.10.4	SPI Mode Timing	.139
6.11	I2C Fun	ction	141
	6.11.1	7-Bit Slave Address	.143
	6.11.2	10-Bit Slave Address:	.144
	6.11.3	Master Mode	.147
	6.11.4	Slave Mode	.147
6.12	Enhance	e Protect	148
	6.12.1	Enhance Protect Programming	.148
6.13	Oscillato	or	149
	6.13.1	Oscillator Modes	.149
	6.13.2	Crystal Oscillator/Ceramic Resonators (XTAL)	.150
	6.13.3	Internal RC Oscillator Mode	.151
6.14	Power-	on Considerations	153
6.15	Externa	Power-on Reset Circuit	153
		e-Voltage Protection	
		ption	
	6.17.1	Code Option Register (Word 0)	
	6.17.2	Code Option Register (Word 1)	
	6.17.3	Code Option Register (Word 2)	
	6.17.4	Code Option Register (Word 3)	
6.18		on Set	

7	Absolute Maximum Ratings	164
8	DC Electrical Characteristics	164
9	AC Electrical Characteristics	169
	APPENDIX	
Α	Ordering and Manufacturing Information	170
В	Package Type	171
С	Package Information	172
	C.1 EM88F758NL44U	172
	C.2 EM88F758NQN40	173
	C.3 EM88F758NSO28UJ	174
	C.4 EM88F758NSS28UJ	175
	C.5 EM88F758NK28UJ	176
	C.6 EM88F758NSO20UJ	177
D	Quality Assurance and Reliability	178
	D.1 Address Trap Detect	178
Ε	EM88F758N Program Pin List	179

Specification Revision History

Version	ersion Revision Description				
1.0	Initial release version				
	Added User Application Notice				
	Added a Note for Clock Rate Selection of ADC Modified the Interrupt description				
	Modified the Instruction description				
	Modified the Oscillation Characteristics				
	Modified the Clock Rate Selection of Description				
1.1	Modified the PRDAL, PRDBL Note Description	2016/03/25			
	Modified the ADC Control Register List				
	Modified Figure 6-16				
	Modified Figure 6-18				
	Modified Table 14				
	Modified Appendix A "Ordering and Manufacturing Information"				
	Modified Appendix B				
	Modified Appendix C				

User Application Note

(Before using this chip, take a look at the following description note, it includes important messages.)

- We strongly recommend that you have to place external 100nF MLCC between VDD and VSS.
 And the MLCC as close to the IC as possible.
- 2. The value in the dead-time register must be less than the value in the duty cycle register in order to prevent unexpected behavior on both of the PWM outputs.
- 3. If P50, P51 act as external interrupt, the pull-high (pull-low) function will be automatically disabled, and the corresponding control bit is invalid.
- 4. During ADC conversion, do not perform output instruction to maintain precision for all of the pins. In order to obtain accurate values, it is necessary to avoid any data transition on the I/O pins during AD conversion

1 General Description

EM88F758N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS technology. It has an on-chip 8K×16-bit electrical flash memory and 256×8-bit in system programmable EEPROM.

The debug function is built in EM88F758N chip. User can read the program code from JTAG port and monitor the on-chip register status, memory and program trace log on computer.

EM88F758N includes a capacitive touch-sensitive function. The self-contained capacitive touch key is covered with a plastic or glass case. The system controller converts finger data to button presses, depending on finger location and human interface context.

Using OCDS, user can develop their program for several ELAN flash types IC.

2 Features

- CPU configuration
 - 8K×16-bit Flash memory
 - (48+512) bytes general purpose register
 - 256 bytes in-system programmable EEPROM
 - More than 10 years data retention
 - 16-level stacks for subroutine nesting
 - Less than 1.5 mA at 5V/4MHz
 - Typically 15 μA, at 3V/16kHz
 - Typically 22 μA, at 3V/32kHz
 - Typically 1 μA, during sleep mode
 - 3 programmable Level Volt Reset

LVR: 4.0V, 3.5V, 2.7V, 1.65V (BOR), 1.5V(POR)

• 1 sets of 4 programmable Level Voltage Detector

LVD: 4.5V, 4.0V, 3.3V, 2.2V

- Six CPU operation modes (Normal, Green, Idle, Sleep, TK-Idle TK-Sleep)
- I/O port configuration
 - 6 bidirectional I/O ports: P5~P9, PA
 - 4 programmable pin change wake-up ports : P5~P8
 - 6 programmable pull-down I/O ports: P5~P9, PA
 - 6 programmable pull-high I/O ports: P5~P9, PA
 - 6 programmable open-drain I/O ports: P5~P9, PA
 - 6 programmable high-sink/drive I/O ports: P5~P9, PA
- Operating voltage range:
 - 2.0V~5.5V at -40°C~85°C (Industrial)
 - 1.8V~5.5V at 0°C~85°C (Commercial)
- Operating frequency range (base on two clocks):

Main oscillator:

- Crystal mode:
 - DC ~ 20 MHz at 4.5V~5.5V
 - DC ~ 16 MHz at 3.5V~5.5V
 - DC ~ 8 MHz at 2.0V~5.5V
- DC ~ 4 MHz at 1.8V~5.5V • IRC mode:
 - DC ~ 20 MHz at 4.5V~5.5V
 - DC ~ 16 MHz at 3.5V~5.5V
 - DC ~ 8 MHz at 2.0V~5.5V
 - DC ~ 4 MHz at 1.8V~5.5V

	TouchKou	Drift Rate					
InternalRC Frequency	Frequency	Temp. (-40℃~+85℃)	Voltage (1.8V~5.5V)	Process	Total		
1 MHz	24 MHz	±2%	±1%	±1%	±4%		
4 MHz	24 MHz	±2%	±1%	±1%	±4%		
6 MHz	24 MHz	±2%	±1%	±1%	±4%		
8 MHz	24 MHz	±2%	±1%	±1%	±4%		
12 MHz	24 MHz	±2%	±1%	±1%	±4%		
16 MHz	16 MHz	±2%	±1%	±1%	±4%		
20 MHz	20 MHz	±2%	±1%	±1%	±4%		

^{*} Kernel and TK used the same IRC clock source

Sub oscillator:

IRC mode: 16k/128kHzCrystal Mode: 32.768kHz

- Peripheral configuration
 - 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
 - Two Pulse Width Modulation (PWMA, PWMB) with 10-bit resolution shared with Timers A and B
 - Three 8-bit timers (TC1/TC2/TC3) with seven modes: Timer/Counter/Capture/Window/Buzzer/PWM/PDO (Programmable Divider Output) modes.
 TC1+TC2 can be cascaded to one 16-bit counter/timer
 - 8+1 channels Analog-to-Digital Converter with 12-bit resolution
 - One of the channels is 1/2 VDD power detection
 - Touch key function 20 traces(Sensor) for 2 groups, operating voltage range from 2.4V to 5.5V
 - Serial transmitter/receiver interface (SPI): 3-wire synchronous communication
 - I²C function with 7/10 bits address and 8 bits data transmit/receive mode
 - Power down (Sleep) mode
- 21 available interrupts: (3 external, 18 internal)
 - Watch timer interrupt
 - External interrupt: EINT0,EINT1
 - TCC overflow interrupt
 - TC1, TC2, TC3 overflow interrupt
 - Input-port status changed interrupt
 - ADC completion interrupt
 - PWMA, PWMB period/duty match completion
 - I²C transfer/receive/stop interrupt
 - SPI interrupt
 - LVD interrupt
 - System hold interrupt
 - Touch key conversion finish, limit check, error interrupt
- Single instruction cycle commands
- Five kinds of oscillation range in Crystal Mode

Crystal Range	Oscillator Mode
20 MHz ~ 12 MHz	HXT1
12 MHz ~ 6 MHz	HXT2
6 MHz ~ 1 MHz	XT
1 MHz ~ 100kHz	LXT1
32.768kHz	LXT2

- Programmable free running watchdog timer
 - Watchdog Timer: 16.5ms ± 5% with VDD =5V at 25°C, Temperature range ± 5% (-40°C ~+85°C)
 - Watchdog Timer: 16.5ms ± 5% with VDD = 3V at 25°C, Temperature range ± 5% (-40°C~+85°C)
 - Two clocks per instruction cycle
 - Package Type:

44-pin LQFP : 10*10*1.4mm EM88F758NL44
 40-pin QFN : 5*5*0.8mm EM88F758NQN40
 28-pin SOP : 300mil EM88F758NSO28
 28-pin SKDIP : 300mil EM88F758NSS28
 28-pin SKDIP : 300mil EM88F758NK28
 20-pin SOP : 300mil EM88F758NSO20

Note: These are all Green products which do not contain hazardous substances.

Selection Table

Package Type	SOP-20 1.8~5.5 ⁽¹⁾ 20 100 8K 560 256 Yes Yes 10 2 4 Yes
Operating Speed Description Descript	20 100 8K 560 256 Yes Yes 10 2
Speed Instruction cycle (ns) 100 100 100	100 8K 560 256 Yes Yes 10 2
On-chip Flash (16-bit Word) 8K 8K 8K On-chip SRAM (8-bit Byte) 560 560 560 EEPROM (8-bit Byte) 256 256 256 Watchdog Timer Yes Yes Yes RTC (Watch Time) Yes Yes Yes PWM (Watch Time) 10 10 10 10 PWM Timer 2 2 2 2 PWM Output 4 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes L2-bit Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1}	8K 560 256 Yes Yes 10 2
On-chip SRAM (8-bit Byte) 560 560 560 EEPROM (8-bit Byte) 256 256 256 Watchdog Timer Yes Yes Yes RTC (Watch Time) Yes Yes Yes PWM Primer 2 2 2 PWM Timer 2 2 2 PWM Output 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes 4 4 4 4 4 4 4 4 4 Yes Yes Yes 4 Yes Yes Yes 4 Yes Yes Yes 4 Yes Yes Yes 5 Yes Yes Yes 8 8 8 8 8 8 8 8 8 8 8 8 9 Yes <td< td=""><td>560 256 Yes Yes 10 2 4</td></td<>	560 256 Yes Yes 10 2 4
EEPROM (8-bit Byte) 256 256 256	256 Yes Yes 10 2 4
Watchdog Timer Yes Yes Yes RTC (Watch Time) Yes Yes Yes PWM Resolution 10 10 10 PWM Timer 2 2 2 PWM Output 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes KSPS 100 100 100 12-bit Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1}	Yes Yes 10 2 4
RTC (Watch Time) Yes Yes Yes Yes	Yes 10 2 4
Resolution	10 2 4
PWM Output 2 2 2 PWM Output 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes KSPS 100 100 100 Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits*1 8 bits*1 8 bits*1 8 bits*1	2
PWM Output 4 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes kSPS 100 100 100 12-bit Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits*1 8 bits*1 8 bits*1 8 bits*1	4
Output 4 4 4 4 Complement Yes Yes Yes Dead-time Yes Yes Yes kSPS 100 100 100 12-bit Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits*1 8 bits*1 8 bits*1 8 bits*1	
Complement Yes Yes Yes Dead-time Yes Yes Yes kSPS 100 100 100 12-bit Power Detection ½ VDD ½ VDD ½ VDD ADC Channels 8 8 8 Sample-and-Hold 1 1 1 1 TCC 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1}	Yes
KSPS	
12-bit ADC Power Detection ½ VDD ½ VDD ½ VDD Channels 8 8 8 Sample-and-Hold 1 1 1 TCC 8 bits*1 8 bits*1 8 bits*1 TC1 9 bits*1 9 bits*1 9 bits*1	Yes
ADC Channels 8 8 8 Sample-and-Hold 1 1 1 TCC 8 bits ⁻¹ 8 bits ⁻¹ 8 bits ⁻¹	100
Sample-and-Hold	½ VDD
TCC 8 bits*1 8 bits*1 8 bits*1 TC1 9 bits*1 9 bits*1 9 bits*1	8
TC1	1
TC1	8 bits ^{*1}
	8 bits ^{*1}
TC2 Window 8 bits ^{*1} 8 bits ^{*1} 8 bits ^{*1}	8 bits ^{*1}
TC3 /PWM/PDO 8 bits ⁻¹ 8 bits ⁻¹ 8 bits ⁻¹	8 bits ^{*1}
TP 20 Traces 20 Traces 16 Traces	8 Traces
External linterrupts 2 2 2	2
Serial Peripheral Interface (SPI) 1 1 x	х
Inter-integrated circuit (I2C) 1 1 1	1
GPIO 42 38 26	18
I/O Pins Direct LED Driver Pin 42 38 26	18
(Shared) Direct LED Driver Current 90mA ⁽²⁾ 90mA ⁽²⁾ 90mA ⁽²⁾	90mA ⁽²⁾
Temp. $-40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ $\text{Yes}^{(3)}$ $\text{Yes}^{(3)}$ $\text{Yes}^{(3)}$	Yes ⁽³⁾

⁽¹⁾ When BOR is disabled, EM88F758N can operate at 1.8V, 8MHz (Theoretical, not tested).

Table 2-1 EM88F758N Selection Table

 $^{^{(2)}}$ Hi-sink current enable and output is GND +1.5V

⁽³⁾ Operating voltage 2.0V~5.5V at -40°C~85°C (Industrial)

3 Pin Configuration

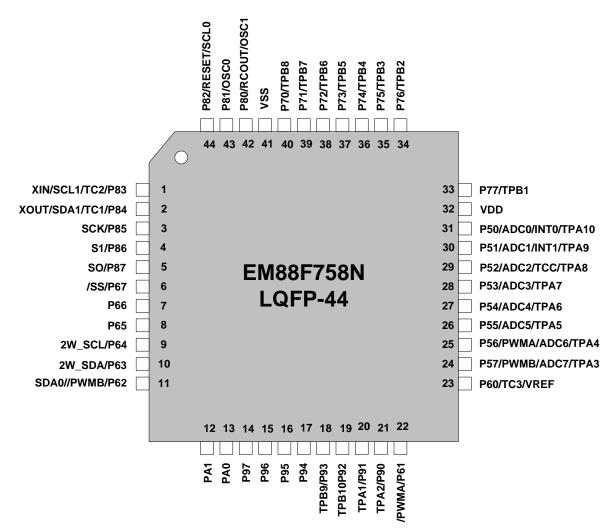


Figure 3-1 EM88F758N LQFP-44 Pin Assignment

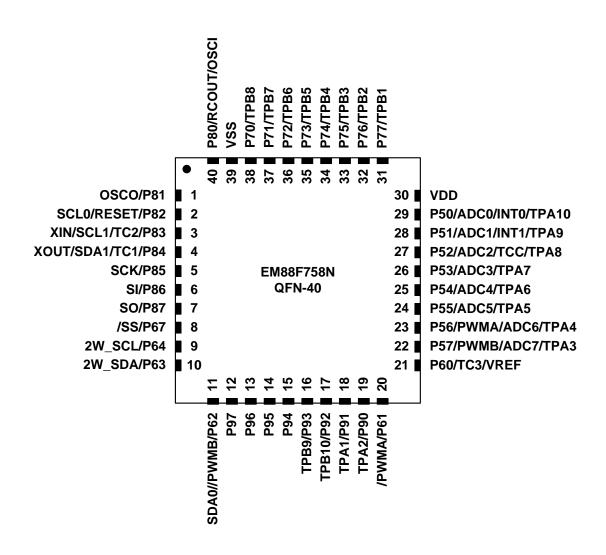


Figure 3-2 EM88F758N QFN-40 Pin Assignment

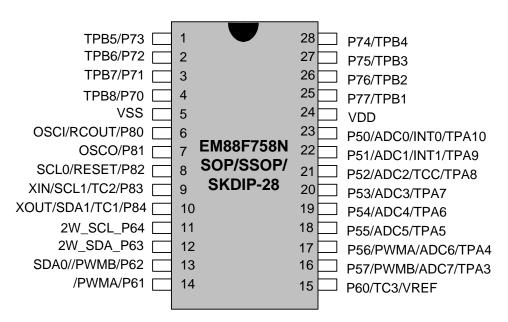


Figure 3-3 EM88F758N SOP/SSOP/SKDIP-28 Pin Assignment

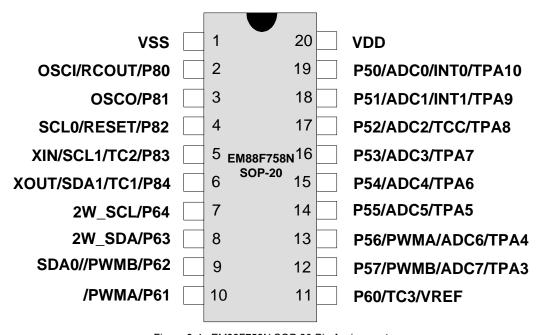


Figure 3-4 EM88F758N SOP-20 Pin Assignment

Pin Description

Name	Function	Input Type	Output Type	Description
VDD	VDD	Power	_	Power
VSS	VSS	Power	-	Ground
	P50	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P50/ADC0/INT0/TPA10	ADC0	AN	-	ADC Input 0
	INT0	ST	-	External Interrupt 0
	TPA10	AN	-	TPA10 is a Touch Key sense pin
	P51	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P51/ADC1/INT1/TPA9	ADC1	AN	-	ADC Input 1
	INT1	ST	_	External Interrupt 1
	TPA9	AN	-	TPA9 is a Touch Key sense pin
	P52	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P52/ADC2/TCC/TPA8	ADC2	AN	-	ADC Input 2
	TCC	ST	-	Real Time Clock/Counter clock input
	TPA8	AN	-	TPA8 is Touch Key sense pin
	P53	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P53/ADC3/TPA7	ADC3	AN	-	ADC Input 3
	TPA7	AN	-	TPA7 is a Touch Key sense pin
	P54	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wakeup
P54/ADC4/TPA6	ADC4	AN	-	ADC Input 4
	TPA6	AN	-	TPA6 is Touch Key sense pin
	P55	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P55/ADC5/TPA5	ADC5	AN	-	ADC Input 5
	TPA5	AN	-	TPA5 is a Touch Key sense pin
	P56	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P56/PWMA/ADC6/TPA4	PWMA	_	CMOS	PWMA output
	ADC6	AN	-	ADC Input 6
	TPA4	AN	-	TPA4 is a Touch Key sense pin

Name	Function	Input Type	Output Type	Description
	P57	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P57/PWMB/ADC7/TPA3	PWMB	-	CMOS	PWMB output
. 67,1 77,115,7,12 67,117,10	ADC7	AN	_	ADC Input 7
	TPA3	AN	-	TPA3 is a Touch Key sense pin
	P60	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P60/TC3/VREF	TC3	ST	CMOS	8-bit Timer/Counter 3
	VREF	AN	_	Voltage reference for ADC
P61/ /PWMA	P61	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	/PWMA	-	CMOS	/PWMA output
	P62	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P62/SDA0/ /PWMB	SDA0	ST	CMOS	I ² C serial data line. It is open-drain
	/PWMB	-	CMOS	/PWMB output
P63/2W_SDA	P63	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
_	2W_SDA	ST	CMOS	On-chip Debug System data pin
P64/2W_SCL	P64	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	2W_SCL	ST	CMOS	On-chip Debug System clock pin
P65	P65	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P66	P66	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P67/ /SS	P67	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	/SS	ST	_	SPI slave select pin
P70/TPB8	P70	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB8	AN	_	TPB8 is a Touch Key sense pin
P71/TPB7	P71	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB7	AN	-	TPB7 is a Touch Key sense pin
P72/TPB6	P72	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB6	AN	-	TPB6 is a Touch Key sense pin
P73/TPB5	P73	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB5	AN	_	TPB5 is a Touch Key sense pin

Name	Function	Input Type	Output Type	Description
P74/TPB4	P74	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB4	AN	-	TPB4 is a Touch Key sense pin
P75/TPB3	P75	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB3	AN	_	TPB3 is a Touch Key sense pin
P76/TPB2	P76	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB2	AN	_	TPB2 is a Touch Key sense pin
P77/TPB1	P77	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	TPB1	AN	-	TPB1 is a Touch Key sense pin
	P80	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P80/RCOUT/OSCI	RCOUT	-	CMOS	Clock output of external RC oscillator (Open-drain)
	OSCI	XTAL	_	Clock input of crystal/resonator oscillator
P81/OSCO	P81	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	osco	-	XTAL	Clock output of crystal/resonator oscillator
	P82	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P82/RESET/SCL0	RESET	ST	-	
	SCL0	ST	CMOS	I ² C serial clock line. It is open-drain
	P83	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P83/TC2/SCL1/XIN	TC2	ST	CMOS	8-bit Timer/Counter 2
	SCL1	ST	CMOS	I ² C serial clock line. It is open-drain
	XIN	XTAL	-	Clock input of crystal/resonator oscillator
	P84	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P84/TC1/SDA1/XOUT	TC1	ST	CMOS	8-bit Timer/Counter 1
	SDA1	ST	CMOS	I ² C serial data line. It is open-drain
	XOUT	_	XTAL	Clock output of crystal/resonator oscillator
P85/SCK	P85	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	SCK	ST	CMOS	SPI serial clock input/output
P86/SI	P86	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	SI	ST	_	SPI serial data input

Name	Function	Input Type	Output Type	Description
P87/SO	P87	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	so	_	CMOS	SPI serial data output
P90/TPA2	P90	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	TPA2	AN	_	TPA2 is a Touch Key sense pin
P91/TPA1	P91	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	TPA1	AN	_	TPA1 is a Touch Key sense pin
P92 ST		ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	TPB10	AN	-	TPB10 is a Touch Key sense pin
P93/TPB9	P93	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
	TPB9	AN	_	TPB9 is a Touch Key sense pin
P94	P94	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P95	P95	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P96	P96	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
P97	P97	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
PA0	PA0	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain
PA1	PA1	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain

5 Functional Block Diagram

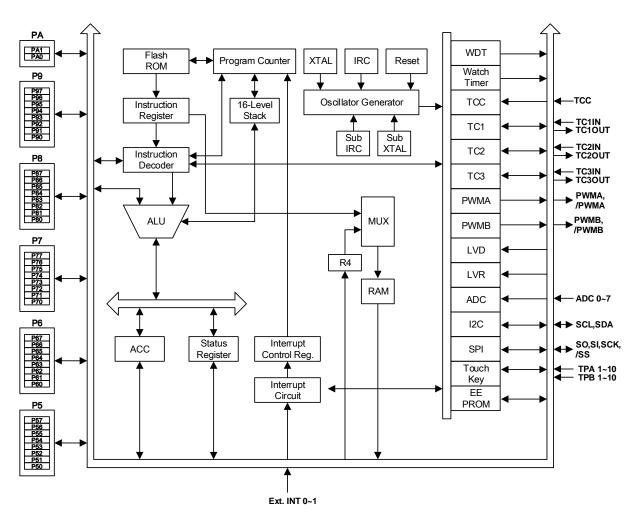


Figure 5-1 Function Block Diagram

6 Function Description

6.1 Operational Registers

6.1.1 R0: IAR (Indirect Addressing Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2 R1: BSR (Bank Selection Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	SBS1	SBS0	•	-	GBS1	GBS0
0	0	R/W	R/W	0	0	R/W	R/W

Bits 7~6: Not used, set to "0" all the time.

Bits 5~4 (SBS1~SBS0): special register bank select bit. It is used to select Bank 0/1/2 of special register **R5~R4F**.

SBS1	SBS0	Special Register Bank
0	0	0
0	1	1
1	0	2
1	1	X

Bits 3~2: Not used, set to "0" all the time.

Bits 2~0 (GBS1~GBS0): general register bank select bit. It is used to select Bank 0~3 of general register R80~RFF.

GBS1	GBS0	RAM Bank
0	0	0
0	1	1
1	0	2
1	1	3

6.1.3 R2: PCL (Program Counter Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W							

Bits 7~0 (PC7~PC0): The low byte of program counter.

• Depending on the device type, R2 and hardware stack are 15-bit wide. The structure is depicted in Figure 6-1.

- Generating 8K×16 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 4096 words long.
- R2 is set as all "0"s when under RESET condition.
- "JMP" instruction allows direct loading of the lower 12 program counter bits. Thus,
 "JMP" allows PC to go to any location within a page.
- "CALL" instruction loads the lower 12 bits of the PC, and the present PC value will
 add 1 and is pushed into the stack. Thus, the subroutine entry address can be
 located anywhere within a page.
- "LJMP" instruction allows direct loading of the lower 13 program counter bits.

 Therefore, "LJMP" allows PC to jump to any location within 8K (2¹³).
- "LCALL" instruction loads the lower 13 bits of the PC and PC+1 are pushed onto the stack. Thus, the subroutine entry address can be located anywhere within 8K (2¹³).
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and above bits of the PC won't be changed.
- Any instruction except "ADD R2,A" that is written to R2 (e.g. "MOV R2, A", "BC R2, 6", "INC R2",) will cause the ninth bit and the above bits (PC8~PC12) of the PC not change.
- All instructions are single instruction cycle (Fsys/2) except "LCALL" and "LJMP" instructions. The "LCALL" and "LJMP" instructions need two instructions cycle.

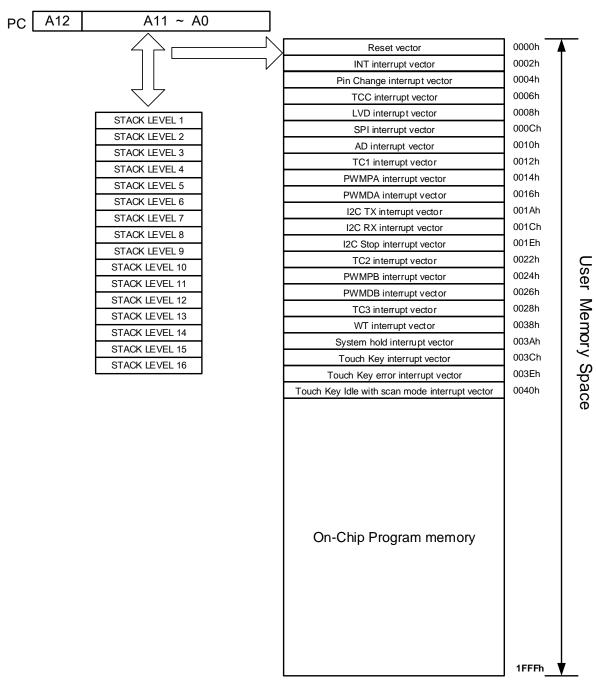


Figure 6-1 Program Counter Organization

Address	Bank 0	Bank 1	Bank 2			
0X00	IAR (Indirect Addressing Register)					
0X01	BSR (Bank S	Selection Control Register)				
0X02	PCL (P	rogram Counter Low)				
0X03	SR	(Status Register)				
0X04	RSR (F	RAM Selection Reg.)				
0X05	Port 5	IOCR8	TPEPCR1			
0X06	Port 6	IOCR9	TPEPCR2			
0X07	Port 7	IOCRA	TPEPCR3			
0X08	Port 8	P5PHCR	TPEPCR4			
0X09	Port 9	P6PHCR	TPCCR			
0X0A	Port A	P789APHCR	TPCR1			
0x0B	IOCR5	P5PLCR	TPCR2			
0X0C	IOCR6	P6PLCR	TPCR3			
0X0D	IOCR7	P789APLCR	TPAHTH			
0X0E	OMCR (Operating Mode Control Reg.)	P5HDSCR	TPAHTL			
0X0F	EIESCR (External Interrupt Edge Select Control Reg.)	P6HDSCR	TPALTH			
0X10	WUCR1	P789AHDSCR	TPALTL			
0X11	WUCR2	P5ODCR	TPBHTH			
0X12	WUCR3	P6ODCR	TPBHTL			
0X13	Reserved	P789AODCR	TPBLTH			
0X14	SFR1 (Status Flag Register 1)	DeadTCR	TPBLTL			
0X15	SFR2 (Status Flag Register 2)	DeadTR	TPAH			
0X16	SFR3 (Status Flag Register 3)	PWMSCR	TPAL			
0X17	SFR4 (Status Flag Register 4)	PWMACR	TPBH			
0X18	Reserved	PRDAL	TPBL			
0X19	SFR6 (Status Flag Register 6)	PRDAH	TPSTH			
0X1A	Reserved	DTAL	TPSTL			
0X1B	IMR1 (Interrupt Mask Register 1)	DTAH	Reserved			
0X1C	IMR2 (Interrupt Mask Register 2)	TMRAL	Reserved			
0X1D	IMR3 (Interrupt Mask Register 3)	TMRAH	Reserved			
0X1E	IMR4 (Interrupt Mask Register 4)	PWMBCR	Reserved			
0X1F	Reserved	PRDBL	Reserved			
0X20	IMR6 (Interrupt Mask Register 6)	PRDBH	Reserved			
0X21	WDTCR	DTBL	Reserved			
0X22	TCCCR	DTBH	Reserved			

Address	Bank 0	Bank 1	Bank 2
0X23	TCCD	TMRBL	Reserved
0X24	TC1CR1	TMRBH	Reserved
0X25	TC1CR2	Reserved	Reserved
0X26	TC1DA	Reserved	Reserved
0X27	TC1DB	Reserved	Reserved
0X28	TC2CR1	Reserved	Reserved
0X29	TC2CR2	Reserved	Reserved
0X2A	TC2DA	Reserved	Reserved
0x2B	TC2DB	Reserved	Reserved
0X2C	TC3CR1	Reserved	Reserved
0X2D	TC3CR2	Reserved	Reserved
0X2E	TC3DA	Reserved	Reserved
0X2F	TC3DB	Reserved	Reserved
0X30	I2CCR1	Reserved	Reserved
0X31	I2CCR2	Reserved	Reserved
0X32	I2CSA	Reserved	Reserved
0X33	I2CDB	Reserved	Reserved
0X34	I2CDAL	Reserved	Reserved
0X35	I2CDAH	Reserved	Reserved
0X36	SPICR	Reserved	Reserved
0X37	SPIS	Reserved	Reserved
0X38	SPIR	Reserved	Reserved
0X39	SPIW	Reserved	Reserved
0X3A	Reserved	Reserved	Reserved
0x3B	Reserved	Reserved	Reserved
0X3C	Reserved	Reserved	Reserved
0X3D	Reserved	Reserved	Reserved
0X3E	ADCR1	Reserved	Reserved
0X3F	Reserved	Reserved	Reserved
0X40	ADISR	EECR1	Reserved
0X41	ADER1	EECR2	Reserved
0X42	Reserved	EERA	Reserved
0X43	ADDL	EERD	Reserved
0X44	ADDH	FLKR	Reserved
0X45	ADCVL	TBPTL	Reserved

Address	Bank	0	Bank 1	Bank 2
0X46	ADCV	′H	TBPTH	Reserved
0X47	Reserv	/ed	STKMON	LOCKPR
0X48	Reserv	/ed	PCH	LOCKCR
0X49	Reserv	red .	LVDCR	Reserved
0X4A	Reserv	red .	Reserved	Reserved
0x4B	Reserv	red .	Reserved	Reserved
0X4C	Reserv	red .	Reserved	Reserved
0X4D	Reserv	red .	TBWCR	Reserved
0X4E	Reserv	red .	TBWAL	Reserved
0X4F	Reserv	red .	TBWAH	Reserved
0X50				
0X51				
		Canara	l Dumana Bagiata	
		Genera	I Purpose Registe	er ·
0x7E				
0X7F				
0X80				
0X81				
	Bank 0	Bank 1	Bank 2	Bank 3
0XFE				
0XFF				

Figure 6-2 Data Memory Configuration

6.1.4 R3: SR (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT	N	OV	Т	Р	Z	DC	С
F	R/W						

Bit 7 (INT): Interrupt Enable flag

0: Interrupt masked by DISI or hardware interrupt

1: Interrupt enabled by ENI/RETI instructions

Bit 6 (N): Negative flag

The negative flag stores the state of the most significant bit of the output result

0: The result of the operation is not negative

1: The result of the operation is negative

Bit 5 (OV): Overflow flag.

OV is set when a two's complement overflow occurs as a result of an operation

0: No overflow occurred

1: Overflow occurred

Bit 4 (T): Time-out bit

Set to 1 with the "SLEP" and "WDTC" commands, or during power up and reset to 0 by WDT time-out.

Bit 3 (P): Power down bit

Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.

Bit 2 (Z): Zero flag.

Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

C is set when a "carry" occurs and cleared when a "borrow" occurs during an arithmetic operation. The Carry Flag bit is set or cleared, depending on the operation that is performed

For ADD, ADC, INC, INCA instruction

0: No carry occurs

1: Carry occurs

For SUB, SUBB, DEC, DECA, NEG instruction

0: Borrow occurs

1: No borrow occurs

For RLC, RRC, RLCA, RRCA instruction

The Carry flag is used as a link between the least significant bit (LSB) and most significant bit (MSB).

6.1.5 R4: RSR (RAM Select Register)

Bits 7~0 (RSR7~RSR0): used to select registers (Address: 00~FF) in the indirect address mode. Users can see the configuration of the data memory in more detail in Figure 6-2.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
R/W							

6.1.6 Bank 0 R5 ~ RA (Port 5 ~ Port A)

R5, R6, R7, R8, R9 and RA are I/O data registers.

6.1.7 Bank 0 RB IOCR5 (I/O Port 5 Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.8 Bank 0 RC IOCR6 (I/O Port 6 Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.9 Bank 0 RD IOCR7 (I/O Port 7 Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.10 Bank 0 RE: OMCR (Operating Mode Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPUS	IDLE	-	-	-	RCM2	RCM1	RCM0
R/W	R/W	0	0	0	R/W	R/W	R/W

Bit 7 (CPUS): CPU Oscillator Source Select.

- 0: Fs: sub-oscillator
- 1: Fm: main-oscillator (default)

When CPUS=0, the CPU oscillator select a sub-oscillator and the main oscillator is stopped.

Bit 6 (IDLE): Idle Mode Enable Bit. This bit will decide SLEP instruction which mode to go.

0: "IDLE=0"+SLEP instruction → Sleep Mode

1: "IDLE=1"+SLEP instruction → Idle Mode (Default)

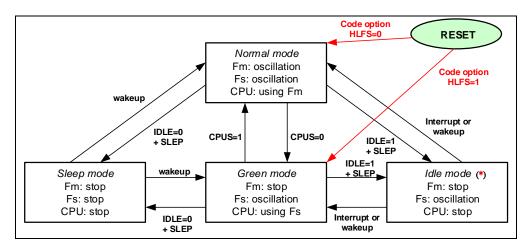


Figure 6-3 CPU Operation Mode

Note

(*) Switching Operation Mode from Idle \rightarrow Normal, Idle \rightarrow Green

If the clock source of the timer is Fs, the timer/counter will continue to count in Idle mode. When the matching condition of the timer/counter occurs during Idle mode, the interrupt flag of the Timer/Counter will be active. The MCU will jump to the interrupt vector when the corresponding interrupt is enabled.

Oscillation Characteristics

HLFS=0 (Normal)

Fmain	Four	Power-on	Pin-Reset / WDT			
rmam	Fsub	LVR	N/G/I	S		
RC 1M, 4M	RC	16ms + WSTO + (8 or 32)*1/Fmain	WSTO + (8 or 32)*1/Fmain	WSTO + (8 or 32)*1/Fmain		
6M, 8M	XT	16ms + WSTO +510*1/Fsub	WSTO + (8 or 32)*1/Fmain	WSTO + 510*1/Fsub		
RC	RC	16ms + WSTO +32*1/Fmain	WSTO + 32*1/Fmain	WSTO + 32*1/Fmain		
12M,16M 20M	XT	16ms + WSTO + 510*1/Fsub	WSTO + 32*1/Fmain	WSTO + 510*1/Fsub		
XT	RC	16ms + WSTO +510*1/Fmain	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain		
^1	XT	16ms + WSTO +510*1/Fsub	WSTO + 510*1/Fmain	WSTO + 510*1/Fsub		

HLFS=1 (Green)

Fmain	Fsub	Power-on	Pin-Reset / WDT			
FIIIaIII	rsub	LVR	N/G/I	S		
RC	RC	16ms + WSTO + 8 *1/Fsub	WSTO + 8*1/Fsub	WSTO + 8*1/Fsub		
1M,4M, 6M,8M	XT	16ms + WSTO + 510*1/Fsub	WSTO + 8*1/Fsub	WSTO + 510*1/Fsub		
RC	RC	16ms + WSTO + 8*1/Fsub	WSTO + 8*1/Fsub	WSTO + 8*1/Fsub		
12M,16M 20M	XT	16ms + WSTO + 510*1/Fsub	WSTO + 8*1/Fsub	WSTO + 510*1/Fsub		
XT	RC	16ms + WSTO + 8*1/Fsub	WSTO + 8*1/Fsub	WSTO + 8*1/Fsub		
	XT	16ms + WSTO + 510*1/Fsub	WSTO + 8*1/Fsub	WSTO + 510*1/Fsub		

Fmain	Fsub	G → N	I→N	$s \rightarrow N$
RC	RC	WSTO + (8 or 32)*1/Fmain	WSTO + (8 or 32)*1/Fmain	WSTO + (8 or 32)*1/Fmain
1M, 4M 6M, 8M	XT	WSTO + (8 or 32)*1/Fmain	WSTO + (8 or 32)*1/Fmain	WSTO + 510*1/Fsub
RC	RC	WSTO + 32*1/Fmain	WSTO + 32*1/Fmain	WSTO + 32*1/Fmain
12M,16M 20M	XT	WSTO + 32*1/Fmain	WSTO + 32*1/Fmain	WSTO + 510*1/Fsub
XT	RC	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain
	XT	WSTO + 510*1/Fmain	WSTO + 510*1/Fmain	WSTO + 510*1/Fsub

Fmain	Fsub	I→G	S → G
RC	RC	WSTO + 8*1/Fsub	WSTO + 8*1/Fsub
XT	XT	WSTO + 8*1/Fsub	WSTO + 510*1/Fsub

N: Normal mode

WSTO: Waiting Time from Start-to-Oscillation

G: Green mode

I: Idle mode

S: Sleep mode

Bits 5~3: Not used, set to "0" all the time

Bits 2~0 (RCM2~RCM0): Internal RC mode select bits

RCM2	RCM1	RCM0	Frequency (MHz)
0	0	0	4 (Default)
0	0	1	1
0	1	0	6
0	1	1	8
1	0	0	12
1	0	1	16
1	1	0	20
1	1	1	NA

6.1.11 Bank 0 RF: EIESCR (External Interrupt Edge Select Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	EIES1	EIES0	-	-
0	0	0	0	R/W	R/W	0	0

Bits 7~4: Not used, set to "0" all the time

Bit 3 (EIES1): external interrupt edge select bit

0: Falling edge interrupt

1: Rising edge interrupt

Bit 2 (EIES0): external interrupt edge select bit

0: Falling edge interrupt

1: Rising edge interrupt

Bits 1~0: Not used, set to "0" all the time

6.1.12 Bank 0 R10: WUCR1 (Wake-up Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	LVDWK	ADWK	INT1WK	INT0WK	-	-
0	0	R/W	R/W	R/W	R/W	0	0

Bits 7~6: Not used, set to "0" all the time

Bit 5 (LVDWK): Low Voltage Detect Wake-up Enable Bit

0: Disable Low Voltage Detect wake-up

1: Enable Low Voltage Detect wake-

Bit 4 (ADWK): A/D Converter Wake-up Function Enable Bit

0: Disable AD converter wake-up

1: Enable AD converter wake-up

When the AD Complete status is used to enter interrupt vector or to wake-up IC from sleep/idle with AD conversion running, the ADWK bit must be set to "enable".

Bit 3 (INT1WK): External Interrupt (INT1 pin) Wake-up Function Enable Bit

0: Disable external interrupt wake-up

1: Enable external interrupt wake-up

Bit 2 (INTOWK): External Interrupt (INTO pin) Wake-up Function Enable Bit

0: Disable external interrupt wake-up

1: Enable external interrupt wake-up

When the External Interrupt status changed is used to enter interrupt vector or to wake-up IC from sleep/idle, the INTWK bits must be set to "enable".

Bits 1~0: Not used, set to "0" all the time

6.1.13 Bank 0 R11: WUCR2 (Wake-up Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	SPIWK	I2CWK	-	-
0	0	0	0	R/W	R/W	0	0

Bits 7~4: Not used, set to "0" all the time.

Bit 3 (SPIWK): SPI wake-up enable bit. Acts when SPI works as slave mode.

0: Disable SPI wake-up

1: Enable SPI wake-up

Bit 2 (I2CWK): I2C wake-up enable bit. It's available when I2C works at slave mode.

0: Disable

1: Enable

*I2C slave mode cannot transmit at IC Green mode, or else SCL held and kept at low level. SCL is released when IC switches to Normal mode.

Bits 1~0: Not used, set to "0" all the time

6.1.14 Bank 0 R12: WUCR3 (Wake-up Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICWKP8	ICWKP7	ICWKP6	ICWKP5	-	-	-	-
R/W	R/W	R/W	R/W	0	0	0	0

Bits 7~4 (ICWKP8~ICWKP5): pin change wake up enable for Ports 8/7/6/5.

0: Disable wake up function

1: Enable wake up function

Bits 3~0: Not used, set to "0" all the time

Wake-up	Condition	Sleep	Sleep Mode DISI ENI		lode	Green Mode		Normal Mode	
Signal	Signal Signal		ENI	DISI	ENI	DISI	ENI	DISI	ENI
	ICWKPx = 0, PxICIE = 0		Wake-up	is invalid		Interrupt is invalid			
Pin	ICWKPx = 0, PxICIE = 1		Wake-up is invalid				Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
Change INT	ICWKPx = 1, PxICIE = 0		Wake + Next Ins	•			Interrupt i	s invalid	
	ICWKPx = 1, PxICIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector

^{*:} When the MCU wakes up from sleep or idle mode, the PxICSF must be equal to 1. If ICSF is equal to 0, it means the pin status doesn't change or the pin change ICIE is disabled, hence the MCU cannot be awakened.

6.1.15 Bank 0 R13: (Reserved)

6.1.16 Bank 0 R14: SFR1 (Status Flag Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	LVDSF	ADSF	EXSF1	EXSF0	WTSF	TCSF
0	0	F	F	F	F	F	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bits 7~6: Not used, set to "0" all the time

Bit 5 (LVDSF): Low Voltage Detector status flag.

LVDEN	LVDS1, LVDS0	LVD Voltage Interrupt Level	LVDSF
1	11	2.2V	1*
1	10	3.3V	1*
1	01	4.0V	1*
1	00	4.5V	1*
0	XX	NA	0

^{*} If VDD has crossover at the LVD voltage interrupt level as VDD varies, LVDSF =1.

^{**:} Px = Ports 8/7/6/5

Bit 4 (ADSF): Status flag for analog to digital conversion. Set when AD conversion is completed, reset by software.

Bit 3 (EXSF1): External Interrupt 1 Status flag.

Bit 2 (EXSF0): External Interrupt 0 Status flag.

Bit 1 (WTSF): Watch timer status flag.

Bit 0 (TCSF): TCC overflow status flag. Set when TCC overflows, reset by software.

NOTE

If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.17 Bank 0 R15: SFR2 (Status Flag Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	TC3SF	TC2SF	TC1SF
0	0	0	0	0	F	F	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bits 7~3: Not used, set to "0" all the time

Bit 2 (TC3SF): 8-bit Timer/Counter 3 status flag, cleared by software

Bit 1 (TC2SF): 8-bit Timer/Counter 2 status flag, cleared by software.

Bit 0 (TC1SF): 8/16-bit Timer/Counter 1 status flag, cleared by software.

6.1.18 Bank 0 R16: SFR3 (Status Flag Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PWMBPSF	PWMBDSF	PWMAPSF	PWMADSF
0	0	0	0	F	F	F	F

Bits 7~4: Not used, set to "0" all the time

Bit 3 (PWMBPSF): Status flag of period-matching for PWMB (Pulse Width Modulation). Set when a selected period is reached, reset by software.

Bit 2 (PWMBDSF): Status flag of duty-matching for PWMB (Pulse Width Modulation). Set when a selected duty is reached, reset by software.

Bit 1 (PWMAPSF): Status flag of period-matching for PWMA (Pulse Width Modulation). Set when a selected period is reached, reset by software.

Bit 0 (PWMADSF): Status flag of duty-matching for PWMA (Pulse Width Modulation). Set when a selected duty is reached, reset by software.

NOTE

If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.19 Bank 0 R17: SFR4 (Status Flag Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I2CSTPSF	I2CRSF	I2CTSF
F	F	F	F	F	F	F	F

Bit 7 (P8ICSF): Port 8 input status change status flag. Set when Port 8 input changes, reset by software.

Bit 6 (P7ICSF): Port 7 input status change status flag. Set when Port 7 input changes, reset by software.

Bit 5 (P6ICSF): Port 6 input status change status flag. Set when Port 6 input changes, reset by software.

Bit 4 (P5ICSF): Port 5 input status change status flag. Set when Port 5 input changes, reset by software.

Bit 3 (SPISF): SPI mode status flag. Flag cleared by software

Bit 2 (I2CSTPSF): I2C stop status flag. Set when I2C receive stop signal.

Bit 1 (I2CRSF): I2C receive status flag. Set when I2C receives 1 byte data and responds to ACK signal. Reset by firmware or I2C disable.

Bit 0 (I2CTSF): I2C transmit status flag. Set when I2C transmits 1 byte data and receives handshake signal (ACK or NACK). Reset by firmware or I2C disable

NOTE

If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.20 Bank 0 R18: (Reserved)

6.1.21 Bank 0 R19: SFR6 (Status Flag Register 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SHSF	-	-	-	TPCSF	TPSESF	-	TPSF
F	0	0	0	F	F	0	F

Bit 7 (SHSF): System hold status flag, Set when system hold occur, reset by software.

Bits 6~4: Not used, set to "0" all the time

Bit 3 (TPCSF): Touch Key Compare status flag. Set when Touch Key idle with scan mode threshold compare conditions are fulfilled, reset by software.

Bit 2 (TPSESF): Touch Key Sense Error status flag. Set when Touch Key can't finish the conversion before timer get to the TPSTH/TPSTL register value, reset by software.

Bit 1: Not used, set to "0" all the time

Bit 0 (TPSF): Status flag for Touch Key Conversion. Set when Touch Key conversion is completed. Reset by software (except idle with scan mode condition)

6.1.22 Bank 0 R1A: (Reserved)

6.1.23 Bank 0 R1B: IMR1 (Interrupt Mask Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	LVDIE	ADIE	EXIE1	EXIE0	WTIE	TCIE
0	0	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~6: Not used, set to "0" all the time.

Bit 5 (LVDIE): LVDSF interrupt enable bit.

0: Disable LVDSF interrupt

1: Enable LVDSF interrupt

Bit 4 (ADIE): ADSF interrupt enable bit.

0: Disable ADSF interrupt

1: Enable ADSF interrupt.

Bit 3 (EXIE1): EXSF1 interrupt enable and INT1 function enable bit.

0: P51/ADC1/INT1/TPA9 is P51/ADC1/TPA9 pin, EXSF1 always equal to 0.

1: Enable EXSF1 Interrupt and P51/ADC1/INT1/TPA9 is INT pin

Bit 2 (EXIE0): EXSF0 interrupt enable and INT0 function enable bit.

0: P50/ADC0/INT0/TPA10 is P50/ADC0/TPA10 pin, EXSF0 always equals 0.

1: Enable EXSF0 Interrupt and P50/ADC0/INT0/TPA10 is INT pin

Bit 1 (WTIE): Watch timer interrupt enable bit

0: Disable WTSF interrupt

1: Enable WTSF interrupt

Bit 0 (TCIE): TCSF interrupt enable bit.

0: Disable TCSF interrupt

1: Enable TCSF interrupt

NOTE

If the interrupt mask and instruction "ENI" is enabled, the program counter would jump into the corresponding interrupt vector when the corresponding status flag is set.

6.1.24 Bank 0 R1C: IMR2 (Interrupt Mask Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	TC3IE	TC2IE	TC1IE
0	0	0	0	0	R/W	R/W	R/W

Bits 7~3: Not used, set to "0" all the time.

Bit 2 (TC3IE): Interrupt enable bit.

0: Disable TC3SF interrupt

1: Enable TC3SF interrupt

Bit 1 (TC2IE): Interrupt enable bit.

0: Disable TC2SF interrupt

1: Enable TC2SF interrupt

Bit 0 (TC1IE): Interrupt enable bit.

0: Disable TC1SF interrupt

1: Enable TC1SF interrupt

NOTE

If the interrupt mask and instruction "ENI" is enabled, the program counter would jump into the corresponding interrupt vector when the corresponding status flag is set.

6.1.25 Bank 0 R1D: IMR3 (Interrupt Mask Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PWMBPIE	PWMBDIE	PWMAPIE	PWMADIE
0	0	0	0	R/W	R/W	R/W	R/W

Bits 7~4: Not used, set to "0" all the time.

Bit 3 (PWMBPIE): PWMBPSF interrupt enable bit.

0: Disable period-matching of PWMB interrupt

1: Enable period-matching of PWMB interrupt

Bit 2 (PWMBDIE): PWMBDSF interrupt enable bit.

0: Disable duty-matching of PWMB interrupt

1: Enable duty-matching of PWMB interrupt

Bit 1 (PWMAPIE): PWMAPSF interrupt enable bit.

0: Disable period-matching of PWMA interrupt

1: Enable period-matching of PWMA interrupt

Bit 0 (PWMADIE): PWMADSF interrupt enable bit.

0: Disable duty-matching of PWMA interrupt

1: Enable duty-matching of PWMA interrupt

NOTE

If the interrupt mask and instruction "ENI" is enabled, the program counter would jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.26 Bank 0 R1E: IMR4 (Interrupt Mask Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	12CSTPIE	I2CRIE	I2CTIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (P8ICIE): P8ICSF interrupt enable bit.

0: Disable P8ICSF interrupt

1: Enable P8ICSF interrupt

Bit 6 (P7ICIE): P7ICSF interrupt enable bit.

0: Disable P7ICSF interrupt

1: Enable P7ICSF interrupt

Bit 5 (P6ICIE): P6ICSF interrupt enable bit.

0: Disable P6ICSF interrupt

1: Enable P6ICSF interrupt

Bit 4 (P5ICIE): P5ICSF interrupt enable bit.

0: Disable P5ICSF interrupt

1: Enable P5ICSF interrupt

Bit 3 (SPIIE): Interrupt enable bit.

0: Disable SPSF interrupt

1: Enable SPSF interrupt

Bit 2 (I2CSTPIE): I2C stop interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

Bit 1 (I2CRIE): I2C Interface RX interrupt enable bit

0: Disable interrupt

1: Enable interrupt

Bit 0 (I2CTIE): I2C Interface TX interrupt enable bit

0: Disable interrupt

1: Enable interrupt

NOTE

If the interrupt mask and instruction "ENI" is enabled, the program counter would jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.27 Bank 0 R1F: (Reserved)

6.1.28 Bank 0 R20: IMR6 (Interrupt Mask Register 6)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SHIE	-	-	-	TPCIE	-	TPERRIE	TPIE
R/W	0	0	0	R/W	0	R/W	R/W

Bit 7 (SHIE): SHSF Interrupt Enable Bit.

0: Disable SHSF interrupt

1: Enable SHSF interrupt

Bits 6~4: Not used, set to "0" all the time.

Bit 3 (TPCIE): TPCSF Interrupt Enable Bit.

0: Disable TPCSF interrupt

1: Enable TPCSF interrupt

Bit 2: Not used, set to "0" all the time.

Bit 1 (TPERRIE): TPSESF Interrupt Enable Bit.

0: Disable TPSESF interrupt

1: Enable TPSESF interrupt

Bit 0 (TPIE): TPIE Interrupt Enable Bit.

0: Disable TPSF interrupt

1: Enable TPSF interrupt

6.1.29 Bank 0 R21: WDTCR (Watchdog Timer Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	-	-	-	PSWE	WPSR2	WPSR1	WPSR0
R/W	0	0	0	R/W	R/W	R/W	R/W

Bit 7 (WDTE): Watchdog Timer Enable Bit. WDTE is both readable and writable.

0: Disable WDT

1: Enable WDT

Bits 6~4: Not used, set to "0" all the time.

Bit 3 (PSWE): Prescaler enable bit for WDT

0: Prescaler disable bit. WDT rate is 1:1

1: Prescaler enable bit. WDT rate is set at Bits 2~0.

Bits 2~0 (WPSR2~WPSR0): WDT Prescaler Bits

WPSR2	WPSR1	WPSR0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1 1		1:128
1	1 1		1:256

6.1.30 Bank 0 R22: TCCCR (TCC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	TCCS	TS	TE	PSTE	TPSR2	TPSR1	TPSR0
0	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (TCCS): TCC Clock Source Select Bit

0: Fs (sub clock)

1: Fm (main clock)

Bit 5 (TS): TCC signal source

0: Internal instruction cycle clock

1: Transition on the TCC pin, TCC period must be larger than the internal instruction clock period.

Bit 4 (TE): TCC Signal Edge

0: Increment if the transition from low to high takes place on the TCC pin:

1: Increment if the transition from high to low takes place on the TCC pin

Bit 3 (PSTE): Prescaler enable bit for TCC

0: Prescaler disable bit. TCC rate is 1:1.

1: Prescaler enable bit. TCC rate is set at Bit 2 ~ Bit 0.

Bits 2~0 (TPSR2~TPSR0): TCC Prescaler Bits

TPSR2	TPSR1	TPSR0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.31 Bank 0 R23: TCCD (TCC data register)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
Ī	R/W							

Bits 7~0 (TCC7~TCC0): TCC data

Increase by an external signal edge through the TCC pin, or by the instruction cycle clock. External signal of TCC trigger Pulse width must be greater than one instruction. The signals to increase the counter are determined by Bit 4 and Bit 5 of the TCCCR register. Writable and readable as any other registers.

6.1.32 Bank 0 R24: TC1CR1 (Timer/Counter 1 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1S	TC1RC	TC1SS1	TC1MOD	TC1FF	TC1MOS	TC1IS1	TC1IS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (TC1S): Timer/Counter 1 Start Control Bit

0: Stop and clear counter (default)

1: Start

Bit 6 (TC1RC): Timer 1 Read Control Bit. To load current number of counter into TC1DB register. It's useful only in counter mode.

- 0: Disable function. When using capture mode, this bit must be set to "0" (default).
- 1: Enable function. The number of counting are loaded into TC1DB.

Bit 5 (TC1SS1): Timer/Counter 1 Clock Source Select Bit 1

0: Internal clock as count source (Fc)- Fs/Fm (default)

1: External TC1 pin as count source (Fc). It is used only for timer/counter mode.

Bit 4 (TC1MOD): Timer Operation Mode Selection Bit

0: Two 8-bit timers

1: Timers 1 and 2 are cascaded as one 16-bit timer. The corresponding control register of 16-bit timer is from timer 1. TC2DB and TC2DA are high byte. TC1DB and TC1DA are low byte.

Bit 3 (TC1FF): Inversion for Timer/Counter 1 as PWM or PDO mode

0: Duty is Logic 1 (default)

1: Duty is Logic 0

Bit 2 (TC1MOS): Timer Output Mode Select Bit

0: Repeating mode (default)

1: One-shot mode

NOTE

One-shot mode means the timer only counts one cycle.

Bits 1~0 (TC1IS1~ TC1IS0): Timer 1 Interrupt Type Select Bits. These two bits are used when the Timer operates in PWM mode.

TC1IS1	TC1IS0	Timer 1 Interrupt Type Select				
0	0	TC1DA(period) matching				
0	1	TC1DB(duty) matching				
1	х	TC1DA and TC1DB matching				

6.1.33 Bank 0 R25: TC1CR2 (Timer/Counter 1 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1M2	TC1M1	TC1M0	TC1SS0	TC1CK3	TC1CK2	TC1CK1	TC1CK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~5 (TC1M2~TC1M0): Timer/Counter 1 operation mode select.

TC1M2	TC1M1	TC1M0	Operating Mode Select				
0	0	0	Timer/Counter Rising Edge				
0	0	1	Timer/Counter Falling Edge				
0	1	0	Capture Mode Rising Edge				
0	1	1	Capture Mode Falling Edge				
1	0	0	Window mode				
1	0	1	Programmable Divider output				
1	1	0	Pulse Width Modulation output				
1	1	1	Buzzer (output timer/counter clock source. The duty cycle of the clock source must be 50/50				

Bit 4 (TC1SS0): Timer/Counter 1 clock source selection bit

0: The Fs is used as count source (Fc) (default)

1 : The Fm is used as count source (Fc)

Bits 3~0 (TC1CK3~TC1CK0): Timer/Counter 1 clock source prescaler select.

TC1CK3	TC1CK2	TC1CK1	TC1CK0	Clock Source	Resolution 8 MHz	Max time 8 MHz	Resolution 16kHz	Max time 16kHz
				Normal	F _C =8M	F _C =8M	F _C =16K	F _C =16K
0	0	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms
0	0	1	0	F _C /2 ²	500ns	128 µs	250 µs	64ms
0	0	1	1	F _C /2 ³	1 µs	256 µs	500 µs	128ms
0	1	0	0	F _C /2 ⁴	2 µs	512 µs	1ms	256ms
0	1	0	1	F _C /2 ⁵	4 µs	1024 µs	2ms	512ms
0	1	1	0	F _C /2 ⁶	8 µs	2048 µs	4ms	1024ms
0	1	1	1	F _C /2 ⁷	16 µs	4096 µs	8ms	2048ms
1	0	0	0	F _C /2 ⁸	32 µs	8192 µs	16ms	4096ms
1	0	0	1	F _C /2 ⁹	64 µs	16384 µs	32ms	8192ms
1	0	1	0	F _C /2 ¹⁰	128 µs	32768 µs	64ms	16384ms
1	0	1	1	F _C /2 ¹¹	256 µs	65536 µs	128ms	32768ms
1	1	0	0	F _C /2 ¹²	512 µs	131072 µs	256ms	65536ms
1	1	0	1	F _C /2 ¹³	1.024ms	262144 µs	512ms	131072ms
1	1	1	0	F _C /2 ¹⁴	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	F _C /2 ¹⁵	4.096ms	1.048s	2.048s	524288ms

6.1.34 Bank 0 R26: TC1DA (Timer/Counter 1 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
R/W							

Bits 7~0 (TC1DA7~TC1DA0): Data Buffer A of 8-bit Timer/Counter 1

6.1.35 Bank 0 R27: TC1DB (Timer/Counter 1 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
R/W							

Bits 7~0 (TC1DB7~TC1DB0): Data Buffer B of 8 bit Timer/Counter 1

NOTE

- When Timer / Counter x is used as PWM mode, the duty value stored at register TCxDB must be smaller than or equal to the period value stored at register TCxDA.,i.e. duty ≤ period. And then the PWM waveform is generated. If duty is larger than the period, the PWM output waveform is kept at high voltage level.
- 2. The period value set by users is extra plus 1 in inner circuit. For example:

The period value is set as 0x4F, the circuit actually processes 0x50 period length.

The period value is set as 0xFF, the circuit actually processes 0x100 period length.

6.1.36 Bank 0 R28: TC2CR1 (Timer/Counter 2 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2S	TC2RC	TC2SS1	_	TC2FF	TC2MOS	TC2IS1	TC2IS0
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W

Bit 7 (TC2S): Timer/Counter 2 Start Control Bit

0: Stop and clear counter (default)

1: Start

Bit 6 (TC2RC): Timer 2 Read Control Bit

- 0: When this bit is set to 0, can't read data from TC2DB (default).
- 1: When this bit is set to 1, data read from TC2DB is a number of counting.

Bit 5 (TC2SS1): Timer/Counter 2 clock source select Bit 1

0: Internal clock as count source (Fc)- Fs/Fm (default)

1: External TC2 pin as count source (Fc). It is used only for timer/counter mode.

Bit 4: Not used, set to "0" all the time.

Bit 3 (TC2FF): Inversion for Timer/Counter 2 as PWM or PDO mode

0: Duty is Logic 1 (default)

1: Duty is Logic 0

Bit 2 (TC2MOS): Timer Output Mode Select Bit

0: Repeating mode (default)

1: One-shot mode

NOTE

One-shot mode means the timer only counts one cycle.

Bits 1~0 (TC2IS1~ TC2IS0): Timer 2 Interrupt Type Select Bits. These two bits are used when the Timer operates in PWM mode.

TC2IS1	TC2IS0	Timer 2 Interrupt Type Select
0	0	TC2DA(period) matching
0	1	TC2DB(duty) matching
1	х	TC2DA and TC2DB matching

6.1.37 Bank 0 R29: TC2CR2 (Timer/Counter 2 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2M2	TC2M1	TC2M0	TC2SS0	TC2CK3	TC2CK2	TC2CK1	TC2CK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~5 (TC2M2~TC2M0): Timer/Counter 2 operation mode select.

TC2M2	TC2M1	TC2M0	Operating Mode Select			
0	0	0	Timer/Counter Rising Edge			
0	0	1	Timer/Counter Falling Edge			
0	1	0	Capture Mode Rising Edge			
0	1	1	Capture Mode Falling Edge			
1	0	0	Window mode			
1	0	1	Programmable Divider output			
1	1	0	Pulse Width Modulation output			
1	1	1	Buzzer (output timer/counter clock source. The duty cycle of the clock source must be 50/50)			

Bit 4 (TC2SS0): Timer/Counter 2 clock source select Bit 0

0: The Fs is used as count source (Fc) (default)

1: The Fm is used as count source (Fc)

Bits 3~0 (TC2CK3~TC2CK0): Timer/Counter 2 clock source prescaler select.

TC2CK3	TC2CK2	TC2CK1	TC2CK0	Clock Source	Resolution 8 MHz	Max. time 8 MHz	Resolution 16kHz	Max time 16kHz
				Normal	F _C =8M	F _C =8M	F _C =16K	F _C =16K
0	0	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms
0	0	1	0	F _C /2 ²	500ns	128 µs	250 µs	64ms
0	0	1	1	F _C /2 ³	1 µs	256 µs	500 µs	128ms
0	1	0	0	F _C /2 ⁴	2 µs	512 µs	1ms	256ms
0	1	0	1	F _C /2 ⁵	4 µs	1024 µs	2ms	512ms
0	1	1	0	F _C /2 ⁶	8 µs	2048 µs	4ms	1024ms
0	1	1	1	F _C /2 ⁷	16 µs	4096 µs	8ms	2048ms
1	0	0	0	F _C /2 ⁸	32 µs	8192 µs	16ms	4096ms
1	0	0	1	F _C /2 ⁹	64 µs	16384 µs	32ms	8192ms
1	0	1	0	F _C /2 ¹⁰	128 µs	32768 µs	64ms	16384ms
1	0	1	1	F _C /2 ¹¹	256 µs	65536 µs	128ms	32768ms
1	1	0	0	F _C /2 ¹²	512 µs	131072 µs	256ms	65536ms
1	1	0	1	F _C /2 ¹³	1.024ms	262144 µs	512ms	131072ms
1	1	1	0	F _C /2 ¹⁴	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	F _C /2 ¹⁵	4.096ms	1.048s	2.048s	524288ms

6.1.38 Bank 0 R2A: TC2DA (Timer/Counter 2 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
R/W							

Bits 7~0 (TC2DA7~TC2DA0): Data Buffer A of the 8 bit Timer/Counter 2.

6.1.39 Bank 0 R2B: TC2DB (Timer/Counter 2 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
R/W							

Bits 7~0 (TC2DB7~TC2DB0): Data Buffer B of the 8 bit Timer/Counter 2

6.1.40 Bank 0 R2C: TC3CR1 (Timer/Counter 3 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3S	TC3RC	TC3SS1	-	TC3FF	TC3MOS	TC3IS1	TC3IS0
R/W	R/W	R/W	0	R/W	R/W	R/W	R/W

Bit 7 (TC3S): Timer/Counter 3 start control

0: Stop and clear counter (default)

1: Start

Bit 6 (TC3RC): Timer 3 Read Control Bit

0: When this bit is set to 0, cannot read data from TC3DB (default).

1: When this bit is set to 1, data read from TC3DB is a number of counting.

Bit 5 (TC3SS1): Timer/Counter 3 clock source select Bit 1

0: Internal clock as count source (Fc)- Fs/Fm (default)

1: External TC3 pin as count source (Fc). It is used only for timer/counter mode.

Bit 4: Not used, set to "0" all the time.

Bit 3 (TC3FF): Inversion for Timer/Counter 3 as PWM or PDO mode.

0: Duty is Logic 1 (default)

1: Duty is Logic 0.

Bit 2 (TC3MOS): Timer Output Mode Select Bit

0: Repeating mode (default)

1: One-shot mode

NOTE

One-shot mode means the timer only counts a circle.

Bits 1~0 (TC3IS1~ TC3IS0): Timer 3 Interrupt Type Select Bits. These two bits are used when the Timer operates in PWM mode.

TC3IS1	TC3IS0	Timer 3 Interrupt Type Select			
0	0	TC3DA(period) matching			
0	1	TC3DB(duty) matching			
1	х	TC3DA and TC3DB matching			

6.1.41 Bank 0 R2D: TC3CR2 (Timer/Counter 3 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3M2	TC3M1	TC3M0	TC3SS0	TC3CK3	TC3CK2	TC3CK1	TC3CK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~5 (TC3M2~TC3M0): Timer/Counter 3 operation mode select.

TC3M2	TC3M1	ТСЗМ0	Operating Mode Select	
0	0	0	Timer/Counter Rising Edge	
0	0	1	Timer/Counter Falling Edge	
0	1	0	Capture Mode Rising Edge	
0	1	1	Capture Mode Falling Edge	
1	0	0	Window mode	
1	0	1	Programmable Divider output	
1	1	0	Pulse Width Modulation output	
1	1	1	Buzzer (output timer/counter clock source. The duty cycle of the clock source must be 50/50)	

Bit 4 (TC3SS0): Timer/Counter 3 clock source select Bit 0

0: The Fs is used as count source (Fc) (default)

1: The Fm is used as count source (Fc)

Bits 3~0 (TC3CK3~TC3CK0): Timer/Counter 3 clock source prescaler select.

тсзскз	TC3CK2	TC3CK1	ТСЗСК0	Clock Source	Resolution 8 MHz	Max. time 8 MHz	Resolution 16kHz	Max. time 16kHz
			Normal	F _C =8M	F _C =8M	F _C =16K	F _C =16K	
0	0	0	0	Fc	125ns	32 µs	62.5 µs	16ms
0	0	0	1	F _C /2	250ns	64 µs	125 µs	32ms
0	0	1	0	F _C /2 ²	500ns	128 µs	250 µs	64ms
0	0	1	1	F _C /2 ³	1us	256 µs	500 µs	128ms
0	1	0	0	F _C /2 ⁴	2us	512 µs	1ms	256ms
0	1	0	1	F _C /2 ⁵	4us	1024 µs	2ms	512ms
0	1	1	0	F _C /2 ⁶	8us	2048 µs	4ms	1024ms
0	1	1	1	F _C /2 ⁷	16us	4096 µs	8ms	2048ms
1	0	0	0	F _C /2 ⁸	32us	8192 µs	16ms	4096ms
1	0	0	1	F _C /2 ⁹	64us	16384 µs	32ms	8192ms
1	0	1	0	F _C /2 ¹⁰	128us	32768 µs	64ms	16384ms
1	0	1	1	F _C /2 ¹¹	256us	65536 µs	128ms	32768ms
1	1	0	0	F _C /2 ¹²	512us	131072 µs	256ms	65536ms
1	1	0	1	F _C /2 ¹³	1.024ms	262144 µs	512ms	131072ms
1	1	1	0	F _C /2 ¹⁴	2.048ms	524.288ms	1.024s	262144ms
1	1	1	1	F _C /2 ¹⁵	4.096ms	1.048s	2.048s	524288ms

6.1.42 Bank 0 R2E: TC3DA (Timer/Counter 3 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
R/W							

Bits 7~0 (TC3DA7~TC3DA0): Data Buffer A of 8 bit Timer/Counter 3

6.1.43 Bank 0 R2F: TC3DB (Timer/Counter 3 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
R/W							

Bits 7~0 (TC3DB7~TC3DB0): Data Buffer B of 8 bit Timer/Counter 3

6.1.44 Bank 0 R30: I2CCR1 (I2C Status and Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
R/W	R/W	R/W	R/W	R	R	R	R

Bit 7 (Strobe/Pend): In master mode, it is used as strobe signal to control I2C circuit to send SCL clock. Reset automatically after receiving or transmitting handshake signal (ACK or NACK). In slave mode, it is used as pending signal, user should clear it after filling data into Tx buffer or obtaining data from Rx buffer to inform slave I2C circuit to release SCL signal.

Bit 6 (IMS): I2C Master/Slave mode select bit.

0: Slave (Default)

1: Master

Bit 5 (ISS): I2C Fast/Standard mode select bit. (If Fm is 4 MHz and I2CTS2~0<0,0,1>)

0: Standard mode (100K bit/s)

1: Fast mode (400K bit/s)

Bit 4 (STOP): In Master mode, if STOP=1 and R/nW=1 then MCU must return nACK signal to slave device before send STOP signal. If STOP=1 and R/nW=0 then MCU send STOP signal after receive an ACK signal. Reset when MCU send STOP signal to Slave device. In slave mode, if STOP=1 and R/nW=0 then MCU must return nACK signal to master device.

Bit 3 (SAR_EMPTY): Set when MCU transmit 1 byte data from I2C Slave Address Register and receive ACK (or nACK) signal. Reset when MCU write 1 byte data to I2C Slave Address Register.

- **Bit 2 (ACK):** The ACK condition bit is set to 1 by hardware when the device responds acknowledge (ACK). Reset when the device responds not-acknowledge (nACK) signal
- **Bit 1 (FULL):** Set by hardware when I2C receive buffer register is full. Reset by hardware when MCU read data from I2C receive buffer register.
- **Bit 0 (EMPTY):** Set by hardware when I2C transmit buffer register is empty and receive ACK (or nACK) signal. Reset by hardware when MCU write new data to I2C transmit buffer register.

6.1.45 Bank 0 R31: I2CCR2 (I2C Status and Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CBF	GCEN	I2COPT	BBF	I2CTS2	I2CTS1	I2CTS0	I2CEN
R	R/W	R/W	R	R/W	R/W	R/W	R/W

Bit 7 (I2CBF): I2C Busy Flag Bit

0: clear to "0", in Slave mode, if receive STOP signal or I2C slave address not match.

1: set when I2C communicate with master in slave mode.

*Set when STAR signal, clear when I2C disable or STOP signal for Slave mode.

Bit 6 (GCEN): I2C General Call Function Enable Bit

0: Disable General Call Function

1: Enable General Call Function

Bit 5 (I2COPT): I2C pin optional bit. It is used to switch the pin position of I2C function.

0: Placed I2C pins in P62 (SDA0) and P82 (SCL0) (default)

1: Placed I2C pins in P84 (SDA1) and P83 (SCL1).

*Default value corresponding Code Option Word 2 I2COPT

Bit 4 (BBF): Busy Flag Bit. I2C detection is busy in the master mode. Read only.

*Set when STAR signal, clear when STOP signal for Master mode.

Bits 3~1 (I2CTS2~I2CTS0): I2C Transmit Clock Select Bits. When using different operating frequency (Fm), these bits must be set correctly to let SCL clock fill-in with standard/fast mode.

I2CCR1 Bit 5=1, Fast Mode

I2CTS2	I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	0	NA	NA
0	0	1	Fm/10	4
0	1	0	Fm/15	6
0	1	1	Fm/20	8
1	0	0	Fm/30	12
1	0	1	Fm/40	16
1	1	0	Fm/50	20
1	1	1	NA	NA

I2CCR1 Bit 5=0, Standard Mode

I2CTS2	I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	0	Fm/10	1
0	0	1	Fm/40	4
0	1	0	Fm/60	6
0	1	1	Fm/80	8
1	0	0	Fm/120	12
1	0	1	Fm/160	16
1	1	0	Fm/200	20
1	1	1	NA	NA

Bit 0 (I2CEN): I2C Enable Bit

0: Disable I2C mode (Default)

1: Enable I2C mode

6.1.46 Bank 0 R32: I2CSA (I2C Slave Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
R/W							

Bits 7~1 (SA6~SA0): When MCU used as master device for I2C application. This is the slave device address register.

Bit 0 (IRW): When MCU used as master device for I2C application. This bit is Read/Write transaction control bit.

0: Write

1: Read

6.1.47 Bank 0 R33: I2CDB (I2C Data Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R/W							

Bits 7~0 (DB7~DB0): I2C Receive/Transmit Data Buffer.

6.1.48 Bank 0 R34: I2CDAL (I2C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
R/W							

Bits 7~0 (DA7~DA0): When MCU used as slave device for I2C application, this register store the address of MCU. It is used to identify the data on the I2C bus to extract the message delivered to the MCU.

6.1.49 Bank 0 R35: I2CDAH (I2C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DA9	DA8
0	0	0	0	0	0	R/W	R/W

Bits 7~2: Not used bits, set to "0" all the time.

Bits 1~0 (DA9~DA8): Device address bits.

6.1.50 Bank 0 R36: SPICR (SPI Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
R/W							

Bit 7 (CES): Clock Edge Select Bit

- 0: Data shift out on rising edge, and shifts in on falling edge. Data is on hold during low-level.
- 1: Data shift out falling edge, and shift in on rising edge. Data is on hold during high-level.

Bit 6 (SPIE): SPI Enable Bit

0: Disable SPI mode

1: Enable SPI mode

Bit 5 (SRO): SPI Read Overflow Bit

0: No overflow

1: A new data is received while the previous data is still being held in the SPIR register. In this situation, the data in SPIS register will be destroyed. To avoid setting this bit, user is required to read the SPIR register although only the transmission is implemented. This can only occur in slave mode.

Bit 4 (SSE): SPI Shift Enable Bit

0: Reset as soon as the shift is complete, and the next byte is read to shift.

1: Start to shift, and remain on "1" while the current byte is still being transmitted.

Bit 3 (SDOC): SDO Output Status Control Bit

0: After the serial data output, the SDO remain high.

1: After the serial data output, the SDO remain low.

Bits 2~0 (SBRS2~SBRS0): SPI Baud Rate Select Bits

SBRS2	SBRS1	SBRS0	Mode	SPI Baud Rate
0	0	0	Master	Fosc/2
0	0	1	Master	Fosc/4
0	1	0	Master	Fosc/8
0	1	1	Master	Fosc/16
1	0	0	Master	Fosc/32
1	0	1	Master	Fosc/64
1	1	0	Slave	/SS enable
1	1	1	Slave	/SS disable

6.1.51 Bank 0 R37: SPIS (SPI Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DORD	TD1	TD0	-	OD3	OD4	-	RBF
R/W	R/W	R/W	0	R/W	R/W	0	R

Bit 7 (DORD): Data Shift of Type Control Bit

0: Shift left (MSB first)

1: Shift right (LSB first)

Bits 6~5 (TD1~TD0): SDO Status Output Delay Times Options(Normal mode only). When CPU oscillator source use Fs from 1 CLK delay time.(TD1~TD0 only for Normal mode to Normal mode. If Sleep mode to Normal mode condition, then wake-up time is "Warm up time + 1CLK".)

TD1	TD0	Delay Time		
0	0	8 CLK		
0	1	1 16 CLK		
1	1 0 24 CLK			
1	1	32 CLK		

Bit 4: Not used, set to "0" all the time.

Bit 3 (OD3): Open drain control bit

0: Open drain disable for SDO

1: Open drain enable for SDO

Bit 2 (OD4): Open drain control bit

0: Open drain disable for SCK

1: Open drain enable for SCK

Bit 1: Not used, set to "0" all the time.

Bit 0 (RBF): Read Buffer Full Flag

0: Receiving not completed, and SPIR has not fully exchanged.

1: Receiving completed, and SPIR is fully exchanged.

6.1.52 Bank 0 R38: SPIR (SPI Read Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
R	R	R	R	R	R	R	R

Bits 7~0 (SRB7~SRB0): SPI Read Data Buffer

6.1.53 Bank 0 R39: SPIW (SPI Write Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
R/W							

Bits 7~0 (SWB7~SWB0): SPI Write Data Buffer

6.1.54 Bank 0 R3A ~ R3D: (Reserved)

6.1.55 Bank 0 R3E: ADCR1 (ADC Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
R/W							

Bits 7~5 (CKR2~0): Clock Rate Selection of ADC

System Mode	CKR2~0	Clock Rate	Max. System Operation Frequency in 1.8~2.2V	Max. System Operation Frequency in 2.2~2.7V	Max. System Operation Frequency in 2.7~5V	
	000	F _{Main} /16	8 MHz	-	20 MHz	
	001	F _{Main} /8	4 MHz	8 MHz	16 MHz	
	010	F _{Main} /4	2 MHz	4 MHz	8 MHz	
Normal	011	F _{Main} /2	1 MHz	2 MHz	4 MHz	
Mode	100	F _{Main} /64	-	-	20 MHz	
	101	F _{Main} /32	-	-	20 MHz	
	110	F _{Main} /1	500 kHz	1 MHz	2 MHz	
	111	F_Sub	Fs	Fs	Fs	
Green Mode	xxx	F_Sub	Fs	Fs	Fs	

NOTE

For the system operation frequency, it's a must to refer to Table 13 of Section 6.13.

Bit 4 (ADRUN): ADC Starts to Run

In single mode:

0: Reset on completion of the conversion by hardware, this bit cannot be reset by software.

1: A/D conversion starts. This bit can be set by software

In continuous mode:

0: ADC is stopped.

1: ADC is running unless this bit is reset by software

Bit 3 (ADP): ADC Power

0: ADC is in power down mode.

1: ADC is operating normally.

Bit 2 (ADOM): ADC Operation Mode Selection

0: ADC operates in single mode.

1: ADC operates in continuous mode.

Bits 1~0 (SHS1~0): Sample and Hold Timing Selection

SHS[1:0]	Sample and Hold Timing
00	2 x T _{AD}
01	4 x T _{AD}
10	8 x T _{AD}
11	12 x T _{AD}

6.1.56 Bank 0 R3F: ADCR2 (ADC Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	-
0	R/W	R/W	R/W	R/W	R/W	R/W	0

Bit 7: Not used, set to "0" all the time.

Bit 5 (ADIM): ADC Interrupt Mode

- 0: Normal mode. Interrupt occurred after AD conversion completed.
- 1: Compare mode. Interrupt occurred when comparison result conforms the setting of ADCMS bits.

Bit 4 (ADCMS): ADC Comparison Mode Selection.

In compare mode:

0: Interrupt occurred when AD conversion data is greater than data in ADCD register.

It means when ADD > ADCD, interrupt occurred.

1: Interrupt occurred when AD conversion data is less than data in ADCD register.

It means when ADD < ADCD, interrupt occurred.

In normal mode:

No effect

Bits 6, 3 ~ 2 (VPIS2~0): Internal Positive Reference Voltage Selection.

VPIS[2]	VPIS[1:0]	Reference Voltage
0	00	AVDD
0	01	4 V
0	10	3 V
0	11	2 V
1	11	2.5 V

Bit 1 (VREFP): Positive Reference Voltage Selection

- 0: Internal positive reference voltage. The actual voltage is set by VPIS[1:0] bits
- 1: From VREF pin.

Bit 0: Not used, set to "0" all the time.

NOTE

When using internal voltage reference and the Code Option Word 2<7> is set to "0", users need to wait 50 µs at least the first time to enable and stabilize the internal voltage reference circuit. After that, users only need to wait 6us at least whenever switching voltage references.

6.1.57 Bank 0 R40: ADISR (Analog to Digital Converter Input Channel Selection Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	ADIS3	ADIS2	ADIS1	ADIS0
0	0	0	0	R/W	R/W	R/W	R/W

Bits 7~4: Not used, set to "0" all the time.

Bits 3~0 (ADIS4~0): ADC input channel selection bits

ADIS[3:0]	Selected Channel
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1xxx*	1/2 VDD PowerDet.

Note:

^{*:} For internal signal source use. Users only need to set ADIS3=1, these AD input channels are instantly active, internal Vref Stable Time is 4 μs.

6.1.58 Bank 0 R41: ADER1 (Analog to Digital Converter Input Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
R/W							

Bit 7 (ADE7): AD converter enable bit of P67 pin.

- 0: Disable ADC7, P57/PWMB/ADC7/TPA3 act as I/O or PWMB or TPA3 pin
- 1: Enable ADC7 act as analog input pin.
- Bit 6 (ADE6): AD converter enable bit of P56 pin.
 - 0: Disable ADC6, P56/PWMA/ADC6/TPA4 act as I/O or PWMA or TPA4 pin
 - 1: Enable ADC6 act as analog input pin
- Bit 5 (ADE5): AD converter enable bit of P55 pin.
 - 0: Disable ADC5, P55/ADC5/TPA5 act as I/O or TPA5 pin
 - 1: Enable ADC5 act as analog input pin
- Bit 4 (ADE4): AD converter enable bit of P54 pin.
 - 0: Disable ADC4, P54/ADC4/TPA6 act as I/O or TPA6 pin
 - 1: Enable ADC4 act as analog input pin
- Bit 3 (ADE3): AD converter enable bit of P53 pin.
 - 0: Disable ADC3, P53/ADC3/TPA7 act as I/O or TPA7 pin
 - 1: Enable ADC3 act as analog input pin
- Bit 2 (ADE2): AD converter enable bit of P52 pin.
 - 0: Disable ADC2, P52/ADC2/TCC/TPA8 act as I/O or TCC or TPA8 pin
 - 1: Enable ADC2 act as analog input pin
- Bit 1 (ADE1): AD converter enable bit of P51 pin.
 - 0: Disable ADC1, P51/ADC1/INT1/TPA9 act as I/O or INT1 or TPA9 pin
 - 1: Enable ADC1 act as analog input pin
- Bit 0 (ADE0): AD converter enable bit of P50 pin.
 - 0: Disable ADC0, P50/ADC0/INT0/TPA10 act as I/O or INT0 or TPA10 pin
 - 1: Enable ADC0 act as analog input pin

6.1.59 Bank 0 R42: (Reserved)

6.1.60 Bank 0 R43: ADDL (Low Byte of Analog to Digital Converter Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
R	R	R	R	R	R	R	R

Bits 7~0 (ADD7~0): Low Byte of AD Data Buffer

6.1.61 Bank 0 R44: ADDH (High Byte of Analog to Digital Converter Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
R	R	R	R	R	R	R	R

Bits 7~0 (ADD15~8): High Byte of AD Data Buffer.

The format of AD data is dependent on code option ADFM. The following table shows how the data justified in different ADFM setting.

	ADFM		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	12 bits -	^	ADDH					ADD11	ADD10	ADD9	ADD8
		0	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
		4	ADDH	ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4
		1	ADDL					ADD3	ADD2	ADD1	ADD0

6.1.62 Bank 0 R45 ADCVL (Low Byte of Analog to Digital Converter Comparison)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD7	ADCD6	ADCD5	ADCD4	ADCD3	ADCD2	ADCD1	ADCD0
R/W							

Bits 7~0 (ADCD7~0): Low Byte Data for AD Comparison.

User should use the data format as the same as ADDH and ADDL register. Otherwise, the fault result will be got after AD comparison.

6.1.63 Bank 0 R46 ADCVH (High Byte of Analog to Digital Converter Comparison)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCD15	ADCD14	ADCD13	ADCD12	ADCD11	ADCD10	ADCD9	ADCD8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (ADCD15~8): High Byte Data for AD Comparison

User should use the data format the same as ADDH and ADDL register. Otherwise, the fault result will be got after AD comparison.

6.1.64 Bank 0 R47 ~ R4F (Reserved)

6.1.65 Bank 1 R5 IOCR8 (I/O Port 8 Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.66 Bank 1 R6 IOCR9 (I/O Port 9 Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.67 Bank 1 R7 IOCRA (IO Port A Control Register)

- 0: Put the relative I/O pin as output
- 1: Put the relative I/O pin into high impedance (default)

6.1.68 Bank 1 R8: P5PHCR (Port 5 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
R/W							

Bit 7 (PH57): Control bit used to enable pull-high of the P57 pin

- 0: Enable internal pull-high
- 1: Disable internal pull-high (default)

Bit 6 (PH56): Control bit used to enable pull-high of the P56 pin

Bit 5 (PH55): Control bit used to enable pull-high of the P55 pin

Bit 4 (PH54): Control bit used to enable pull-high of the P54 pin

Bit 3 (PH53): Control bit used to enable pull-high of the P53 pin

Bit 2 (PH52): Control bit used to enable pull-high of the P52 pin

Bit 1 (PH51): Control bit used to enable pull-high of the P51 pin

Bit 0 (PH50): Control bit used to enable pull-high of the P50 pin

6.1.69 Bank 1 R9: P6PHCR (Port 6 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
R/W							

Bit 7 (PH67): Control bit used to enable pull-high of the P67 pin (Reset Pin)

0: Enable internal pull-high

1: Disable internal pull-high (default)

Bit 6 (PH66): Control bit used to enable pull-high of the P66 pin

Bit 5 (PH65): Control bit used to enable pull-high of the P65 pin

Bit 4 (PH64): Control bit used to enable pull-high of the P64 pin

Bit 3 (PH63): Control bit used to enable pull-high of the P63 pin

Bit 2 (PH62): Control bit used to enable pull-high of the P62 pin

Bit 1 (PH61): Control bit used to enable pull-high of the P61 pin

Bit 0 (PH60): Control bit used to enable pull-high of the P60 pin

6.1.70 Bank 1 RA: P789APHCR (Port 7~A Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PALPH	P9HPH	P9LPH	P8HPH	P8LPH	P7HPH	P7LPH
0	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (PALPH): Control bit used to enable pull-high of the Port A low nibble pin

0: Enable internal pull-high

1: Disable internal pull-high (default)

Bit 5 (P9HPH): Control bit used to enable the pull high of Port 9 high nibble pin

Bit 4 (P9LPH): Control bit used to enable the pull high of Port 9 low nibble pin

Bit 3 (P8HPH): Control bit used to enable the pull high of Port 8 high nibble pin

Bit 2 (P8LPH): Control bit used to enable the pull high of Port 8 low nibble pin

Bit 1 (P7HPH): Control bit used to enable the pull high of Port 7 high nibble pin

Bit 0 (P7LPH): Control bit used to enable the pull high of Port 7 low nibble pin

6.1.71 Bank 1 RB: P5PLCR (Port 5 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
R/W							

Bit 7 (PL57): Control bit used to enable pull low of the P57 pin

0: Enable internal pull-low

1: Disable internal pull-low (default)

Bit 6 (PL56): Control bit used to enable pull low of the P56 pin

Bit 5 (PL55): Control bit used to enable pull low of the P55 pin

Bit 4 (PL54): Control bit used to enable pull low of the P54 pin

Bit 3 (PL53): Control bit used to enable pull low of the P53 pin

Bit 2 (PL52): Control bit used to enable pull low of the P52 pin

Bit 1 (PL51): Control bit used to enable pull low of the P51 pin

Bit 0 (PL50): Control bit used to enable pull low of the P50 pin

6.1.72 Bank 1 RC: P6PLCR (Port 6 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
R/W							

Bit 7 (PL67): Control bit used to enable pull low of the P67 pin

0: Enable internal pull-low

1: Disable internal pull-low (default)

Bit 6 (PL66): Control bit used to enable pull low of the P66 pin

Bit 5 (PL65): Control bit used to enable pull low of the P65 pin

Bit 4 (PL64): Control bit used to enable pull low of the P64 pin

Bit 3 (PL63): Control bit used to enable pull low of the P63 pin

Bit 2 (PL62): Control bit used to enable pull low of the P62 pin

Bit 1 (PL61): Control bit used to enable pull low of the P61 pin

Bit 0 (PL60): Control bit used to enable pull low of the P60 pin

6.1.73 Bank 1 RD: P789APLCR (Ports 7~A Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PALPL	P9HPL	P9LPL	P8HPL	P8LPL	P7HPL	P7LPL
0	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (PALPL): Control bit used to enable pull low of the Port A low nibble pin

0: Enable internal pull-low

1: Disable internal pull-low (default)

Bit 5 (P9HPL): Control bit used to enable pull low of the Port 9 high nibble pin

Bit 4 (P9LPL): Control bit used to enable pull low of the Port 9 low nibble pin

Bit 3 (P8HPL): Control bit used to enable pull low of the Port 8 high nibble pin

Bit 2 (P8LPL): Control bit used to enable pull low of the Port 8 low nibble pin

Bit 1 (P7HPL): Control bit used to enable pull low of the Port 7 high nibble pin

Bit 0 (P7LPL): Control bit used to enable pull low of the Port 7 low nibble pin

6.1.74 Bank 1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H57	H56	H55	H54	H53	H52	H51	H50
R/W							

Bits 7~0 (H57~H50): P57~P50 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink (default)

6.1.75 Bank 1 RF: P6HDSCR (Port 6 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H67	H66	H65	H64	H63	H62	H61	H60
R/W							

Bits 7~0 (H67~H60): P67~P60 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink (default)

6.1.76 Bank 1 R10: P789AHDSCR (Ports 7~A High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PALHDS	P9HHDS	P9LHDS	P8HHDS	P8LHDS	P7HHDS	P7LHDS
0	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (PALHDS): Control bit used to enable high drive/sink of Port A low nibble pin

0: Enable high drive/sink

1: Disable high drive/sink (default)

Bit 5 (P9HHDS): Control bit used to enable high drive/sink of Port 9 high nibble pin

Bit 4 (P9LHDS): Control bit used to enable high drive/sink of Port 9 low nibble pin

Bit 3 (P8HHDS): Control bit used to enable high drive/sink of Port 8 high nibble pin

Bit 2 (P8LHDS): Control bit used to enable high drive/sink of Port 8 low nibble pin

Bit 1 (P7HHDS): Control bit used to enable high drive/sink of Port 7 high nibble pin

Bit 0 (P7LHDS): Control bit used to enable high drive/sink of Port 7 low nibble pin

6.1.77 Bank 1 R11: P5ODCR (Port 5 Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
R/W							

Bits 7~0 (OD57~OD50): Open-Drain control bits

0: Disable open-drain function (default)

1: Enable open-drain function

6.1.78 Bank 1 R12: P6ODCR (Port 6 Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
R/W							

Bits 7~0 (OD67~OD60): Open-Drain control bits

0: Disable open-drain function (default)

1: Enable open-drain function

6.1.79 Bank 1 R13: P789AODCR (Ports 7~A Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PALOD	P9HOD	P9LOD	P8HOD	P8LOD	P7HOD	P7LOD
0	R/W						

Bit 7: Not used, set to "0" all the time.

Bit 6 (PALOD): Control bit used to enable open-drain of Port A low nibble pin

0: Disable open-drain function (default)

1: Enable open-drain function

Bit 5 (P9HOD): Control bit used to enable open-drain of Port 9 high nibble pin

Bit 4 (P9LOD): Control bit used to enable open-drain of Port 9 low nibble pin

Bit 3 (P8HOD): Control bit used to enable open-drain of Port 8 high nibble pin

Bit 2 (P8LOD): Control bit used to enable open-drain of Port 8 low nibble pin

Bit 1 (P7HOD): Control bit used to enable open-drain of Port 7 high nibble pin

Bit 0 (P7LOD): Control bit used to enable open-drain of Port 7 low nibble pin

6.1.80 Bank 1 R14: DeadTCR (Dead Time Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	DEADTBE	DEADTAE	DEADTP1	DEADTP0
0	0	0	0	R/W	R/W	R/W	R/W

Bits 7~4: Not used, set to "0" all the time

Bit 3 (DEADTBE): Enable dead-time function for PWMB and /PWMB (for dual PWM)

0: Disable (default)

1: Enable

Bit 2 (DEADTAE): Enable dead-time function for PWMA and /PWMA (for dual PWM)

0: Disable (default)

1: Enable

Bits 1~0 (DEADTP1~DEADTP0): Dead-time prescaler

DEADTP1	DEADTP0	Prescaler
0	0	1:1 (default)
0	1	1:2
1	0	1:4
1	1	1:8

NOTE

The deadtime function is only for dual PWM. If using a single PWM function (not dual PWM), the deadtime function is always disabled.

6.1.81 Bank 1 R15: DeadTR (Dead Time Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEADTR7	DEADTR6	DEADTR5	DEADTR4	DEADTR3	DEADTR2	DEADTR1	DEADTR0
R/W							

Bits 7~0 (DEADTR7~0): The contents of the register are dead-time

6.1.82 Bank 1 R16: PWMSCR (PWM Source Clock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	DEADS	-	-	PWMBS	PWMAS
0	0	0	R/W	0	0	R/W	R/W

Bits 7~5: Not used, set to "0" all the time.

Bit 4 (DEADS): Clock selection for dead time timer

0: Fs (default)

1: Fm

Bits 3~2: Not used, set to "0" all the time.

Bit 1 (PWMBS): Clock selection for PWMB timer

0: Fs (default)

1: Fm

Bit 0 (PWMAS): Clock selection for PWMA timer

0: Fs (default)

1: Fm

6.1.83 Bank 1 R17: PWMACR (PWMA Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMAE	IPWMAE	PWMAA	IPWMAA	TAEN	TAP2	TAP1	TAP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (PWMAE): PWMA enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWMA pin

Bit 6 (IPWMAE): Inverse PWMA enable bit

0: Disable (default)

1: Enable. The compound pin is used as /PWMA pin

Bit 5 (PWMAA): Active level of PWMA

0: duty -deadtime is Logic 1 (default)

1: duty is-deadtime is Logic 0

Bit 4 (IPWMAA): active level of inverse PWMA

0: period-duty-deadtime is Logic 1 (default)

1: period-duty-deadtime is Logic 0

Bit 3 (TAEN): TMRA enable bit. All PWM functions are valid only as this bit is set

0 = TMRA is off (default)

1 = TMRA is on

PWMxE	TxEN	Function Description
0	0	Not used as PWM function; I/O pin or other function pin.
0	1	Timer function; I/O pin or other function pin.
1	0	PWM function, the waveform keeps at inactive level.
1	1	PWM function, the normal PWM output waveform.

x = A, B

Bits 2~0 (TAP2~TAP0): TMRA clock prescaler option bits

TAP2	TAP1	TAP0	Prescaler
0	0	0	1:1 (default)
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.84 Bank 1 R18: PRDAL (Low Byte of PWMA Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDA7	PRDA6	PRDA5	PRDA4	PRDA3	PRDA2	PRDA1	PRDA0
R/W							

Bits 7~0 (PRDA7~ PRDA 0): The contents of the register are low byte of the PWMA period

NOTE

When PRDAL register is updated, the PWMA duty/period will be reloaded.

6.1.85 Bank 1 R19: PRDAH (High Byte of PWMA Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PRDA9	PRDA8
0	0	0	0	0	0	R/W	R/W

Bits 7~0 (PRDA9~ PRDA 8): The contents of the register are high byte of PWMA period

6.1.86 Bank 1 R1A: DTAL (Low Byte of PMWA Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DTA7	DTA6	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0
R/W							

Bits 7~0 (DTA7~ DTA0): The contents of the register are low byte of the PWMA duty

6.1.87 Bank 1 R1B: DTAH (High Byte of PMWA Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DTA9	DTA8
0	0	0	0	0	0	R/W	R/W

Bits 7~0 (DTA9~ DTA 8): The contents of the register are high byte of the PWMA duty

6.1.88 Bank 1 R1C: TMRAL (Low Byte of Timer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRA7	TMRA6	TMRA5	TMRA4	TMRA3	TMRA2	TMRA1	TMRA0
R	R	R	R	R	R	R	R

Bits 7~0 (TMRA7~ TMRA 0): The contents of the register are low byte of the PWMA timer which is counting. This is read-only.

6.1.89 Bank 1 R1D: TMRAH (High byte of Timer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	•	-	TMRA9	TMRA8
0	0	0	0	0	0	R	R

Bits 7~0 (TMRA9~ TMRA 8): The contents of the register are high byte of the PWMA timer which is counting. This is read-only.

6.1.90 Bank 1 R1E: PWMBCR (PWMB Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMBE	IPWMBE	PWMBA	IPWMBA	TBEN	TBP2	TBP1	TBP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (PWMBE): PWMB enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWMB pin

Bit 6 (IPWMBE): Inverse PWMB enable bit

0: Disable (default)

1: Enable. The compound pin is used as /PWMB pin

Bit 5 (PWMBA): Active level of PWMB

0: duty is Logic 1 (default)

1: duty is Logic 0

Bit 4 (IPWMBA): Active level of inverse PWMB

0: Period-duty is Logic 1 (default)

1: Period-duty is Logic 0

Bit 3 (TBEN): TMRB enable bit. All PWM functions are valid only as this bit is set

0: TMRB is off (default)

1: TMRB is on

Bits 2~0 (TBP2~TBP0): TMRB clock prescaler option bits

TBP2	TBP1	TBP0	Prescaler
0	0	0	1:1 (default)
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.91 Bank 1 R1F: PRDBL (Low byte of PWMB Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRDB7	PRDB6	PRDB5	PRDB4	PRDB3	PRDB2	PRDB1	PRDB0
R/W							

Bits 7~0 (PRDB7~ PRDB 0): The contents of the register are low bytes of the PWMB period.

NOTE

When PRDAL register is updated, the PWMA duty/period will be reloaded.

6.1.92 Bank 1 R20: PRDBH (High byte of PWMB period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	1	•	-	PRDB9	PRDB8
0	0	0	0	0	0	R/W	R/W

Bits 7~0 (PRDB9~ PRDB 8): The contents of the register are high bytes of PWMB period.

6.1.93 Bank 1 R21: DTBL (Low Byte of PMWB Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DTB7	DTB6	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0
R/W							

Bits 7~0 (DTB7~ DTB 0): The contents of the register are low byte of the PWMB duty

6.1.94 Bank 1 R22: DTBH (High Byte of PMWB Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DTB9	DTB8
0	0	0	0	0	0	R/W	R/W

Bits 7~0 (DTB9~ DTB 8): The contents of the register are high byte of the PWMB duty

NOTE

The value in dead-time register must be less than the value in duty cycle register in order to prevent unexpected behavior on both of PWM outputs.

6.1.95 Bank 1 R23: TMRBL (Low Byte of Timer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRB7	TMRB6	TMRB5	TMRB4	TMRB3	TMRB2	TMRB1	TMRB0
R	R	R	R	R	R	R	R

Bits 7~0 (TMRB7~ TMRB 0): The contents of the register are low byte of the PWMB timer which is counting. This is read-only.

6.1.96 Bank 1 R24: TMRBH (High Byte of Timer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	TMRB9	TMRB8
0	0	0	0	0	0	R	R

Bits 7~0 (TMRB9~ TMRB 8): The contents of the register are high byte of the PWMB timer which is counting. This is read-only

6.1.97 Bank 1 R25 ~ R39: (Reserved)

6.1.98 Bank 1 R40: WCR and EECR1 (Watch Timer and EEPROM Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WTE	WTSSB1	WTSSB0	-	-	-	RD	WR
R/W	R/W	R/W	0	0	0	R/W	R/W

Bit 7 (WTE): Watch Timer Enable Bit

0: Disable

1: Enable

Bits 6~5 (WTSSB1~WTSSB0): Watch Timer Interval Select Bits

WTSSB1	WTSSB0	Timer Interval Select	Timer Interval Select (LXT3 = 32.768kHz)
0	0	32768 / Fs	1.0s
0	1	16384 / Fs	0.5s
1	0	8192 / Fs	0.25s
1	1	128 / Fs	3.91ms

Note: The clock source of the watch timer comes from the sub-IRC or crystal 32.768kHz.

Bits 4~2: Unused bit, set to 0 all the time

Bit 1(RD): Read Control Bit

0: Don't Execute EEPROM Read

1: Read EEPROM Content (RD can be set by software. When Read instruction is completed, RD will be cleared by hardware.)

Bit 0 (WR): Write Control Bit

0: Write Cycle to the EEPROM is completed.

1: Initiate a Write Cycle (WR can be set by software. When write cycle is completed, WR will be cleared by hardware).

6.1.99 Bank 1 R41: EECR2 (EEPROM Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEWE	EEDF	EEPC	-	-	-	-	-
R/W	F	R/W	0	0	0	0	0

Bit 7 (EEWE): EEPROM write enable bit

0: Prohibit write to the EEPROM

1: Allow EEPROM write cycles

Bit 6 (EEDF): EEPROM detect flag

0: Write cycle is completed

1: Write cycle is unfinished

Bit 5 (EEPC): EEPROM power down control bit

0: Switch of EEPROM

1: EEPROM is operating

Bits 4~0: Unused bit, set to 0 all the time

6.1.100 Bank 1 R42: EERA (EEPROM Address)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EERA7	EERA6	EERA5	EERA4	EERA3	EERA2	EERA1	EERA0
R/W							

Bits 7~0 (EERA7~EERA0): EEPROM address register

6.1.101 Bank 1 R43: EERD (EEPROM Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EERD7	EERD6	EERD5	EERD4	EERD3	EERD2	EERD1	EERD0
R/W							

Bits 7~0 (EERD7~EERD0): EEPROM data register.

6.1.102 Bank 1 R44: FLKR (Flash Key Register for Table Write Use)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FLK[7]	FLK[6]	FLK[5]	FLK[4]	FLK[3]	FLK[2]	FLK[1]	FLK[0]
R/W							

This FLKR register is used by table write IAP mode operation. The IAP enable signal is generated when a specific value is written into this register, e.g., **0xB4**. The register is designed to make sure that IAP operation occurs for flash update.

6.1.103 Bank 1 R45: TBPTL (Table Point Low Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
R/W							

Bits 7~0 (TB7~TB0): Table Point Address Bits 7~0.

6.1.104 Bank 1 R46: TBPTH (Table Point High Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLB	RDS	-	TB12	TB11	TB10	TB9	TB8
R/W	R/W	0	R/W	R/W	R/W	R/W	R/W

Bit 7 (HLB): Take high byte or low byte at machine code from ROM.

RDS	HLB	Read to Register Data Value Description			
0	0 Read byte value is Bit 7~Bit 0 from machine code.				
0	1	Read byte value is Highest bit fixed "0" and Bit 14~Bit 8 from machine code.			

Bit 6 (RDS): ROM data select bit, read machine code information select.

0: ROM data (Must be 0 all the time)

Bit 5: Not used, set to "0" all the time.

Bits 4 ~0 (TB12~TB8): Table Point Address Bits 12~8.

6.1.105 Bank 1 R47: STKMON (Stack Point)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STOV	-	-	-	STL3	STL2	STL1	STL0
R	0	0	0	R	R	R	R

Bit 7 (STOV): Stack pointer overflow indication bit. Only read.

Bits 3~0 (STL3~ STL 0): Stack pointer number. Only read.

6.1.106 Bank 1 R48: PCH (Program Counter High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	PC12	PC11	PC10	PC9	PC8
0	0	0	R/W	R/W	R/W	R/W	R/W

Bits 7~5: Not used, set to "0" all the time.

Bits 4~0 (PC12~PC8): The high byte of program counter.

6.1.107 Bank 1 R49: LVDCR (Low Voltage Detector Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDEN	-	LVDS1	LVDS0	LVDB	-	-	-
R/W	0	R/W	R/W	R	0	0	0

Bit 7 (LVDEN): Low Voltage Detector Enable Bit

0: Disable low voltage detector

1: Enable low voltage detector

Bits 5~4 (LVDS1~LVDS0): Low Voltage Detector Level Bits.

LVDEN	LVDS1, LVDS0	LVD Voltage Interrupt Level	LVDB
4	11	VDD < 2.2V	0
l I	11	VDD > 2.4V	1
4	10	VDD < 3.3V	0
I	10	VDD > 3.5V	1
1	01	VDD < 4.0V	0
'	01	VDD > 4.2V	1
4	00	VDD < 4.5V	0
l I	00	VDD > 4.7V	1
0	XX	NA	1

Bit 3 (LVDB): Low Voltage Detector State Bit. This is a read only bit. When the VDD pin voltage is lower than LVD voltage interrupt level (selected by LVDS1 ~ LVDS0), this bit will be cleared.

0: The low voltage is detected.

1: The low voltage is not detected or LVD function is disabled.

Bits 6, 2~0: Not used, set to "0" all the time.

6.1.108 Bank 1 R4D TBWCR (Table Write Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	-	IAPEN
0	0	0	0	0	0	0	R/W

Bits 7~1: not used bits, fixed to "0" all the time.

Bit 0 (IAPEN): IAP enable bit

0: IAP mode Disable

1: IAP mode Enable

6.1.109 Bank 1 R4E: TBWAL (Table Write Start Address Low Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBWA[7]	TBWA[6]	TBWA[5]	TBWA[4]	TBWA[3]	TBWA[2]	TBWA[1]	TBWA[0]
R/W							

Bits 7~0 (TBWA[7]~TBWA[0]): Table Write Star Address Bits 7~0, TBWA[4]~TBWA[0] always fixed to "0".

6.1.110 Bank 1 R4F: TBWAH (Table Write Start Address High Byte)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	TBWA[12]	TBWA[11]	TBWA[10]	TBWA[9]	TBWA[8]
0	0	0	R/W	R/W	R/W	R/W	R/W

Bits 7~5: Fixed to "0" all the time (Read only)

Bits 4~0 (TBWA[12]~TBWA[8]): Table Write Address Bits 12~8.

%Note:

ROM Code Buffer (Start)	Table Write ROM Address (Destination)
BANK3 0x80	[TBWA] Low byte (Bits 7~0)
BANK3 0x81	[TBWA] High byte (Bits 14~8)
BANK3 0x82	[TBWA+1] Low byte (Bits 7~0)
BANK3 0x83	[TBWA+1] High byte (Bits 14~8)
i	:
BANK3 0XBE	[TBWA+31] Low byte (Bits 7~0)
BANK3 0XBF	[TBWA+31] High byte (Bits 14~8)

6.1.111 Bank 2 R5 TPEPCR1 (Touch Key Group A Enable Pin Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPAEP8	TPAEP7	TPAEP6	TPAEP5	TPAEP4	TPAEP3	TPAEP2	TPAEP1
R/W							

Bit 7 (TPAEP8): Touch Key Enable Pin Control Bit

0: TPA8 function pin disable

1: TPA8 function pin enable

Bit 6 (TPAEP7): Touch Key Enable Pin Control Bit

0: TPA7 function pin disable

1: TPA7 function pin enable

Bit 5 (TPAEP6): Touch Key Enable Pin Control Bit

0: TPA6 function pin disable

1: TPA6 function pin enable

Bit 4 (TPAEP5): Touch Key Enable Pin Control Bit

0: TPA5 function pin disable

1: TPA5 function pin enable

Bit 3 (TPAEP4): Touch Key Enable Pin Control Bit/

0: TPA4 function pin disable

1: TPA4 function pin enable

Bit 2 (TPAEP3): Touch Key Enable Pin Control Bit

0: TPA3 function pin disable

1: TPA3 function pin enable

Bit 1 (TPAEP2): Touch Key Enable Pin Control Bit

0: TPA2 function pin disable

1: TPA2 Pad function pin enable

Bit 0 (TPAEP1): Touch Key Enable Pin Control Bit

0: TPA1 function pin disable

1: TPA1 function pin enable

6.1.112 Bank 2 R6 TPEPCR2 (Touch Key Group A Enable Pin Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	TPAEP10	TPAEP9
0	0	0	0	0	0	R/W	R/W

Bits 7~2: not used bits, fixed to "0" all the time.

Bit 1 (TPAEP10): Touch Key Enable Pin Control Bit

0: TPA10 function pin disable

1: TPA10 function pin enable

Bit 0 (TPAEP9): Touch Key Enable Pin Control Bit

0: TPA9 function pin disable

1: TPA9 function pin enable

6.1.113 Bank 2 R7 TPEPCR3 (Touch Key Group B Enable Pin Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBEP8	TPBEP7	TPBEP6	TPBEP5	TPBEP4	TPBEP3	TPBEP2	TPBEP1
R/W							

Bit 7 (TPBEP8): Touch Key Enable Pin Control Bit

0: TPB8 function pin disable

1: TPB8 function pin enable

Bit 6 (TPBEP7): Touch Key Enable Pin Control Bit

0: TPB7 function pin disable

1: TPB7 function pin enable

Bit 5 (TPBEP6): Touch Key Enable Pin Control Bit

0: TPB6 function pin disable

1: TPB6 function pin enable

Bit 4 (TPBEP5): Touch Key Enable Pin Control Bit

0: TPB5 function pin disable

1: TPB5 function pin enable

Bit 3 (TPBEP4): Touch key Enable Pin Control Bit

0: TPB4 function pin disable

1: TPB4 function pin enable

Bit 2 (TPBEP3): Touch Key Enable Pin Control Bit

0: TPB3 function pin disable

1: TPB3 function pin enable

Bit 1 (TPBEP2): Touch Key Enable Pin Control Bit

0: TPB2 function pin disable

1: TPB2 function pin enable

Bit 0 (TPBEP1): Touch Key Enable Pin Control Bits

0: TPB1 function pin disable

1: TPB1 function pin enable

6.1.114 Bank 2 R8 TPEPCR4 (Touch Key Group B Enable Pin Control Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	TPBEP10	TPBEP9
0	0	0	0	0	0	R/W	R/W

Bits 7~2: Not used bits, fixed to "0" all the time.

Bit 1 (TPBEP10): Touch Key Enable Pin Control Bit

0: TPB10 function pin disable

1: TPB10 function pin enable

Bit 0 (TPBEP9): Touch Key Enable Pin Control Bit

0: TPB9 function pin disable

1: TPB9 function pin enable

6.1.115 Bank 2 R9 TPCCR (Touch Key Charge Discharge Current Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBCS3	TPBCS2	TPBCS1	TPBCS0	TPACS3	TPACS2	TPACS1	TPACS0
R/W							

Bits 7~4 (TPBCS3~TPCBCS0): Touch Key Group B Charge Discharge Current Source Select

Bits 3~0 (TPACS3~TPCACS0): T	ouch Key Group A	Charge Discharge Current
5	Source Select	

TPxCS3	TPxCS2	TPxCS1	TPxCS0	Current (µA)
0	0	0	0	4
0	0	0	1	6
0	0	1	0	8
0	0	1	1	10
0	1	0	0	12
0	1	0	1	14
0	1	1	0	16
0	1	1	1	18
1	0	0	0	20
1	0	0	1	22
1	0	1	0	24
1	0	1	1	26
1	1	0	0	28
1	1	0	1	30
1	1	1	0	32
1	1	1	1	34

^{*}x = A, B

6.1.116 Bank 2 RA TPCR1 (Touch Key Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBSW3	TPBSW2	TPBSW1	TPBSW0	TPASW3	TPASW2	TPASW1	TPASW0
R/W							

Bits 7~4 (TPBSW3~ TPBSW0): Touch Key Group B switch bits

TPBSW3	TPBSW2	TPBSW1	TPBSW0	Function
0	0	0	0	TPB1 On, Other TPSx un-select
0	0	0	1	TPB2 On, Other TPSx un-select
0	0	1	0	TPB3 On, Other TPSx un-select
0	0	1	1	TPB4 On, Other TPSx un-select
0	1	0	0	TPB5 On, Other TPSx un-select
0	1	0	1	TPB6 On, Other TPSx un-select
0	1	1	0	TPB7 On, Other TPSx un-select
0	1	1	1	TPB8 On, Other TPSx un-select
1	0	0	0	TPB9 On, Other TPSx un-select
1	0	0	1	TPB10 On, Other TPSx un-select
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	TPB reference basis capacitor on

Bits 3~0 (TPASW3~ TPASW0): Touch Key Group A Switch bits

TPASW3	TPASW2	TPASW1	TPASW0	Function
0	0	0	0	TPA1 On, Other TPSx un-select
0	0	0	1	TPA2 On, Other TPSx un-select
0	0	1	0	TPA3 On, Other TPSx un-select
0	0	1	1	TPA4 On, Other TPSx un-select
0	1	0	0	TPA5 On, Other TPSx un-select
0	1	0	1	TPA6 On, Other TPSx un-select
0	1	1	0	TPA7 On, Other TPSx un-select
0	1	1	1	TPA8 On, Other TPSx un-select
1	0	0	0	TPA9 On, Other TPSx un-select
1	0	0	1	TPA10 On, Other TPSx un-select
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	TPA reference basis capacitor on

Whenever TPAx/TPBx is selected, it will auto set to input pin. The original pin set option will be stored. Until the other TPAx/TPBx are selected or TPAEN/TPBEN select disable, this pin will auto reload the previous set condition.

6.1.117 Bank 2 RB TPCR2 (Touch Key Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBEN	TPAEN	TPDS1	TPDS0	TPR3	TPR2	TPR1	TPR0
R/W							

Bit 7 (TPBEN): Touch Key Group B Module Enable Bit

0: Disable

1: Enable

Bit 6 (TPAEN): Touch Key Group A Module Enable Bit

0: Disable

1: Enable

Bits 5~4 (TPDS1~TPDS0): Touch Key Read Time Multiplier Select Bits

TPDS1	TPDS0	Read Time
0	0	x2
0	1	x4
1	0	x8
1	1	x16

Bits 3~0 (TPR3~TPR0): Touch Key Read Time Select Bits.

TPR3	TPR2	TPR1	TPR0	Read Time
0	0	0	0	16
0	0	0	1	1 (Default)
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

6.1.118 Bank 2 RC TPCR3 (Touch Key Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPS	-	TPBRTH	TPARTH	TPISE	TPMCE	TPWT1	TPWT0
R/W	0	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (TPS): Touch Key Conversion Start Bit

0: Reset on completion of the conversion by hardware, this bit cannot be reset by software.

1: Start the conversion

Bit 6: Not used, set to "0" all the time.

Bit 5 (TPBRTH): TPB relaxation oscillator threshold voltage select.

0: Narrow range

1: Wide range

Bit 4 (TPARTH): TPA relaxation oscillator threshold voltage select.

0: Narrow range

1: Wide range

Bit 3 (TPISE): Touch Key idle with scan mode enable bit, for low consumption application.

0: Disable

1: Enable, Touch Key auto scan for sleep mode condition.

Bit 2 (TPMCE): Touch Key multi-pin enable bit. (Suggest for TK idle with scan mode Application)

0: Disable

1: Enable, Touch Key Group pin combine together.

Bits 1~0 (TPWT1~TPWT0): Touch Key Idle with scan mode auto wakeup time.

TPWT1	TPWT0	Auto Wakeup Time		
0	0	100ms		
0	0 1 200ms			
1	0	500ms		
1	1	1s		

6.1.119 Bank 2 RD TPAHTH (Most Significant Byte of Group A High Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPATH[15]	TPATH[14]	TPATH[13]	TPATH[12]	TPATH[11]	TPATH[10]	TPATH[9]	TPATH[8]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (TPATH[15]~TPATH[8]): Most Significant Byte of Group A high limit Wakeup threshold.

Wakeup, when sensing value is above threshold high limit value.

6.1.120 Bank 2 RE TPAHTL (Least Significant Byte of Group A High Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPATH[7]	TPATH[6]	TPATH[5]	TPATH[4]	TPATH[3]	TPATH[2]	TPATH[1]	TPATH[0]
R/W							

Bits 7~0 (TPATH[7]~TPATH[0]): Least Significant Byte of Group A high limit Wakeup threshold.

Wakes up when sensing value is above the threshold high limit value.

6.1.121 Bank 2 RF TPALTH (Most Significant Byte of Group A Lower Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPATL[15]	TPATL[14]	TPATL[13]	TPATL[12]	TPATL[11]	TPATL[10]	TPATL[9]	TPATL[8]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (TPATL[15]~TPATL[8]): Most Significant Byte of Group A low limit Wakeup threshold.

Wakeup, when sensing value is below the threshold low limit value.

6.1.122 Bank 2 R10 TPALTL (Least Significant Byte of Group A Lower Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPATL[7]	TPATL[6]	TPATL[5]	TPATL[4]	TPATL[3]	TPATL[2]	TPATL[1]	TPATL[0]
R/W							

Bits 7~0 (TPATL[7]~TPATL[0]): Least Significant Byte of Group A low limit Wakeup threshold.

Wakeup, when sensing value is below the threshold low limit value.

6.1.123 Bank 2 R11 TPBHTH (Most Significant Byte of Group B High Wake-up Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBTH[15]	TPBTH[14]	TPBTH[13]	TPBTH[12]	TPBTH[11]	TPBTH[10]	TPBTH[9]	TPBTH[8]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (TPBTH[15]~TPBTH[8]): Most Significant Byte of Group B high limit Wakeup threshold.

Wakeup when sensing value is above the threshold high limit value.

6.1.124 Bank 2 R12 TPBHTL (Least Significant Byte of Group B High Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBTH[7]	TPBTH[6]	TPBTH[5]	TPBTH[4]	TPBTH[3]	TPBTH[2]	TPBTH[1]	TPBTH[0]
R/W							

Bits 7~0 (TPBTH[7]~TPBTH[0]): Least Significant Byte of Group B high limit Wakeup threshold.

Wakeup, when sensing value is above the threshold high limit value.

6.1.125 Bank 2 R13 TPBLTH (Most Significant Byte of Group B Lower Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBTL[15]	TPBTL[14]	TPBTL[13]	TPBTL[12]	TPBTL[11]	TPBTL[10]	TPBTL[9]	TPBTH[0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (TPBTL[15]~TPBTL[8]): Most Significant Byte of Group B low limit Wakeup threshold.

Wakeup, when sensing value is below the threshold low limit value.

6.1.126 Bank 2 R14 TPBLTL (Least Significant Byte of Group B Lower Wakeup Threshold)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPBTL[7]	TPBTL[6]	TPBTL[5]	TPBTL[4]	TPBTL[3]	TPBTL[2]	TPBTL[1]	TPBTH[0]
R/W							

Bits 7~0 (TPBTL[7]~TPBTL[0]): Least Significant Byte of Group B low limit Wakeup threshold.

Wakeup, when sensing value is below the threshold low limit value.

6.1.127 Bank 2 R15 TPAH (Most Significant Byte of A Group Touch Key Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPA[15]	TPA[14]	TPA[13]	TPA[12]	TPA[11]	TPA[10]	TPA[9]	TPA[8]
R	R	R	R	R	R	R	R

Bits 7~0 (TPA [15]~TPA[8]): Most Significant Byte of A Group Touch Key Buffer.

6.1.128 Bank 2 R16 TPAL (Least Significant Byte of A Group Touch Key Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPA[7]	TPA[6]	TPA[5]	TPA[4]	TPA[3]	TPA[2]	TPA[1]	TPA[0]
R	R	R	R	R	R	R	R

Bits 7~0 (TPA[7]~TPA[0]): Least Significant Byte of A Group Touch Key Buffer.

6.1.129 Bank 2 R17 TPBH (Most Significant Byte of B Group Touch Key Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPB[15]	TPB[14]	TPB[13]	TPB[12]	TPB[11]	TPB[10]	TPB[9]	TPB[8]
R	R	R	R	R	R	R	R

Bits 7~0 (TPB[15]~TPB[8]): Most Significant Byte of B Group Touch Key Buffer.

6.1.130 Bank 2 R18 TPBL (Least Significant Byte of B Group Touch Key Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPB[7]	TPB[6]	TPB[5]	TPB[4]	TPB[3]	TPB[2]	TPB[1]	TPB[0]
R	R	R	R	R	R	R	R

Bits 7~0 (TPB[7]~TPB[0]): Least Significant Byte of B Group Touch Key Buffer.

6.1.131 Bank 2 R19 TPSTH (Most Significant Byte of Sense Time)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPST[15]	TPST[14]	TPST[13]	TPST[12]	TPST [11]	TPST[10]	TPST[9]	TPST[8]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~0 (TPST[15]~TPST[8]): Most Significant Byte of the maximum sense time.

6.1.132 Bank 2 R1A TPSTL (Least Significant Byte of Sense Time)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TPST[7]	TPST[6]	TPST[5]	TPST[4]	TPST[3]	TPST[2]	TPST[1]	TPST[0]
R/W	R						

Bits 7~0 (TPST [7]~TPST[0]): Least Significant Byte of the maximum sense time.

Bits 0 (TPST[0]): Set to "1" all the time

6.1.133 Bank 2 R1B~R46: (Reserved)

6.1.134 Bank 2 R47 LOCKPR (Lock Page Number Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LOCKPR7	LOCKPR6	LOCKPR5	LOCKPR4	LOCKPR3	LOCKPR2	LOCKPR1	LOCKPR0
R/W							

Bits 7~0 (LOCKPR7~ LOCKPR0): Lock Page Number

6.1.135 Bank 2 R48 LOCKCR (Lock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LOCKEN	-	-	-	-	-	-	-
R/W	0	0	0	0	0	0	0

Bit 7 (LOCKEN): Enhanced Protect Control Bit

1 : Enable

0: Disable (Default)

Bits 6~0: Not used, set to "0" all the time.

6.1.136 R50~R7F, Banks 0~3 R80~RFF

All of these are 8-bit general-purpose registers.

6.2 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT respectively. The TPSR0~ TPSR2 bits of the TCCCR register are used to determine the ratio of the prescaler of TCC. Likewise, the WPSR0~WPSR2 bits of the WDTCR register are used to determine the prescaler of WDT. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-4 depicts the circuit diagram of TCC/WDT.

TCCD is an 8-bit timer/counter. The clock source of TCC can be internal clock or external signal input (edge selectable from the TCC pin). If TCC signal source is from internal clock, TCC will increase by 1 at every instruction cycle (without prescaler). If TCC signal source is from external clock input, TCC will increase by 1 at every falling edge or rising edge of the TCC pin. TCC pin input time length (keep in High or low level) must greater than 1CLK.

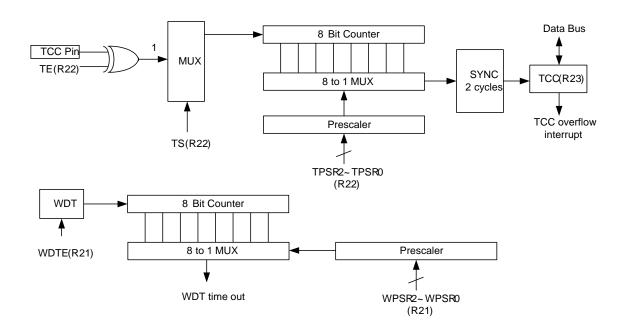
If TCC signal source is from internal clock, the TCC will stop running when sleep mode occurs.

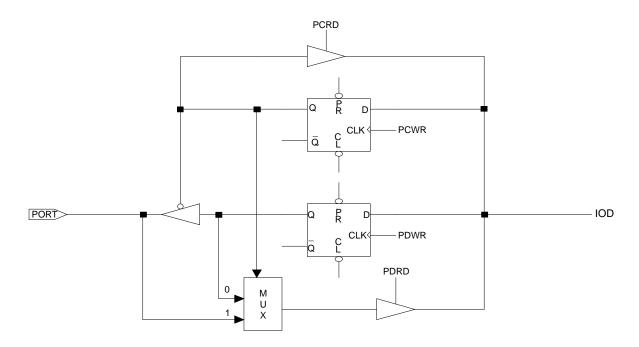
If TCC signal source is from external clock, TCC will increase by 1 at every falling edge or rising edge of the TCC pin when sleep mode occurs.

The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e. in sleep mode). During the normal operation or the sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during the normal mode by software programming. Refer to WDTE bit of WDTCR register. With no prescaler, the WDT time-out period is approximately 16.5 ms¹ (one oscillator start-up timer period).

_

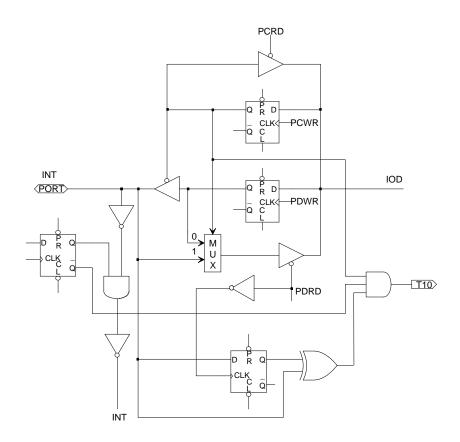
¹ **Note:** VDD=5V, WDT time-out period = 16.5ms ± 5 %.




Figure 6-4 Block Diagram of TCC and WDT

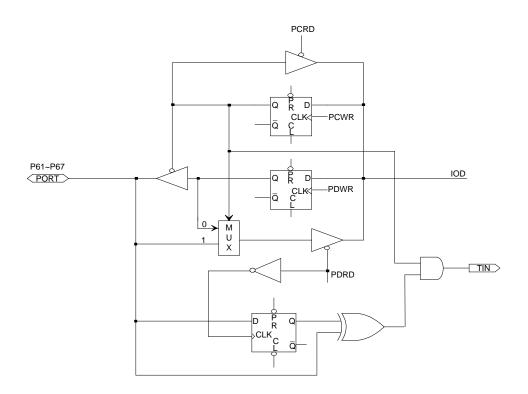
6.3 I/O Ports

The I/O registers, Port 5~Port A are bi-directional tri-state I/O ports. All can be pulled high and pulled low internally by software. In addition, they can also have open-drain output and high sink/drive setting by software. Port 5~A have wake up and interrupt function. Further, Port 5~A also have input status change interrupt function. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC8).


The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port $5 \sim \text{Port A}$ is shown in the following Figure 6-5, Figure 6-6, Figure 6-7, and Figure 6-8.

Note: Pull-down is not shown in the figure.

Figure 6-5 Circuit of I/O Port and I/O Control Register for Ports 5~A



Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-6 Circuit of I/O Port and I/O Control Register for INT

Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-7 Circuit of I/O Port and I/O Control Register for Port 5~A

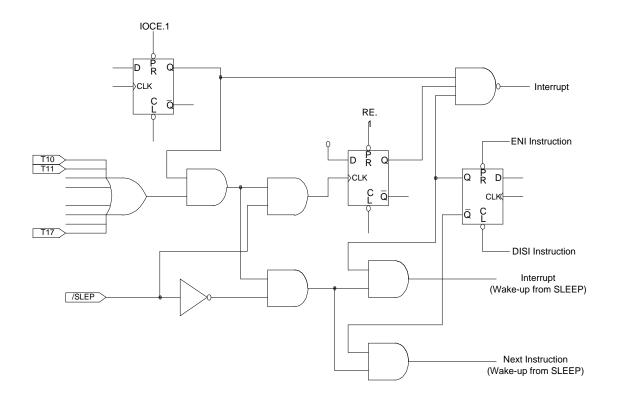


Figure 6-8 Block Diagram of I/O Ports 5~8 with Input Change Interrupt/Wake-up

Table 2 Usage of Ports 5~8 Input Changed Wake-up/Interrupt Function

Usage of Ports 5~8 Input Sta	atus Changed Wake-up/Interrupt
(I) Wake-up	(II) Wake-up and interrupt
(a) Before SLEEP	(a) Before SLEEP
1. Disable WDT	1. Disable WDT
2. Read I/O Port (MOV R6,R6)	2. Read I/O Port (MOV R6,R6)
3. Execute "ENI" or "DISI"	3. Execute "ENI" or "DISI"
4. Enable wake-up bit (Set ICWKPx*=1)	4. Enable wake-up bit (Set ICWKPx*=1)
*x = 8~5	*x = 8~5
5. Execute "SLEP" instruction	5. Enable interrupt (Set ICIE =1)
(b) After wake-up	6. Execute "SLEP" instruction
→ Next instruction	(b) After wake-up
	1. IF "ENI" → Interrupt vector (0004H)
	2. IF "DISI" → Next instruction

6.4 Reset and Wake-up

6.4.1 Reset

A Reset is initiated by one of the following events-

- (1) Power on reset.
- (2) /RESET pin input "low"
- (3) WDT time-out (if enabled).
- (4) LVR (if enabled).
- (5) Software Reset (instruction "RESET")

The device is kept in a RESET condition for a period of approx. 16ms² (one oscillator start-up timer period) after the reset is detected. If the /Reset pin goes "low" or WDT time-out is active, a reset is generated, in IRC mode the reset time is WSTO and 8/32 clocks, High XTAL mode reset time is WSTO and 510 clocks. In Low XTAL mode, the reset time is WSTO and 510 clocks (Fs). Once a RESET occurs, the following functions are performed.

Refer to Figure 6-9.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog timer and prescaler are cleared.
- The bits of the control register are set in Table 3.

The sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering sleep mode, WDT (if enabled) is cleared but keeps on running. After wake-up is generated, in IRC mode the wake-up time is WSTO and 8/32 clocks. High XTAL mode wake-up time is WSTO and 510 clocks. In low XTAL mode, the wake-up time is WSTO and 510 clocks (Fs). The controller can be awakened by :

- (1) External reset input on /RESET pin
- (2) WDT time-out (if enabled)
- (3) External (INT) pin changes (if INTWE is enabled)
- (4) Port input status changes (if ICWKPx is enabled)
- (5) SPI received data when SPI act as slave device (if SPIWK is enabled)
- (6) I2C received data when I2C act as slave device (if I2CWK is enabled)

-

Note: Vdd = 5V, set up time = 16.5ms $\pm 10\%$

- (7) A/D conversion completed (if ADWK is enabled).
- (8) TCC Counter mode overflow occur.(if TCIE is enable)

The first two cases will cause the EM88F758N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Case 3~8 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) decides whether or not the controller branches to the interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will begin to execute from the address 0x02~0x40 after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after wake-up. Only one of the Cases 3 to 7 can be enabled before entering into sleep mode. That is,

- [a] If WDT is enabled before SLEP, the EM88F758N can be wake-up only by Case 1 or Case 2. Refer to the section on Interrupt for further details.
- **[b]** If External (INT0, INT1) pin change is used to wake-up EM88F758N and EXWE bit is enabled before SLEP, WDT must be disabled. Hence, the EM88F758N can be wake-up only by Case 3.
- [c] If Port Input Status Change is used to wake-up EM88F758N and corresponding wake-up setting is enabled before SLEP, WDT must be disabled. Hence, the EM88F758N can be wake-up only by Case 4.
- [d] When SPI act as slave device, after received data will wake-up EM88F758N and SPIWK bit of Bank 0 R11 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F758N can be wake-up only by Case 5.
- [e] When I2C act as slave device, after received data will wake-up EM88F758N and I2CWK bit of Bank 0 R11 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F758N can be wake-up only by Case 6.
- [f] If AD conversion completed is used to wake-up EM88F758N and ADWK bit of Bank0 R10 register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F758N can be wake-up only by Case 7.
- [g] When TCC Counter mode use external signal overflow occur is used to wake-up EM88F758N and TCIE bit of Bank 0 R1B register is enabled before SLEP, WDT must be disabled by software. Hence, the EM88F758N can be waken-up only by Case 8.

Table 3 All kinds of wake-up mode and interrupt mode are shown below:

Wake-up	Condition	Sleep	Mode	Idle I	Mode	Green	Mode	Norma	Mode
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI
	INTWK = 0, EXIE = 0				INT Pin	Disable			
Forte mod INT	INTWK = 0, EXIE = 1		Wake-up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
External INT	INTWK = 1, EXIE = 0				INT Pin	Disable			
	INTWK = 1, EXIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
	TCIE = 0		Wake-up	is invalid			Interrupt	is invalid	
TCC INT	TCIE = 1	Wake up + Next Instruction (Counter mode)	Wake up + Interrupt Vector (Counter mode)	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
PWMA/B (When	PWMxPIE = 0		Wake-up	is invalid			Interrupt	is invalid	
TimerA/B Match PRD A/B)	PWMxPIE = 1	wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
PWMA/B (When	PWMxDIE = 0		Wake-up	is invalid			Interrupt	is invalid	
TimerA/B Match DT A/B)	PWMxDIE = 1	wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
TC1/2/3	TC1/2/3IE = 0			Wake-up	is invalid.	Interrupt	is invalid	Interrupt	is invalid
Interrupt (Used as timer)	TC1/2/3IE = 1	Wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
TC1/2/3	TC1/2/3IE = 0	Wake-up	is invalid	Wake-up	is invalid.	Interrupt	is invalid	Interrupt	is invalid
Interrupt (Used as counter)	TC1/2/3IE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
	WTIE = 0			Wake-up	is invalid	Interrupt	is invalid	Interrupt is invalid	
Watch Timer	WTIE = 1	Wake-up	is invalid	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector

Wake-up	Condition	Sleep	Mode	ldle	Mode	Green	Mode	Norma	l Mode	
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
	WKPxH/L = 0, $PxICIE = 0$		Wake-up	is invalid			Interrupt	is invalid		
Pin Change	WKPxH/L = 0, PxICIE = 1		Wake-up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
INT	WKPxH/L = 1, PxICIE = 0		-	e up + struction		Interrupt is invalid				
	WKPxH/L = 1, PxICIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	LVDWK = 0 LVDIE = 0		Wake up	is invalid			Interrupt	is invalid		
Low Voltage	LVDWK = 0 LVDIE = 1		Wake up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Detector INT	LVDWK = 1 LVDIE = 0	-	te up + struction		ke up + struction	Interrupt is invalid				
	LVDWK = 1 LVDIE = 1	Wake up + Next Instruction	Wake up + Next Instruction	Wake up + Next Instruction	Wake up + Next Instruction	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	ADWK = 0, ADIE = 0		Wake-up	is invalid			Interrupt	is invalid		
	ADWK = 0, ADIE = 1			is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
AD INT	ADWK = 1, ADIE = 0		Next Ins	e up + struction don't stop		Interrupt is invalid				
	ADWK = 1, ADIE = 1	Wake up + Next Instruction Fs and Fm don't stop			Wake up + Interrupt Vector Fs and Fm don't stop	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	I2CWK = 0, I2CxIE = 0	•	-	is invalid	•	I2 Cannot		Interrupt	is invalid	
I2C	I2CWK = 0, I2CxIE = 1		Wake-up	is invalid		I2C Cannot be used		Next Instruction	Interrupt + Interrupt Vector	
(Slave mode)	I2CWK = 1, I2CxIE = 0			e up + struction stave mode	e	I2 Cannot		Interrupt	Interrupt is invalid	
	I2CWK = 1, I2CxIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	I2 Cannot		Next Instruction	Interrupt + Interrupt Vector	

Wake-up	Condition	Sleep	Mode	ldle I	Mode	Green	Mode	Normal Mode		
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
	SPIWK = 0, SPIIE = 0		Wake-up	is invalid		Interrupt is invalid				
SPI	SPIWK = 0, SPIIE = 1		Wake-up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
(Slave mode)	SPIWK = 1, SPIIE = 0		-	e up + struction		Interrupt is invalid				
	SPIWK = 1, SPIIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Idle with scan	TPISE = 1 TPCIE = 0		Next Ins	e up						
mode INT	TPISE = 1 TPCIE = 1	Wake up + Next Instruction	Next Interrupt Next Interrupt							
WDT time out		RESET	RESET	RESET	RESET	RESET	RESET	RESET	RESET	

After wake up:

- 1. If interrupt enable → interrupt+ next instruction
- 2. If interrupt disable \rightarrow next instruction

6.4.2 Status of RST, T, and P of Status Register

A RESET condition is initiated by the following events:

- 1. A power-on condition,
- 2. A high-low-high Pulse on /RESET pin
- 3. Watchdog timer time-out.
- 4. LVR occur

The values of T and P, listed in Table 5 are used to check how the processor wakes up. Table 6 shows the events that may affect the status of T and P.

Table 5 Values of RST, T and P after RESET

Reset Type	Т	Р
Power on	1	1
/RESET during Operating mode	*P	*P
/RESET wake-up during SLEEP mode	1	0
WDT during Operating mode	0	*P
WDT wake-up during SLEEP mode	0	0
Wake-up on pin change during SLEEP mode	1	0

^{*}P: Previous status before reset

Table 6 Status of T and P Being Affected by Events

Event	Т	Р
Power on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin change during SLEEP mode	1	0

^{*}P: Previous value before reset

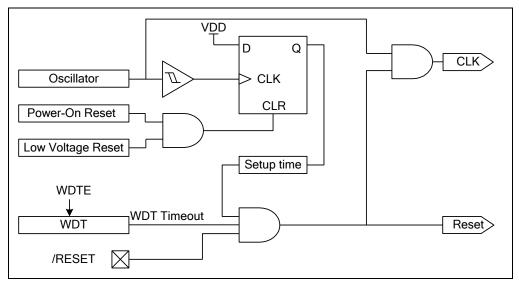


Figure 6-9 Block Diagram of Controller Reset

Table 4 Summary of the Initialized Values for Registers

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	-
0x00	R0	Power-On	U	U	U	U	U	U	U	U
0x00	(IAR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	SBS1	SBS0	1	1	GBS1	GBS0
	R1	Power-On	0	0	0	0	0	0	0	0
0x01	(BSR)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	0	0	Р	Р
		Bit Name	-	-	-	-	1	1	ı	-
	R2	Power-On	0	0	0	0	0	0	0	0
0x02	(PCL)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
	R3 (SR)	Bit Name	INT	N	OV	Т	Р	Z	DC	С
		Power-On	0	U	U	1	1	J	J	U
0x03		/RESET and WDT	0	Р	Р	t	t	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	t	t	Р	Р	Р
		Bit Name	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
	R4	Power-On	U	U	U	U	U	U	U	U
0x04	(RSR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
	Bank 0, R5	Power-On	0	0	0	0	0	0	0	0
0X05	(Port 5)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
	Bank 0, R6	Power-On	0	0	0	0	0	0	0	0
0x06	(Port 6)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x07		Bit Name	P77	P76	P75	P74	P73	P72	P71	P70
	Bank 0, R7	Power-On	0	0	0	0	0	0	0	0
0x07	(Port 7)	/RESET and WDT	0	0	0	0	0	0	0	0
0x07 0x08 0x09 0x0A		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P87	P86	P85	P84	P83	P82	P81	P80
	Bank 0, R8	Power-On	0	0	0	0	0	0	0	0
0x08	(Port 8)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P97	P96	P95	P94	P93	P92	P91	P90
	Bank 0, R9	Power-On	0	0	0	0	0	0	0	0
0x09	(Port 9)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 0, RA (Port A)	Bit Name	-	-	-	-	-	-	PA1	PA0
		Power-On	0	0	0	0	0	0	0	0
0x0A		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	IOC57	IOC56	IOC55	IOC54	IOC53	IOC52	IOC51	IOC50
	Bank 0, RB	Power-On	1	1	1	1	1	1	1	1
0X0B	(IOCR5)	/RESET and WDT	1	1	1	1	1	1	1	1
0x08 0x09		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	IOC61	IOC60
	Bank 0, RC	Power-On	1	1	1	1	1	1	1	1
0x0C	(IOCR6)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70
	Bank 0, RD	Power-On	1	1	1	1	1	1	1	1
0X0D	(IOCR7)	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0E		Bit Name	CPUS	IDLE	-	-	-	RCM2	RCM1	RCM0
		Power-On	Code option	1	0	0	0	Code option	Code option	Code option
	Bank 0, RE		(HLFS)					(RCM2)	(RCM1)	(RCM0)
	(OMCR)	/DECET INDT	Code option		0	0	0	-	-	
		/RESET and WDT	(HLFS)	1	0	0	0	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	0	0	0	Р	Р	Р
		Bit Name	-	-	-	-	EIES1	EIES0	-	-
		Power-On	0	0	0	0	1	1	0	0
0X0F	Bank 0, RF EIESCR	/RESET and WDT	0	0	0	0	1	1	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	0	0
	Bank 0, R10 (WUCR1)	Bit Name	-	-	LVDWK	ADWK	INT1WK	INT0WK	-	-
		Power-On	0	0	0	0	0	0	0	0
0x10		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	Р	Р	0	0
	Bank 0, R11	Bit Name	-	-	-	-	SPIWK	I2CWK	-	-
		Power-On	0	0	0	0	0	0	0	0
0x11	WUCR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	0	0
		Bit Name	ICWKP8	ICWKP7	ICWKP6	ICWKP5	-	-	-	-
	Bank 0, R12	Power-On	0	0	0	0	0	0	0	0
0x12	WUCR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	0	0	0	0
		Bit Name	-	-	LVDSF	ADSF	EXSF1	EXSF0	WTSF	TCSF
	Bank 0, R14	Power-On	0	0	0	0	0	0	0	0
0X14	SFR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	TC3SF	TC2SF	TC1SF
0X15	Bank 0, R15	Power-On	0	0	0	0	0	0	0	0
0X15	SFR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	Р	Р	Р
		Bit Name	-	-	-	-	PWMB PSF	PWMBDS F	PWMAP SF	PWMAD SF
	Bank 0, R16	Power-On	0	0	0	0	0	0	0	0
0X16	SFR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р
		Bit Name	P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I2CSTP SF	I2CRSF	I2CTSF
0X17	Bank 0, R17	Power-On	0	0	0	0	0	0	0	0
0,417	SFR4	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
	Bank 0, R19 SFR6	Bit Name	SHSF	-	ı	ı	TPCSF	TPSESF	-	TPSF
		Power-On	0	0	0	0	0	0	0	0
0X19		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	0	0	0	Р	Р	0	Р
		Bit Name	-	1	LVDIE	ADIE	EXIE1	EXIE0	WTIE	TCIE
	Bank 0, R1B	Power-On	0	0	0	0	0	0	0	0
0X1B	IMR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	TC3IE	TC2IE	TC1IE
	Bank 0, R1C	Power-On	0	0	0	0	0	0	0	0
0X1C	IMR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	Р	Р	Р
		Bit Name	-	-	-	-	PWMB P IE	PWMBD IE	PWMAP IE	PWMAD IE
0X1D	Bank 0, R1D IMR3	Power-On	0	0	0	0	0	0	0	0
	CAIVII	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	I2CSTP IE	I2CRIE	I2CTIE
0X1E	Bank 0, R1E	Power-On	0	0	0	0	0	0	0	0
OXIL	IMR4	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SHIE	-	-	-	TPCIE	-	TPERR IE	TPIE
0X20	Bank 0, R20	Power-On	0	0	0	0	0	0	0	0
0,120	IMR6	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	0	0	0	Р	0	Р	Р
		Bit Name	WDTE	-	-	-	PSWE	WPSR2	WPSR1	WPSR0
	Bank 0, R21	Power-On	0	0	0	0	0	0	0	0
0X21	WDTCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	0	0	0	Р	Р	Р	Р
	Bank 0, R22 TCCCR	Bit Name	ı	TCCS	TS	TE	PSTE	TPSR2	TPSR1	TPSR0
		Power-On	0	0	0	0	0	0	0	0
0X22		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
	Bank 0, R23	Power-On	0	0	0	0	0	0	0	0
0X23	TCCD	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC1S	TC1RC	TC1SS1	TC1 MOD	TC1FF	TC1MOS	TC1IS1	TC1IS0
0X24	Bank 0, R24	Power-On	0	0	0	0	0	0	0	0
0,724	TC1CR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC1M2	TC1M1	TC1M0	TC1SS0	TC1CK3	TC1CK2	TC1CK1	TC1CK0
	Bank 0, R25	Power-On	0	0	0	0	0	0	0	0
0X25	TC1CR2	/RESET and WDT	0	0	0	0	0	0	0	0
	1010112	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
	Bank 0, R26	Power-On	0	0	0	0	0	0	0	0
0X26	TC1DA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
	Bank 0, R27	Power-On	0	0	0	0	0	0	0	0
0X27	TC1DB	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC2S	TC2RC	TC2SS1	-	TC2FF	TC2MOS	TC2IS1	TC2IS0
	Bank 0, R28	Power-On	0	0	0	0	0	0	0	0
0X28	TC2CR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	0	Р	Р	Р	Р
	Bank 0, R29 TC2CR2	Bit Name	TC2M2	TC2M1	TC2M0	TC2SS0	TC2CK3	TC2CK2	TC2CK1	TC2CK0
		Power-On	0	0	0	0	0	0	0	0
0X29		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
	Bank 0, R2A	Power-On	0	0	0	0	0	0	0	0
0X2A	TC2DA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
	Bank 0, R2B	Power-On	0	0	0	0	0	0	0	0
0X2B	TC2DB	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC3S	TC3RC	TC3SS1	-	TC3FF	тсзмоѕ	TC3IS1	TC3IS0
	Bank 0, R2C	Power-On	0	0	0	0	0	0	0	0
0X2C	TC3CR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	0	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TC3M2	TC3M1	TC3M0	TC3SS0	TC3CK3	TC3CK2	TC3CK1	TC3CK0
	Bank 0, R2D	Power-On	0	0	0	0	0	0	0	0
0X2D	TC3CR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
	Bank 0, R2E	Power-On	0	0	0	0	0	0	0	0
0X2E	TC3DA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
	Bank 0, R2F	Power-On	0	0	0	0	0	0	0	0
0X2F	TC3DB	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Strobe/P end	IMS	ISS	STOP	SAR_EM PTY	ACK	FULL	EMPTY
0X30	Bank 0, R30	Power-On	0	0	0	0	1	0	0	1
0.730	I2CCR1	/RESET and WDT	0	0	0	0	1	0	0	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	I2CBF	GCEN	I2COPT	BBF	I2CTS2	I2CTS1	I2CTS0	I2CEN
0X31	Bank 0, R31 I2CCR2	Power-On	0	0	Code option (I2COPT)	0	0	0	0	0
	12CCR2	/RESET and WDT	0	0	Р	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
	Bank 0, R32	Power-On	0	0	0	0	0	0	0	0
0X32	I2CSA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Bank 0, R33	Power-On	0	0	0	0	0	0	0	0
0X33	I2CDB	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
	Bank 0, R34	Power-On	1	1	1	1	1	1	1	1
0X34	I2CDAL	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	ı	-	DA9	DA8
	Bank 0, R35	Power-On	0	0	0	0	0	0	1	1
0X35	I2CDAH	/RESET and WDT	0	0	0	0	0	0	1	1
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
	Bank 0, R36	Power-On	0	0	0	0	0	0	0	0
0X36	SPICR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DORD	TD1	TD0	-	OD3	OD4	ı	RBF
	Bank 0, R37	Power-On	0	0	0	0	0	0	0	0
0X37	SPIS	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	0	Р	Р	0	Р
		Bit Name	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
	Bank 0, R38	Power-On	0	0	0	0	0	0	0	0
0X38	SPIR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
	Bank 0, R39	Power-On	0	0	0	0	0	0	0	0
0X39	SPIW	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
	Bank 0, R3E	Power-On	0	0	0	0	0	0	0	0
0X3E	ADCR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	-
	Bank 0, R3F	Power-On	0	0	0	0	0	0	0	0
0X3F	ADCR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	0
		Bit Name	-	-	•	-	ADIS3	ADIS2	ADIS1	ADIS0
	Bank 0, R40	Power-On	0	0	0	0	0	0	0	0
0X40	ADISR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р
		Bit Name	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Bank 0, R41	Power-On	0	0	0	0	0	0	0	0
0X41	ADER 1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
	Bank 0, R43	Power-On	U	U	U	U	U	U	U	U
0X43	ADDL	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
	Bank 0, R44	Power-On	U	U	U	U	U	U	U	U
0X44	ADDH	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADCD7	ADCD6	ADCD5	ADCD4	ADCD3	ADCD2	ADCD1	ADCD0
	Bank 0, R45	Power-On	0	0	0	0	0	0	0	0
0X45	ADCVL	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADCD15	ADCD14	ADCD13	ADCD12	ADCD11	ADCD10	ADCD9	ADCD8
	Bank 0, R46	Power-On	0	0	0	0	0	0	0	0
0X46	ADCVH	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
,		Bit Name	IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80
	Bank 1, R5	Power-On	1	1	1	1	1	1	1	1
0X05	IOCR8	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC97	IOC96	IOC95	IOC94	IOC93	IOC92	IOC91	IOC90
	Bank 1, R6	Power-On	1	1	1	1	1	1	1	1
0X06	IOCR9	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	IOCA1	IOCA0
	Bank 1, R7	Power-On	0	0	0	0	0	0	1	1
0X07	IOCRA	/RESET and WDT	0	0	0	0	0	0	1	1
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
	Bank 1, R8	Power-On	1	1	1	1	1	1	1	1
0X08	P5PHCR	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
	Bank 1, R9	Power-On	1	1	1	1	1	1	1	1
0X09	P6PHCR	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	PALPH	Р9НРН	P9LPH	Р8НРН	P8LPH	P7HPH	P7LPH
	Bank 1, RA	Power-On	0	1	1	1	1	1	1	1
0X0A	P789APHCR	/RESET and WDT	0	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
	Bank 1, RB	Power-On	1	1	1	1	1	1	1	1
0X0B	P5PLCR	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
	Bank 1, RC	Power-On	1	1	1	1	1	1	1	1
0X0C	P6PLCR	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	PALPL	P9HPL	P9LPL	P8HPL	P8LPL	P7HPL	P7LPL
	Bank 1, RD	Power-On	0	1	1	1	1	1	1	1
0X0D	P789APLCR	/RESET and WDT	0	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	H57	H56	H55	H54	H53	H52	H51	H50
	Bank 1, RE	Power-On	1	1	1	1	1	1	1	1
0X0E	P5HDSCR	/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	H67	H66	H65	H64	H63	H62	H61	H60
		Power-On	1	1	1	1	1	1	1	1
0X0F	Bank 1, RF P6HDSCR	/RESET and WDT	1	1	1	1	1	1	1	1
	. 0.1200.1	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	PALHDS	P9HHDS	P9LHDS	P8HHDS	P8LHDS	P7HHDS	P7LHDS
	Bank 1, R10	Power-On	0	1	1	1	1	1	1	1
0X10	P789AHDSC R	/RESET and WDT	0	1	1	1	1	1	1	1
	IX.	Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
	Bank 1, R11	Power-On	0	0	0	0	0	0	0	0
0X11	P5ODCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
	Bank 1, R12	Power-On	0	0	0	0	0	0	0	0
0X12	P6ODCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	PALOD	P9HOD	P9LOD	P8HOD	P8LOD	P7HOD	P7LOD
	Bank 1, R13	Power-On	0	0	0	0	0	0	0	0
0X13	P789AODCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	1	-	1	DEADTP 3	DEADTP 2	DEADTP 1	DEADTP 0
0x14	Bank 1, R14	Power-On	0	0	0	0	0	0	0	0
0.00.14	DeadTCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р
		Bit Name	DEADTR 7	DEADTR 6	DEADTR 5	DEADTR 4	DEADTR 3	DEADTR 2	DEADTR 1	DEADTR 0
0x15	Bank 1, R15	Power-On	0	0	0	0	0	0	0	0
0.13	DeadTR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	ı	-	DEADS	ı	ı	PWMBS	PWMAS
	Bank 1, R16	Power-On	0	0	0	0	0	0	0	0
0X16	PWMSCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	Р	0	0	Р	Р
		Bit Name	PWMAE	IPWMAE	PWMAA	IPWMAA	TAEN	TAP2	TAP1	TAP0
	Bank 1, R17	Power-On	0	0	0	0	0	0	0	0
0X17	PWMACR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Ρ	Р	Р	Р	Р	Р	Р
		Bit Name	PRDA7	PRDA6	PRDA5	PRDA4	PRDA3	PRDA2	PRDA1	PRDA0
	Bank 1, R18	Power-On	0	0	0	0	0	0	0	0
0X18	PRDAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRDA15	PRDA14	PRDA13	PRDA12	PRDA11	PRDA10	PRDA9	PRDA8
	Bank 1, R19	Power-On	0	0	0	0	0	0	0	0
0X19	PRDAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DTA7	DTA6	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0
	Bank 1, R1A	Power-On	0	0	0	0	0	0	0	0
0X1A	DTAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DTA15	DTA14	DTA13	DTA12	DTA11	DTA10	DTA9	DTA8
	Bank 1, R1B	Power-On	0	0	0	0	0	0	0	0
0X1B	DTAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMRA7	TMRA6	TMRA5	TMRA4	TMRA3	TMRA2	TMRA1	TMRA0
	Bank 1, R1C	Power-On	0	0	0	0	0	0	0	0
0X1C	TMRAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMRA15	TMRA14	TMRA13	TMRA12	TMRA11	TMRA10	TMRA9	TMRA8
	Bank 1, R1D	Power-On	0	0	0	0	0	0	0	0
0X1D	TMRAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PWMBE	IPWMBE	PWMBA	IPWMBA	TBEN	TBP2	TBP1	TBP0
	Bank 1, R1E	Power-On	0	0	0	0	0	0	0	0
0X1E	PWMBCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRDB7	PRDB6	PRDB5	PRDB4	PRDB3	PRDB2	PRDB1	PRDB0
	Bank 1, R1F	Power-On	0	0	0	0	0	0	0	0
0X1F	PRDBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRDB15	PRDB14	PRDB13	PRDB12	PRDB11	PRDB10	PRDB9	PRDB8
	Bank 1, R20	Power-On	0	0	0	0	0	0	0	0
0X20	PRDBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DTB7	DTB6	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0
	Bank 1, R21	Power-On	0	0	0	0	0	0	0	0
0X21	DTBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DTB15	DTB14	DTB13	DTB12	DTB11	DTB10	DTB9	DTB8
	Bank 1, R22	Power-On	0	0	0	0	0	0	0	0
0X22	DTBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMRB7	TMRB6	TMRB5	TMRB4	TMRB3	TMRB2	TMRB1	TMRB0
	Bank 1, R23	Power-On	0	0	0	0	0	0	0	0
0X23	TMRBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMRB15	TMRB14	TMRB13	TMRB12	TMRB11	TMRB10	TMRB9	TMRB8
	Bank 1, R24	Power-On	0	0	0	0	0	0	0	0
0X24	TMRBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	WTE	WTSSB1	WTSSB0	ı		•	RD	WR
	Bank 1, R40	Power-On	0	0	0	0	0	0	0	0
0X40	WCR&EECR 1	/RESET and WDT	0	0	0	0	0	0	0	0
	'	Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	EEWE	EEDF	EEPC				-	
	Bank 1, R41	Power-On	0	0	0	0	0	0	0	0
0X41	EECR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	0	0	0	0	0
		Bit Name	EERA7	EERA6	EERA5	EERA4	EERA3	EERA2	EERA1	EERA0
	Bank 1, R42	Power-On	0	0	0	0	0	0	0	0
0X42	EERA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	EERD7	EERD6	EERD5	EERD4	EERD3	EERD2	EERD1	EERD0
	Bank 1, R43	Power-On	0	0	0	0	0	0	0	0
0X43	EERD	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	FLK[7]	FLK[6]	FLK[5]	FLK[4]	FLK[3]	FLK[2]	FLK[1]	FLK[0]
	Bank 1, R44	Power-On	0	0	0	0	0	0	0	0
0X44	FLKR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Bank 1, R45	Power-On	0	0	0	0	0	0	0	0
0X45	TBPTL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HLB	RDS	1	TB12	TB11	TB10	TB9	TB8
	Bank 1, R46	Power-On	0	0	0	0	0	0	0	0
0X46	ТВРТН	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	STOV	-	-	-	STL3	STL2	STL1	STL0
	Bank 1, R47	Power-On	0	0	0	0	0	0	0	0
0X47	STKMON	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	0	0	0	Р	Р	Р	Р
		Bit Name	-	1	ı	PC12	PC11	PC10	PC9	PC8
	Bank 1, R48	Power-On	0	0	0	0	0	0	0	0
0X48	PCH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	Р	Р	Р	Р	Р
		Bit Name	LVDEN	-	LVDS1	LVDS0	LVDB	-	-	-
	Bank 1, R49	Power-On	0	0	0	0	1	0	0	0
0X49	LVDCR	/RESET and WDT	0	0	0	0	1	0	0	0
		Wake-up from Sleep/Idle	Р	0	Р	Р	Р	0	0	0

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	IAPEN
	Bank 1, R4D	Power-On	0	0	0	0	0	0	0	0
0X4D	TBWCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	0	Р
		Bit Name	TBWA [7]	TBWA [6]	TBWA [5]	TBWA [4]	TBWA [3]	TBWA [2]	TBWA [1]	TBWA [0]
0X4E	Bank 1, R4E	Power-On	0	0	0	0	0	0	0	0
071.2	TBWAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	TBWA [12]	TBWA [11]	TBWA [10]	TBWA [9]	TBWA [8]
0X4F	Bank 1, R4F	Power-On	0	0	0	0	0	0	0	0
	TBWAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	Р	Р	Р	Р	Р
		Bit Name	TPAEP8	TPAEP7	TPAEP6	TPAEP5	TPAEP4	TPAEP3	TPAEP2	TPAEP1
	Bank 2, R5	Power-On	0	0	0	0	0	0	0	0
0X05	TPEPCR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	•	-	-	-	-	-	TPAEP10	TPAEP9
	Bank 2, R6	Power-On	0	0	0	0	0	0	0	0
0X06	TPEPCR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	TPBEP8	TPBEP7	TPBEP6	TPBEP5	TPBEP4	TPBEP3	TPBEP2	TPBEP1
	Bank 2, R7	Power-On	0	0	0	0	0	0	0	0
0X07	TPEPCR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Ρ	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	TPBEP10	TPBEP9
	Bank 2, R8	Power-On	0	0	0	0	0	0	0	0
0X08	TPEPCR4	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TPBCS3	TPBCS2	TPBCS1	TPBCS0	TPACS3	TPACS2	TPACS1	TPACS0
	Bank 2, R9	Power-On	0	0	0	0	0	0	0	0
0X09	TPCCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBSW3	TPBSW2	TPBSW1	TPBSW0	TPASW3	TPASW2	TPASW1	TPASW0
	Bank 2, RA	Power-On	0	0	0	0	0	0	0	0
0X0A	TPCR1	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBEN	TPAEN	TPDS1	TPDS0	TPR3	TPR2	TPR1	TPR0
	Bank 2, RB	Power-On	0	0	0	0	0	0	0	0
0X0B	TPCR2	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPS	1	TPBRTH	TPARTH	TPISE	TPMCE	TPWT1	TPWT0
	Bank 2, RC	Power-On	0	0	0	0	0	0	0	0
0X0C	TPCR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	0	Р	Р	Р	Р	Р	Р
		Bit Name	TPATH [15]	TPATH [14]	TPATH [13]	TPATH [12]	TPATH [11]	TPATH [10]	TPATH [9]	TPATH [8]
OVOD	Bank 2, RD	Power-On	0	0	0	0	0	0	0	0
0X0D	TPAHTH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPATH [7]	TPATH [6]	TPATH [5]	TPATH [4]	TPATH [3]	TPATH [2]	TPATH [1]	TPATH [0]
	Bank 2, RE	Power-On	0	0	0	0	0	0	0	0
0X0E	TPAHTL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPATL [15]	TPATL [14]	TPATL [13]	TPATL [12]	TPATL [11]	TPATL [10]	TPATL [9]	TPATL [8]
a) (= =	Bank 2, RF	Power-On	0	0	0	0	0	0	0	0
0X0F	TPALTH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
'		Bit Name	TPATL	TPATL	TPATL	TPATL	TPATL	TPATL	TPATL	TPATL
			[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0X10	Bank 2, R10	Power-On	0	0	0	0	0	0	0	0
	TPALTL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBTH[1 5]	TPBTH[1 4]	TPBTH[1 3]	TPBTH[1 2]	TPBTH[1 1]	TPBTH[1 0]	TPBTH[9]	TPBTH[8]
0X11	Bank 2, R11	Power-On	0	0	0	0	0	0	0	0
UXII	TPBHTH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBTH	TPBTH	TPBTH	TPBTH	TPBTH	TPBTH	TPBTH	TPBTH
		Dit Name	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0X12	Bank 2, R12	Power-On	0	0	0	0	0	0	0	0
071.2	TPBHTL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBTL [15]	TPBTL [14]	TPBTL [13]	TPBTL [12]	TPBTL [11]	TPBTL [10]	TPBTL [9]	TPBTL [8]
0X13	Bank 2, R13	Power-On	0	0	0	0	0	0	0	0
0.713	TPBLTH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPBTL	TPBTL	TPBTL	TPBTL	TPBTL	TPBTL	TPBTL	TPBTL
		Dit Name	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0X14	Bank 2, R14	Power-On	0	0	0	0	0	0	0	0
07111	TPBLTL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPA[15]	TPA[14]	TPA[13]	TPA[12]	TPA[11]	TPA[10]	TPA[9]	TPA[8]
	Bank 2, R15	Power-On	0	0	0	0	0	0	0	0
0X15	TPAH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
'		Bit Name	TPA[7]	TPA[6]	TPA[5]	TPA[4]	TPA[3]	TPA[2]	TPA[1]	TPA[0]
	Bank 2, R16	Power-On	0	0	0	0	0	0	0	0
0X16	TPAL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPB[15]	TPB[14]	TPB[13]	TPB[12]	TPB[11]	TPB[10]	TPB[9]	TPB[8]
	Bank 2, R17	Power-On	0	0	0	0	0	0	0	0
0X17	TPBH	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPB[7]	TPB[6]	TPB[5]	TPB[4]	TPB[3]	TPB[2]	TPB[1]	TPB[0]
	Bank 2, R18	Power-On	0	0	0	0	0	0	0	0
0X18	TPBL	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPST [15]	TPST [14]	TPST [13]	TPST [12]	TPST [11]	TPST [10]	TPST [9]	TPST [8]
0X19	Bank 2, R19 TPSTH	Power-On	0	0	0	0	0	0	0	0
0/(13		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TPST							
		211.114	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0X1A	Bank 2, R1A	Power-On	0	0	0	0	0	0	0	1
	TPSTL	/RESET and WDT	0	0	0	0	0	0	0	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	1
		Bit Name	LOCKPR [7]	LOCKPR [6]	LOCKPR [5]	LOCKPR [4]	LOCKPR [3]	LOCKPR [2]	LOCKPR [1]	LOCKPR [0]
0X47	Bank 2, R47	Power-On	0	0	0	0	0	0	0	0
0,47	LOCKPR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	LOCKEN	-	-	-	-	-	-	-
	Bank 2, R48	Power-On	0	0	0	0	0	0	0	0
0X48	LOCKCR	/RESET and WDT	0	0	0	0	0	0	0	0
	LOCKON	Wake-up from Sleep/Idle	Р	0	0	0	0	0	0	0

U: Unknown or don't care. P: Previous value before reset. C: The same with Code option t: Check Table 6

6.5 Interrupt

The EM88F758N has 21 interrupts (3 external, 18 internal) listed below:

Interrup	ot Source	Enable Condition	Int. Flag	Int. Vector	Priority
Internal/External	Reset	•	-	0	High 0
External	INT	ENI + EXIE0=1	EXSF0	2	1
External	IIN I	ENI + EXIE1=1	EXSF1	2	ı
		ENI + P5ICIE=1	P5ICSF		
External	Din Changa	ENI + P6ICIE=1	P6ICSF	4	2
External	Pin Change	ENI + P7ICIE=1	P7ICSF	4	2
		ENI + P8ICIE=1	P8ICSF		
Internal	TCC	ENI + TCIE=1	TCSF	6	3
Internal	LVD	ENI+LVDEN & LVDIE=1	LVDSF	8	4
Internal	SPI	ENI + SPIIE=1	SPISF	С	5
Internal	AD	ENI + ADIE=1	ADSF	10	6
Internal	TC1	ENI + TC1IE=1	TC1SF	12	7
Internal	PWMPA	ENI+PWMAPIE=1	PWMAPSF	14	8
Internal	PWMDA	ENI+PWMADIE=1	PWMADSF	16	9
Internal	I2C Transmit	ENI+ I2CTIE	I2CTSF	1A	10
Internal	I2C Receive	ENI+ I2CRIE	I2CRSF	1C	11
Internal	I2C STOP	ENI+ I2CSTPIE	I2CSTPSF	1E	12
Internal	TC2	ENI + TC2IE=1	TC2SF	22	13
Internal	PWMPB	ENI+PWMBPIE=1	PWMBPSF	24	14
Internal	PWMDB	ENI+PWMBDIE=1	PWMBDSF	26	15
Internal	TC3	ENI + TC3IE=1	TC3SF	28	16
Internal	Watch Timer	ENI + WTIE=1	WTSF	38	17
External	System hold	ENI+SHIE	SHSF	3A	18
Internal	Touch Key	ENI+TPIE	TPSF	3C	19
Internal	Touch Key error	ENI+TPERRIF	TPSESF	3E	20
Internal	Touch Key auto wakeup	ENI+TPCIE	TPCSF	40	21

Bank 0 R14~R19 are the interrupt status registers that record the interrupt requests in the relative flags/bits. Bank 0 R1B~R20 is the interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the interrupts (enabled) occurs, the next instruction will be fetched from individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICSF bit delete) in the Interrupt Status Register is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

External interrupt equipped with digital noise rejection circuit (input Pulse less than **4 system clocks time** is eliminated as noise). When an interrupt (Falling edge) is generated by the External interrupt (when enabled), the next instruction will be fetched from Address 002H.

Before the interrupt subroutine is executed, the contents of ACC and the R3 (Bits 0~6) and R4 register will be saved by hardware. If another interrupt occurred, the ACC, R3

(Bit 0~Bit 6) and R4 will be replaced by the new interrupt. After the interrupt service routine is finished, ACC, R3 (Bit 0~Bit 6) and R4 will be pushed back.

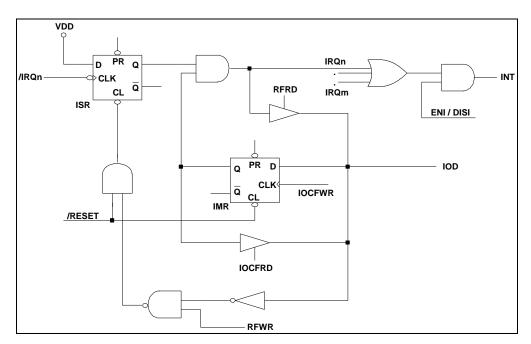


Figure 6-10 Interrupt Input Circuit Diagram

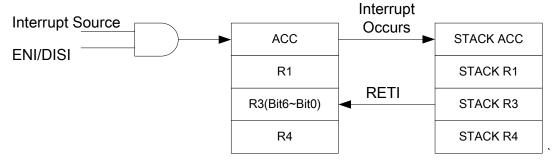


Figure 6-11 Interrupt Backup Diagram

Touch Key 6.6

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
							TPCSF	TPSESF		TPSF			
Bank 0	0x19	SFR6					F	F		F			
D							TPCIE		TPERRIE	TPIE			
Bank 0	0x20	IMR6					R/W		R/W	R/W			
Donk 0	005	TPEP	TPAEP8	TPAEP7	TPAEP6	TPAEP5	TPAEP4	TPAEP3	TPAEP2	TPAEP1			
Bank 2	0x05	CR1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2	0x06	TPEP							TPAEP10	TPAEP9			
Dalik 2	0,00	CR2							R/W	R/W			
Bank 2	0x07	TPEP	TPBEP8	TPBEP7	TPBEP6	TPBEP5	TPBEP4	TPBEP3	TPBEP2	TPBEP1			
Dunk 2	UXU1	CR3	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2	0x08	TPEP							TPBEP10	TPBEP9			
		CR4							R/W	R/W			
Bank 2	2 0x09	TPCCR		TPBCS2					TPACS1	TPACS0			
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2	0x0A	TPCR1				TPBSW0				TPASW0			
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2	0x0B	TPCR2	TPBEN	TPAEN	TPDS1	TPDS0	TPR3	TPR2	TPR1	TPR0			
	0x0C		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2		TPCR3	TPS		TPBRTH	TPARTH	TPISE	TPMCE	TPWT1	TPWT0			
			R/W		R/W	R/W	R/W	R/W	R/W	R/W			
Bank 2	0x0D	TPAHTH				TPATH							
			R/W TPATHIT:01										
Bank 2	0x0E	TPAHTL	TPATH[7:0] R/W										
				TPATL[15:8]									
Bank 2	0x0F	TPALTH		R/W									
				TPATL[7:0]									
Bank 2	0x10	TPALTL					W						
						TPBTI	H[15:8]						
Bank 2	0x11	ТРВНТН				R/	W						
David 0	040	TDDUT				TPBT	H[7:0]						
Bank 2	0X12	TPBHTL				R/	W						
Bank 2	0x13	TPBLTH				TPBTI	_[15:8]						
Dalik 2	UXIS	IPBLIN				R/	W						
Bank 2	0x14	TPBLTL				TPBT	L[7:0]						
Dalik 2	UX 14	IFBLIL				R/	W						
Bank 2	0x15	TPAH				TPAH	[15:8]						
Dank Z	0.10					R/	W						
Bank 2	0x16	TPAL					l[7:0]						
Duill E	VAIV					R/	W						

R_BANK	Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Bank 2	0x17	ТРВН	TPBH[15:8]								
Dalik 2	UXII	IFBN	R/W								
Bank 2	0x18 TPBL TPBL[7:0]										
Dalik 2	Dank 2 UX10	IFBL	RW								
Bank 2	0x19	TPSTH				TPST	[15:8]				
Dalik 2	UXIS	IFSIR		RW							
Bank 2	0x1A	TPSTL	TPST[7:1]							TPST[0]	
Dalik 2 UX17	UXIA	IFSIL			•	R/W	•			R	

6.6.1 Overview

C to F Counter is simply a counter which signal source is RC ring oscillation. User can use different capacitor sensor (pad button) and result different oscillation frequency. Then the frequency can be obtained by counting the signal. Finally the parameter we sense can be obtained by calculating the counter value in different counting mode.

6.6.2 Function Description

TPDS[1:0] and TPR[3:0] control the frequency detect and read time for touch key counter. The 16-bit counter is count up and counter result will be load into TPA/TPB, and then produce interrupt. If counter is overflow produce interrupt too, and TPA/TPB will be clear.

Set TPEN bit to enable the touch key function. There must be an interval of 10 μ s between set TPEN and stable Bias and Bandgap. Then TPS bit can be set to begin to count and clear TPA/TPB. They were distance to TPEN, TPS and TPOUT. Refer to Figure 6-12. The 16-bit counter stops and TPS bit resets when clock overflows and generate an interrupt flag.

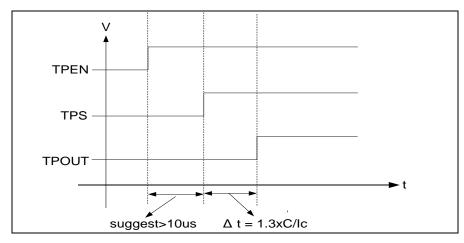


Figure 6-12 Touch Key Operate Timing Diagram

6.6.3 Normal Mode Programming

The Touch Key operates as follows:

- 1. Set TPxEN to enable the touch key function.
- 2. Set TPxSW[3:0] and TPxEP[9:0] to select touch key sensor pin.
- 3. Change TPR[3:0], TPDS[1:0] and TPxCS[3:0] to select fitting TPOUT frequency.
- 4. Set TPS bit to start 16-bit counter.
- 5. Read TPx[15:0] value.
- 6. Repeat 2~5 and then compare TPx[15:0] value.
 - *x can be A or B
 - *Touch key module need 10us warm-up time

TK-Idle/TK-Sleep Mode Programming

The Touch Key operates as follows:

- 1. Set TPxEN to enable the touch key function.
- 2. Set TPxSW[3:0] and TPxEP[9:0] to select touch key sensor pin.
- 3. Change TPR[3:0], TPDS[1:0] and TPxCS[3:0] to select fitting TPOUT frequency.
- 4. Set TPS bit to start sensing.
- 5. Read TPx[15:0] value, then set TPxTH[15:0] and TPxTL[15:0].
- 6. Set TPWT[1:0] to select wake-up time.
- 7. Set TPISE bit to enable auto-scan function
- 8. Execute SLEP instruction (Idle or Sleep Mode)
- 9. Until the TPx[15:0] value over TPxTH[15:0] and TPxTL[15:0], then wake-up

^{*}x can be A or B

^{*}Touch key module need 10 µs warm-up time

6.7 A/D Converter

R_BANK	Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0.25	ADCR1	CKR2	CKR1	CKR0	ADRUN	ADP	ADOM	SHS1	SHS0
Dalik U	UXSE	ADCKI	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0×3E	ADCR2		VPIS2	ADIM	ADCMS	VPIS1	VPIS0	VREFP	
Balik U	UXSF	ADCKZ		R/W	R/W	R/W	R/W	R/W	R/W	
Bank 0	0x40	ADISR					ADIS3	ADIS2	ADIS1	ADIS0
Dank U	UX4U	ADIOK					R/W	R/W	R/W	R/W
Bank 0	0x41	ADER1	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE7
Balik U	0.41	ADLINI	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x43	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
Dalik U	0.43		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x44	ADDH	ADD15	ADD14	ADD13	ADD12	ADD11	ADD10	ADD9	ADD8
Balik U	UX44	ADDII	R	R	R	R	R	R	R	R
Bank 0	0×45	ADCVL	ADCD7	ADCD6	ADCD5	ADCD4	ADCD3	ADCD2	ADCD1	ADCD0
Balik U	0.45		R	R	R	R	R	R	R	R
Bank 0	0×46	ADCVH	ADCD15	ADCD14	ADCD13	ADCD12	ADCD11	ADCD10	ADCD9	ADCD8
Dalik U	0.46	ADCVII	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0×10	WUCR2				ADWK				
Balik U	0.00	WUCKZ				R/W				
Bank 0	0x14	SED4				ADSF				
Balik U	UX 14	SFR1				R/W				
Bank 0	0x1B	IMD4				ADIE				
Ballk U	UXIB	IMR1				R/W				

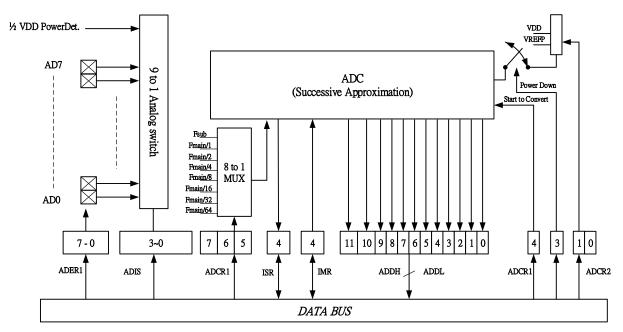


Figure 6.13 AD Converter

This is a 12-bit successive approximation register analog to digital converter (SAR ADC). There are two reference voltages for SAR ADC. The positive reference voltage can select internal AVDD, internal voltage sources or external input pin by setting the VREFP & VPIS [1:0] bits in ADCR2. Connecting to external positive reference voltage provides more accuracy than using internal AVDD.

6.7.1 ADC Data Register

When the AD conversion is completed, the result is loaded to the ADDH and ADDL. And the ADSF is set if ADIE is enabled.

6.7.2 A/D Sampling Time

The accuracy, linearity, and speed of the successive approximation AD converter are dependent on the properties of the ADC. The source impedance and the internal sampling impedance directly affect the time required to charge the sample and hold capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 4 μ s for each kilo ohms of the analog source impedance and at least 4 μ s for the low-impedance source. The maximum recommended impedance for the analog source is $10 \text{K}\Omega$ at VDD = 5V. After the analog input channel is selected; this acquisition time must be done before AD conversion can be started.

6.7.3 A/D Conversion Time

CKR[2:0] select the conversion time (T_{CT}), in terms of instruction cycles. This allows the MCU to run at maximum frequency without sacrificing accuracy of AD conversion. For the EM88F758N, the conversion time per bit is about 0.5 μ s. The following table shows the relationship between T_{CT} and the maximum operating frequencies.

System Mode	CKR2~0	Clock Rate	Max. System Operation Frequency in 1.8~2.2V	Max. System Operation Frequency in 2.2~2.7V	Max. System Operation Frequency in 2.7~5V
	000	F _{Main} /16	8 MHz	-	20 MHz
	001	F _{Main} /8	4 MHz	8 MHz	16 MHz
	010	F _{Main} /4	2 MHz	4 MHz	8 MHz
Normal	011	F _{Main} /2	1 MHz	2 MHz	4 MHz
Mode	100	F _{Main} /64	-	-	20 MHz
	101	F _{Main} /32	-	-	20 MHz
	110	F _{Main} /1	500 kHz	1 MHz	2 MHz
	111	F_Sub	Fs	Fs	Fs
Green Mode	xxx	F_Sub	Fs	Fs	Fs

NOTE

For the system operation frequency, it's must to refer to Table 13 of Section 6.13.

6.7.4 ADC Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduce power consumption, the AD conversion remains operational during sleep mode. As the SLEP instruction is executed, all the MCU operations will stop except for the Oscillator, TCC, TC1~3, PWMA~B timers and AD conversion.

The AD Conversion is considered completed as determined by:

- 1. The ADRUN bit of the Bank 0-R3E register is cleared to "0".
- 2. The ADSF bit of the Bank 0-R15 register is set to "1".
- 3. The ADWK bit of the Bank 0-R10 register is set to "1". Wakes up from ADC conversion (where it remains in operation during sleep mode).
- 4. Wake up and execution of the next instruction if the ADIE bit of the Bank 0-R1B is enabled and the "DISI" instruction is executed.
- 5. Wake up and enters into Interrupt vector if the ADIE bit of the Bank 0-R1B is enabled and the "ENI" instruction is executed.

Enters into an Interrupt vector if the ADIE bit of the Bank0-R1B is enabled and the "ENI" instruction is executed.

The results are fed into the ADDL and ADDH registers when the conversion is completed. If the ADWK is enabled, the device will wake up. Otherwise, the AD conversion will be shut off, no matter what the status of the ADP bit is.

6.7.5 Programming Process/Considerations

Follow these steps to obtain data from the ADC:

- 1. Write to the eight bits (ADE[7:0]) on the Bank 0-R41 (ADER1) register to define the characteristics of P50~P57 (digital I/O, analog channels).
- 2. Write to the Bank 0-R3E(ADCR1) register to configure the AD module:
 - a) Select the ADC input channel (ADIS[3:0])
 - b) Define the AD conversion clock rate (CKR[2:0])
 - c) Select the VREFP input source of the ADC
 - d) Set the ADP bit to 1 to begin sampling
- 3. Set the ADWK bit, if the wake-up function is employed
- 4. Set the ADIE bit, if the interrupt function is employed
- 5. Write "ENI" instruction, if the interrupt function is employed
- 6. Set the ADRUN bit to 1
- 7. Write "SLEP" instruction or Polling.
- 8. Wait for wake-up or for the ADRUN bit to be cleared to "0", status flag (ADSF) is set "1," or ADC interrupt occurs.
- 9. Read the ADDL and ADDH conversion data registers. If the ADC input channel changes at this time, the ADDL and ADDH values can be cleared to '0'.
- 10. Clear the status flag (ADSF).
- 11. For next conversion, go to Step 1 or Step 2 as required. At least two T_{CT} is required before the next acquisition starts.

NOTE

In order to obtain accurate values, it is necessary to avoid any data transition on the I/O pins during AD conversion

6.7.6 Programming Process for Detecting Internal VDD

VDD is detected within the operation, as described in the previous section the difference is that before starting the ADC conversion, the first detection of VDD is ready. Therefore in Detecting VDD:

It should be noted that before starting the AD conversion operation, the channel has to be switched to 1/2VDD channel, the voltage divider is started, then AD can be

converted. Several points to note is that, precise conversion values can be added in the VDD Pin capacitance, or more than twice the conversion, taking the average or the last few strokes data in order to increase the reliability of the data.

Note that usually before VDD is detected, do not switch the channel to 1/2VDD channel, as it has always been a DC current consumption, must be switched to another channel analog multiplexer, and it will be shut out of the resistor divider, which requires user attention.

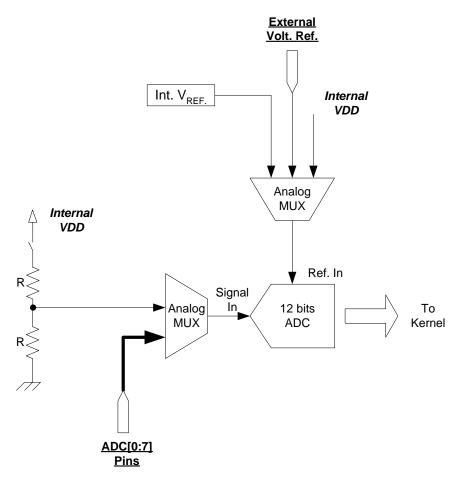


Figure 6-13 ADC and VDD Detection Block Diagram

6.8 Timer

There are three Timers in the EM88F758N. Timer 2 and Timer 3 are 8 bits up-counter. Timer 1 can be as one 8-bit up-counter or cascaded with Timer 2 as one 16-bit up-counter. If Timer 1 is used as 16-bit up-counter, the circuit resource of Timer 2 would be used. At this time, Timer 2 cannot be used.

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bonk 0	0×24	TC4CB4	TC1S	TC1RC	TC1SS1	TC1MOD	TC1FF	TC1OMS	TC1IS1	TC1IS0
Bank 0	0x24	TC1CR1	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Bonk 0	0×25	TC4CB2	TC1M2	TC1M1	TC1M0	TC1SS0	тс1СК3	TC1CK2	TC1CK1	TC1CK0
Bank 0	0x25	TC1CR2	R/W							
Bonk 0	0×26	TC4DA	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
Bank 0	0x26	TC1DA	R/W							
Pank 0	0×27	TC1DB	TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
Bank 0	0x27	ICIDB	R/W							
Bank 0	0x28	TC2CB4	TC2S	TC2RC	TC2SS1		TC2FF	TC2OMS	TC2IS1	TC2IS0
Dalik U	0.20	TC2CR1	R/W	R/W	R/W		R	R/W	R/W	R/W
Bank 0	0x29	TC2CR2	TC2M2	TC2M1	TC2M0	TC2SS0	TC2CK3	TC2CK2	TC2CK1	TC2CK0
Dalik U	0,29	ICZCRZ	R/W							
Bank 0	0x2A	TC2DA	TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
Dalik U	UXZA	ICZDA	R/W							
Pank 0	0x2B	TC2DB	TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
Bank 0	UXZB	TC2DB	R/W							
Bank 0	0x2C	T000D4	TC3S	TC3RC	TC3SS1		TC3FF	TC3OMS	TC3IS1	TC3IS0
Dalik U	UXZC	TC3CR1	R/W	R/W	R/W		R	R/W	R/W	R/W
Bank 0	0x2D	TC3CR2	TC3M2	TC3M1	TC3M0	TC3SS0	тсзскз	TC3CK2	TC3CK1	TC3CK0
Dalik U	UXZD	ICSCR2	R/W							
Bank 0	0x2E	TC3DA	TC3DA7	TC3DA6	TC3DA5	TC3DA4	TC3DA3	TC3DA2	TC3DA1	TC3DA0
Dalik 0	UXZL	TOSDA	R/W							
Bank 0	0x2F	TC3DB	TC3DB7	TC3DB6	TC3DB5	TC3DB4	TC3DB3	TC3DB2	TC3DB1	TC3DB0
Dalik U	UXZI	ICSDB	R/W							
Bank 0	0x15	SFR2						TC3DIF	TC2DIF	TC1DIF
Dalik U	0.15	3FR2						F	F	F
Bank 0	0x1C	IMR2						TC3DIE	TC2DIE	TC1DIE
Ballk U	UXIC	IIVITAZ						R/W	R/W	R/W

6.8.1 Timer/Counter mode

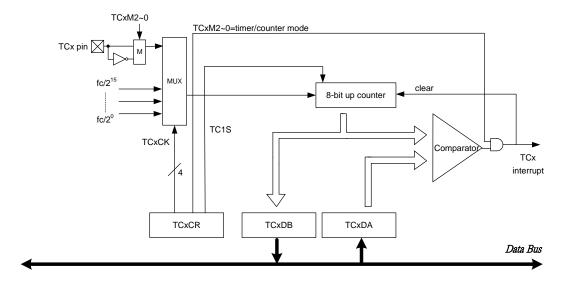


Figure 6-14 Timer/Counter Mode

In Timer/Counter mode, counting up is performed using internal clock or TCx pin. When the contents of up-counter are matched the TCxDA, then interrupt is generated and counter is cleared. Counting up resumes after the counter is cleared. The current contents of up-counter are loaded into TCxDB by setting TCxRC to "1".

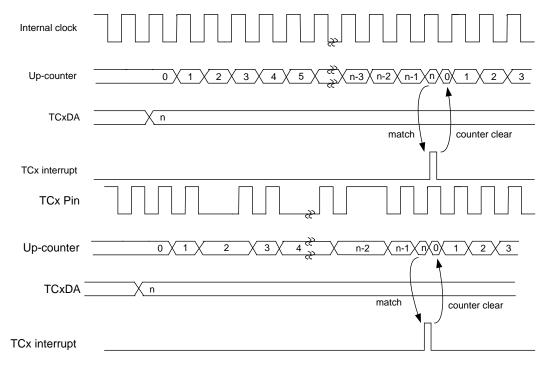


Figure 6-15 Timer/Counter Mode Waveform

6.8.2 Window Mode

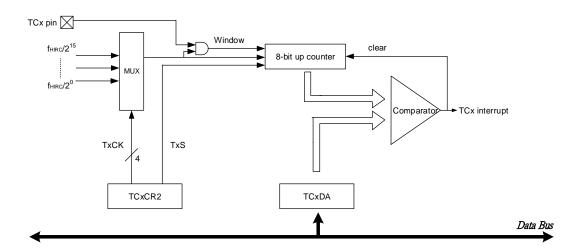


Figure 6-16 Window Mode

In Window mode, countering up is performed on rising edge of the Pulse that is logical AND of an internal clock and the TCx pin (window Pulse). When the contents of up-counter are matched the TCxDA, then interrupt is generated and counter is cleared. The frequency (window Pulse) must be slower than the selected internal clock.

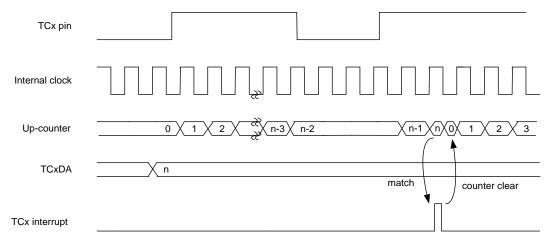


Figure 6-17 Window Mode Waveform

6.8.3 Capture Mode

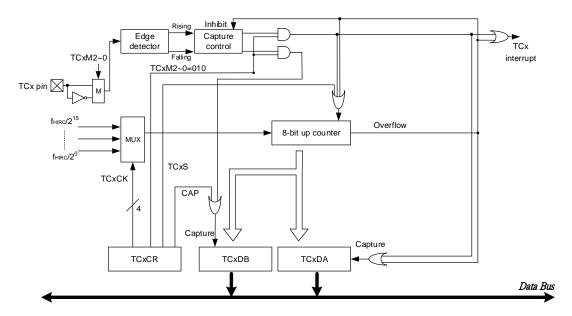


Figure 6-18 Capture Mode

In Capture mode, the Pulse width, period and duty of the TCx input pin are measured in this mode, which can be used to decoding the remote control signal. The counter is free running by the internal clock. On the rising (falling) edge of TCx pin, the contents of counter is loaded into TCxDA, then the counter is cleared and interrupt is generated. On the falling (rising) edge of TCx pin, the contents of counter are loaded into TCxDB. At this time, the counter is still countering. Once the next rising edge of TCx pin triggers, the contents of counter are loaded into TCxDA, the counter is cleared and interrupt is generated again. If overflow before the edge is detected, the FFH is loaded into TCxDA and the overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TCxDA value is FFH. After an interrupt (capture to TCxDA or overflow detection) is generated, capture and overflow detection are halted until TCxDA is read out.

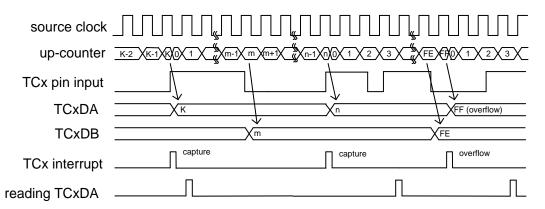


Figure 6-19 Capture Mode Waveform

6.8.4 Programmable Divider Output Mode and Pulse Width Modulation Mode

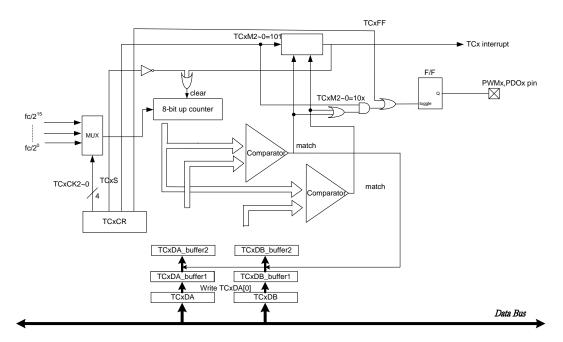


Figure 6-20 PWM/PDO Mode

6.8.5 PDO

In Programmable Divider Output (PDO) mode, counting up is performed using internal clock. The contents of TCxDA are compared with the contents of up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to PDO pin. This mode can generate 50% Duty Pulse Output. The PDO pin is initialized to "0" during reset. A TCx interrupt is generated each time the PDO output is toggled.

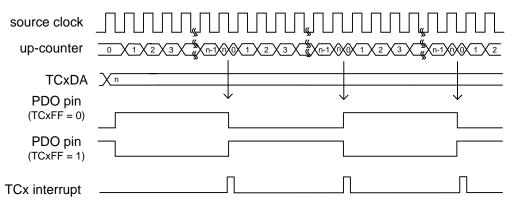


Figure 6-21 PDO Mode Waveform

6.8.6 PWM

In Pulse Width Modulation (PWM) Output mode, counting up is performed using the internal clock with prescaler. The Duty of PWMx control by TCxDB, and the period of PWMx control by TCxDA. The Pulse at the PWMx pin is held to high level as long as TCxS=1 or timerx matches TCxDA, while the Pulse is held to low level as long as timer matches TCxDB. Once TCxFF is set to 1, the signal of PWMx is inverted. A TCx interrupt is generated and defined by TCxIS. On the other hand, the TCxDA and TCxDB can be written anytime, but the data of TCxDA and TCxDB are latched only at writing TCxDA[0]. Therefore, the new duty and new period of PWM appear at the PMW pin at the last period—match.

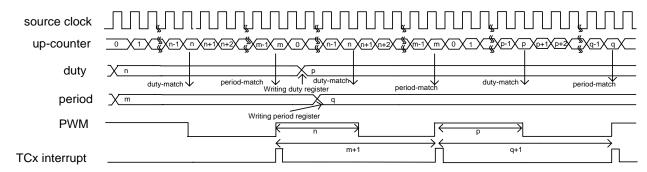


Figure 6-22 PWM Mode Waveform

6.8.7 Buzzer Mode

TCx pin output the clock after dividing frequency

6.9 **PWM**

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
							PWMBP	PWMBD	PWMAP	PWMAD			
Bank 0	0x16	SFR3					SF	SF	SF	SF			
							F	F	F	F			
Bank 0	0x1D	IMR3					PWMBP IE	PWMBD IE	PWMAP IE	PWMAD IE			
							R/W	R/W	R/W	R/W			
Bank 1	0x14	DeadT					DEADT BE	DEADT AE	DEADT P1	DEADT P0			
		CR					R/W	R/W	R/W	R/W			
Bank 1	0x15	DeadTR				DEADT	R[7:0]						
Balik i	0.10	DeadTR				RΛ	V						
Bank 1	0x16	0x16	PWMS				DEADS			PWMBS	PWMAS		
		CR				R/W			R/W	R/W			
Bank 1	1 0x17	PWMA CR	PWMAE	IPWMAE		IPWMAA	TAEN	TAP2	TAP1	TAP0			
		CR	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bank 1	0x18	PRDAL		PRDA[7:0] R/W									
						17/1	\ <u>\</u>		PRDA	PRDA[9:8]			
Bank 1	0x19	PRDAH							R/				
						DTA[7:0]		1				
Bank 1	0x1A	DTAL				R/\	V						
Bank 1	0x1B	DTAH							DTA	[9:8]			
Dalik i	UXID	БІАП							R/	W			
Bank 1	0x1C	TMRAL	TMRA[7:0]										
				T	Τ	I							
Bank 1	0x1D	TMRAH								A[9:8]			
			DWMDE	IDWARDE	DVA/NADA	IDVA/MD A	TDEN	TDDA	TDD4	₹ TBP0			
Bank 1	0x1E	PWMB CR	PWMBE		PWMBA	IPWMBA	TBEN	TBP2	TBP1				
			R/W	R/W	R/W	R/W PRDB	R/W [7:0]	R/W	R/W	R/W			
Bank 1	0x1F	PRDBL				R/V							
									PRDE	3[9:8]			
Bank 1	0x20	PRDBH								W			
David 4	0.24	DTDI				DTB[7:0]		I.				
Bank 1	0x21	DTBL				RΛ	N						
Bank 1	0x22	DTBH							DTB	[9:8]			
Bank 1									R/	W			
Bank 1	0x23	TMRBL				TMRB							
						R			TMP	210.01			
Bank 1	0x24	TMRBH							TMRE				
		JAZ4 TIVINDIT								₹			

6.9.1 Overview

In PWM mode, it produces up to 10-bit resolution PWM output (see. the functional block diagram). A PWM output consists of a time period and a duty cycle, and it keeps the output high. The baud rate of the PWM is the inverse of the time period. Figures 24~27 (*PWM Output Timing*) depict the relationships between a time period and a duty cycle.

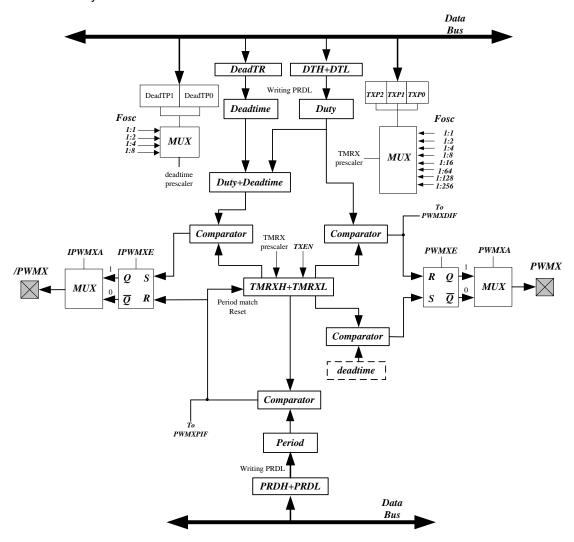


Figure 6-23 PWM Functional Block Diagram

PWM and /PWM (inverted PWM) can be used individually or used as dual PWM. When used individually, the definitions of active level between PWM and /PWM are somewhat different.

For example, set period and duty cycle (period > duty), PWMXE=1/0 and IPWMXE=0/1, PWMXA = 1/0, IPWMXA=1/0, and finally set TXEN = 1. The following figures show PWM output timing according to different PWMXA and IPWMXA settings.

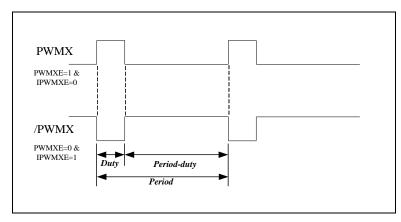


Figure 6-24 PWM Output Timing (PWMXA=0 and IPWMXA=0)

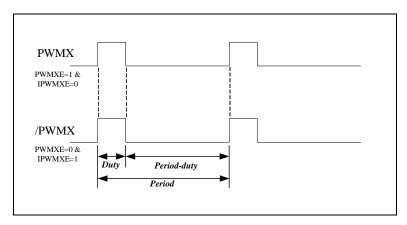


Figure 6-25 PWM Output Timing (PWMXA=0 and IPWMXA=1)

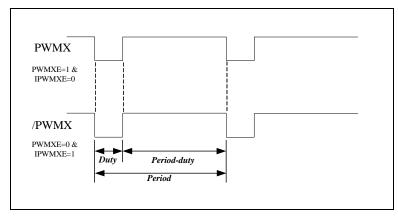


Figure 6-26 PWM Output Timing (PWMXA=1 and IPWMXA=0)

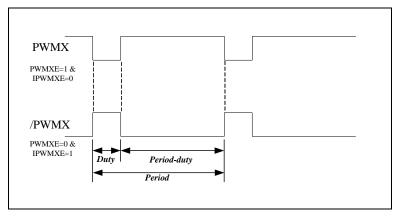


Figure 6-27 PWM Output Timing (PWMXA=1 and IPWMXA=1)

6.9.2 Increment Timer Counter (TMRX: TMRAH/TMRAL, TMRBH/TMRBL)

TMRX are 10-bit clock counters with programmable prescaler. They are designed for the PWM module as baud rate clock generators. TMR can be read only. If employed, they can be turned off for power saving by setting the PWMACR [TAEN], or PWMBCR [TBEN] to 0.

TMRA, TMRB, and are internal designs and cannot be set.

6.9.3 PWM Time Period (PRDX: PRDAL/H, PRDBL/H)

The PWM period is 10-bit resolution. The PWM time period is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- TMRX is cleared
- The PWMX pin is set to 1

NOTE

The PWM output will not be set, if the duty cycle is 0

The PWMXIF pin is set to 1

The following formula describes how to calculate the PWM time period:

$$Period = (PRDX + 1) \times \left(\frac{1}{F_{OSC}}\right) \times (TMRX \ prescale \ value)$$

Example:

PRDX = 49; Fosc = 4 MHz; TMRX
$$(0, 0, 0) = 1:1$$
,

Then

Period =
$$(49+1) \times \left(\frac{1}{4M}\right) \times 1 = 12.5 \mu s$$

6.9.4 PWM Duty Cycle (DTX: DTAH/DTAL or DTBH/DTBL)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded anytime. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.

The following formula describes how to calculate the PWM duty cycle:

Duty cycle =
$$(DTX) \times \left(\frac{1}{F_{OSC}}\right) \times \left(TMRX \text{ prescale value}\right)$$

Example:

DTX = 10; Fosc = 4 MHz; TMRX
$$(0, 0, 0) = 1:1$$
,

Then

Duty cycle =
$$(10) \times \left(\frac{1}{4M}\right) \times 1 = 2.5 \mu s$$

6.9.5 Dual PWM function

It is consists of a complementary PWM (i.e. PWMX and /PWMX), one outputs PWM signal and the other outputs inverted PWM signal, It can output any Pulse width signal you want by programming relative control registers.

The dead time mode is supported. It means that the complementary PWM signals can be controlled to get a time interval that the complementary PWM signals won't be intersected.

The following Figures 6-28~6-29 show the dual PWM output waveform.

Disable dead time control (DEADTXE = 0). Set period and duty cycle (period > duty). Set PWMXE & IPWMXE =1, PWMXA = 0/1, IPWMXA = 0/1, and finally set TXEN = 1.

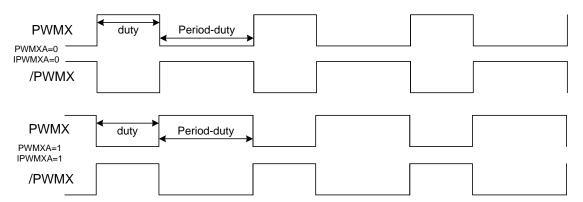


Figure 6-28 Dual PWMX Output Waveform (DEADTXE = 0)

Set dead time > 0 (set dead time prescaler if required). Enable dead time control (DEADTXE = 1). Set period and duty cycle (period > duty). Set PWMXE & IPWMXE = 1, PWMXA = 0, IPWMXA = 0, and finally set TXEN = 1. For the loading new duty, period, and dead time value at run time, following subchapter "PWM Programming Process/Steps" makes such descriptions.

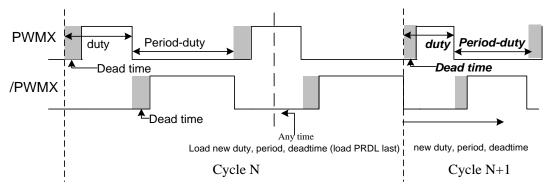


Figure 6-29 Dual PWMX Output Waveform (DEADTXE = 1, Dead Time > 0)

NOTE

The value in dead-time register must be less than the value in duty cycle register in order to prevent unexpected behavior on both of PWM outputs.

6.10 SPI (Serial Peripheral Interface)

R_Bank	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0,400	SPICR	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
Dalik U	0X36		R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Bank 0	0X37	SPIS	DORD	TD1	TD0		OD3	OD4		RBF
Dalik U	0.0.37	3713	R/W	R/W	R		R/W	R/W		R/W
Bank 0	0X38	SPIR	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
Dalik U	UNGO		R	R	R	R	R	R	R	R
Bank 0	0X39	SPIW	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
Dalik U	0739	SPIW	R/W							
Bank 0	0X17	SFR4					SPISF			
Dalik U	UXII	SFK4					R/W			
Pank 0	0X1E	IMD4					SPIIE			
Bank 0		IMR4					R/W			

6.10.1 Overview and Features

Overview:

Figures 6-30 and 6-31 shows how the EM88F758N communicates with other devices through SPI module. If EM88F758N is a master controller, it sends clock through the SCK pin. A couple of 8-bit data are transmitted and received at the same time. However, if EM88F758N is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both the clock rate and the selected edge. You can also set SPIS Bit 7 (DORD) to decide the SPI transmission order, SPICR Bit 3 (SDOC) to control SDO pin after serial data output status and SPIS Bit 6 (TD1), Bit 5 (TD0) decides the SDO status output delay times.

Features:

- 1. Operation in either Master mode or Slave mode
- 2. Three-wire or four-wire full duplex synchronous communication
- 3. Programmable baud rates of communication
- 4. Programming clock polarity, (Bank 0 R36 Bit 7)
- 5. Interrupt flag available for the read buffer full
- 6. SPI transmission order
- 7. After serial data output SDO status select
- 8. SDO status output delay times
- 9. SPI handshake pin
- 10. Up to 8 MHz (maximum) bit frequency

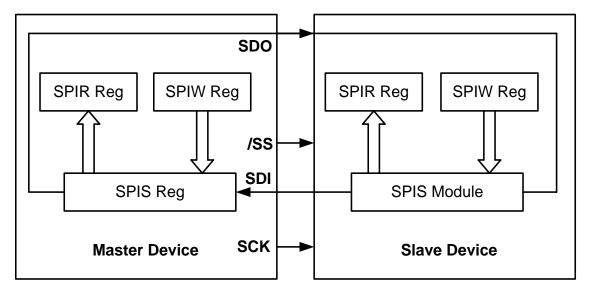


Figure 6-30 SPI Master/Slave Communication

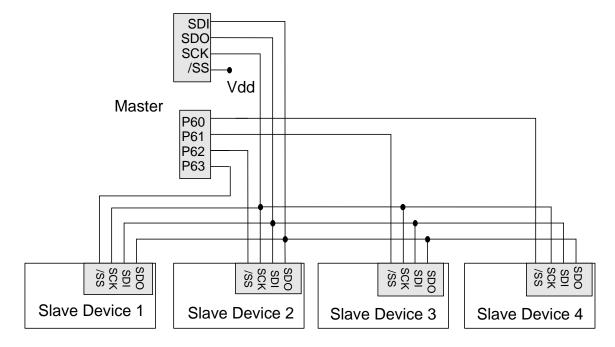


Figure 6-31 SPI Configuration of Single-Master and Multi-Slave

6.10.2 SPI Function Description

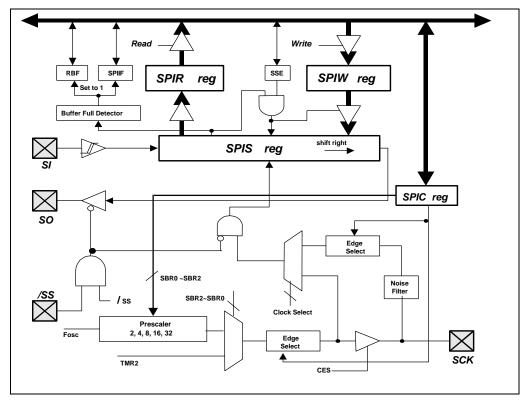


Figure 6-32 SPI Block Diagram

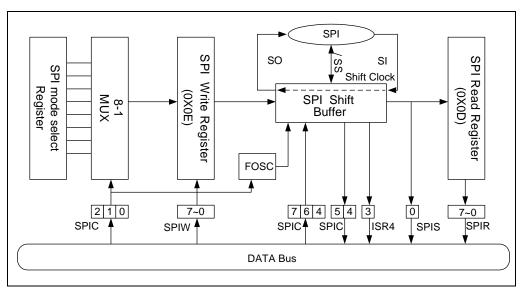


Figure 6-33 Function Block Diagram of SPI Transmission

Below are the functions of each block and explanations on how to carry out the SPI communication with the signals depicted in Figures 32 and 33

P86/SI: Serial Data In

■ P87/SO: Serial Data Out

■ P85/SCK: Serial Clock

 P67//SS: /Slave Select (Option). This pin (/SS) may be required during a slave mode

■ RBF: Set by Buffer Full Detector

■ Buffer Full Detector: Set to 1 when an 8-bit shifting is completed.

SSE: Loads the data in SPIS register, and begin to shift

- SPIS reg.: Shifting byte in and out. The MSB is shifted first. Both the SPIR and the SPIW registers are shift at the same time. Once data are written, SPIS starts transmission / reception. The data received will be moved to the SPIR register as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flag and the SPISF (SPI Interrupt) flag are then set.
- SPIR reg.: Read buffer. The buffer will be updated as the 8-bit shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPIR register reads.
- SPIW reg.: Write buffer. The buffer will deny any attempts to write until the 8-bit shifting is completed.

The SSE bit will be kept in "1" if the communication is still undergoing. This flag must be cleared as the shifting is completed. Users can determine if the next write attempt is available.

- SBRS2~SBRS0: Programming the clock frequency/rates and sources.
- Clock Select: Selecting either the internal or the external clock as the shifting clock.
- Edge Select: Selecting the appropriate clock edges by programming the CES bit

6.10.3 SPI Signal and Pin Description

The detailed functions of the four pins, SI, SO, SCK, and /SS are as follows:

P86/SI:

- Serial Data In
- Receive sequentially, the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last,
- Defined as high-impedance, if not selected
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The byte received will update the transmitted byte
- The RBF will be set as the SPI operation is completed
- Timing is shown in Figures 6-34 and 6-35.

P87/SO:

- Serial Data Out
- Transmit sequentially; the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The received byte will update the transmitted byte
- The CES bit will be reset, as the SPI operation is completed
- Timing is shown in Figures 6-34 and 6-35

P85/SCK:

- Serial Clock
- Generated by a master device
- Synchronize the data communication on both the SI and SO pins
- The CES is used to select the edge to communicate.
- The SBR0~SBR2 is used to determine the baud rate of communication
- The CES, SBR0, SBR1, and SBR2 bits have no effect in slave mode
- Timing is shown in Figures 6-34 and 6-35

P67//SS:

- Slave Select; negative logic
- Generated by a master device to signify the slave(s) to receive data
- Goes low before the first cycle of SCK appears, and remains low until the last (eighth) cycle is completed
- Ignores the data on the SI and SO pins while /SS is high, because the SO is no longer driven
- Timing is shown in Figures 6-34 and 6-35

6.10.4 SPI Mode Timing

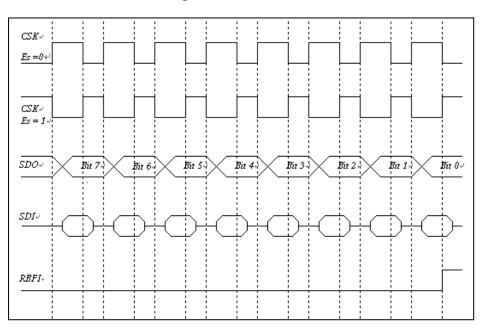


Figure 6-34 SPI Mode with /SS Disabled

The SCK edge is selected by programming bit CES. The waveform shown in Figure 6-34 is applicable regardless of whether the EM88F758N is in master or slave mode with /SS disabled. However, the waveform in Figure 6-35 can only be implemented in slave mode with /SS enabled.

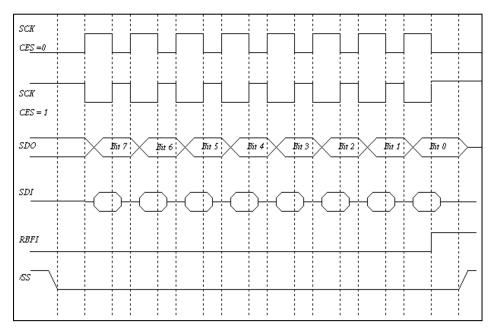


Figure 6-35 SPI Mode with /SS Enabled

6.11 I2C Function

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x30	I2CCR1	Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
Dalik U	UXSU	IZCCKI	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Ponk 0	0×21	I2CCB2	I2CBF	GCEN		BBF	I2CTS1	I2CTS0		I2CEN
Bank 0	0x31	I2CCR2	R	R/W		R	R/W	R/W		R/W
Donk 0	0×22	12004	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
Bank 0	0x32	I2CSA	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Donk 0	022	IOCDD	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Bank 0	0x33	I2CDB	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bonk 0	0×24	I2CDAL	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
Bank 0	0x34	IZCDAL	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Donk 0	025	IOCD ALL							DA9	DA8
Bank 0	0x35	I2CDAH							R/W	R/W
Donk 0	0.47	CED4						12CSTPIF	I2CRSF	I2CTSF
Bank 0	0x17	SFR4						R/W	R/W	R/W
Donk 0	0×45	IMR4						12CSTPIE	I2CRIE	I2CTIE
Bank 0	0x1E	IIVIK4						R/W	R/W	R/W

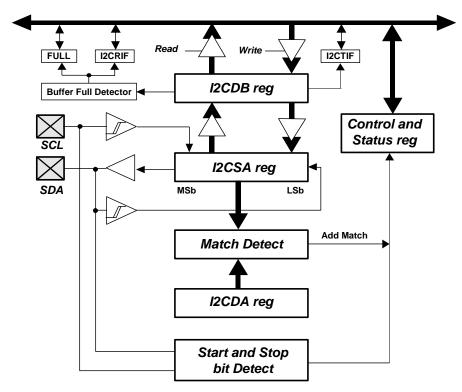


Figure 6-36 I2C Block Diagram

The EM88F758N supports a bidirectional, 2-wire bus, 7/10-bit addressing and data transmission protocol. A device that sends data onto the bus is defined as transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the I2C-bus can be transferred at rates of up to 100 kbps in the Standard-mode or up to 400 kbps in the Fast-mode.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Condition	Master/Slave	Transmit Address	Transmit Data	Stop
Master-transmi	Master	Transmit interrupt	Transmit interrupt	Stop interrupt
tter transmits to slave-receiver	Slave	Receive interrupt	Receive interrupt	Stop interrupt
Master	Master	Transmit interrupt	Receive interrupt	Stop interrupt
receiver read slave- transmitter	Slave	Transmit interrupt	Transmit interrupt	Stop interrupt

Within the procedure of the I2C bus, unique situations arose which are defined as START (S) and STOP (P) conditions.

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

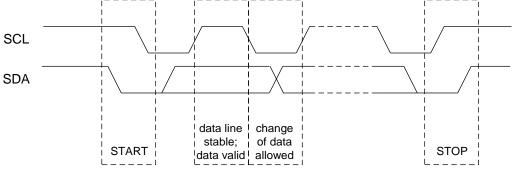


Figure 6-37 I2C Transfer Condition

6.11.1 7-Bit Slave Address

Master-transmitter transmits to slave-receiver. The transfer direction is not changed.

Master reads slave immediately after first byte. At the moment of the first acknowledge, the master- transmitter becomes a master- receiver and the slave-receiver becomes a slave-transmitter. This first acknowledge is still generated by the slave. The STOP condition is generated by the master, which has previously sent a not-acknowledge (A).

Master reads slave immediately after first byte. At the moment of the first acknowledge, the master- transmitter becomes a master- receiver and the slave-receiver becomes a slave-transmitter. This first acknowledge is still generated by the slave. The STOP condition is generated by the master, which has previously sent a not-acknowledge (A). The difference between master transmitter with master receiver is only in R/W bit, if the R//W bit were "0", the master device would be transmitter; the other way, the master device would be receiver. The master transmitter is described by the figure "7-Bits slave address in Master-transmitter transmits to slave -receiver", and the master receiver is described by figure "7-Bits slave address in Master-receiver read slave -transmitter"

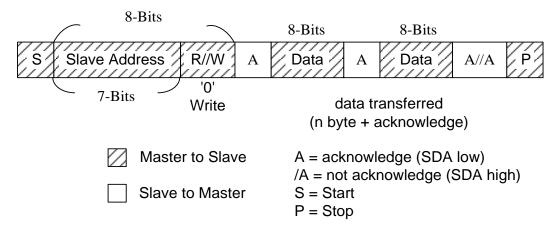


Figure 6-38 7-Bit Slave Address in Master-transmitter transmits to slave-receiver

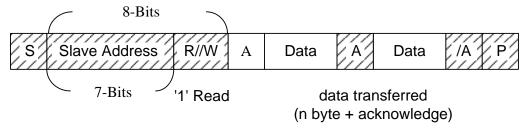


Figure 6-39 7-Bit Slave Address in Master receiver read slave-transmitter

6.11.2 10-Bit Slave Address:

In 10-Bits slave address mode, using 10-Bits for addressing exploits the reserved combination 11110XX for the first seven bits of the first byte following a START(S) or repeated START (Sr) condition. The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits of the 10-bits address. If the R//W bit were "0", the second byte after acknowledge would be the eight address bits of 10-bits slave address; in the other way, the second byte would just only be the next transmitted data from a slave to master device. The first bytes 11110XX be transmitted by using the slave address register (I2CSA), and the second bytes XXXXXXXX would be transmitted by using the data buffer (I2CDB).

There are few kind of difference formats that would be explained in Figure 6-40 ~ Figure 6-44 in the 10-bit slave address mode. The possible data transfer formats are:

Master-transmitter transmits to slave-receiver with a 10-bits slave address.

When the slave have received the first byte after START bit from master, each slave devices will compare the seven bits of the first byte (11110XX) with their own address and the eighth bit, R/W, if the R/W bit were "0", the slave would return the acknowledge (A1) and that would be possible more than one slave device return it. Then all slave device will continue to compare the second address (XXXXXXXX), if the slave device have matched, that would be only one slave device return acknowledge. The matching slave device will remain addressed by the master until it receive the STOP condition or a repeated START condition followed by the different slave address.

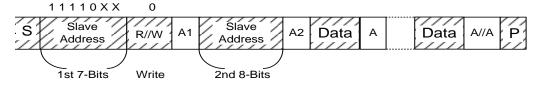


Figure 6-40 Master-transmitter transmits to slave-receiver with a 10-bits slave address

• Master-receiver read slave-transmitter with a 10-bits slave address.

Up to and including acknowledge bit A2, the procedure is the same as that described for master-transmitter addressing a slave receiver. After the acknowledge A2, a repeated START condition (Sr) followed by seven bits slave address (11110XX) but the eighth bit R/W is "1", the addressed slave device will return the acknowledge A3. If the repeated START(Sr) condition and the seven bits of first byte (11110XX) received by slave device, all the slave device would compare with their own address and test the eighth R/W, but none of all slave device return the acknowledge because R/W=1.

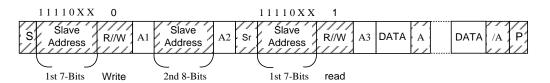


Figure 6-41 Master-receiver read slave-transmitter with a 10-bit slave address

 Master addresses a slave with 10-Bit addresses transmits and receives data in the same slave device.

At first, the transmitter procedure is the same as the section of the "Master-transmitter transmits to slave-receiver with a 10-bit slave address", then the master device can start to transmit the data to slave device. If the slave device has received an acknowledge or none acknowledge which were followed by repeat START (Sr) and repeat the procedure of the section of "Master-receiver read slave-transmitter with a 10-bit slave address".

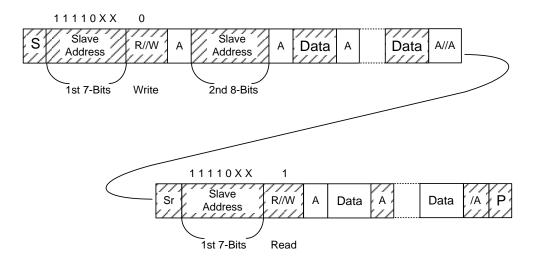


Figure 6-42 Master addresses a slave with 10-bit addresses transmits and receives data in the same slave device.

Master device transmit data to two or more than two slave device

The section of "Master-transmitter transmits to slave-receiver with a 10-bit slave address" describe the procedure how to transmit the data to slave device, if the master device have finished the transmittal, and want to transmit the data to another device, the master would need to address the new slave device, the address procedure is described by the section of the "Master-transmitter transmits to slave-receiver with a 10-Bits slave address". If the master device wants to transmit the data in 7-bit slave address mode and transmit the data in 10-Bits slave address mode in the serial transfer, after the START or repeat START conditions, a 7-bit and 10-bit address could be transmitted. Figure 6-44 shows how to transmit the data in 7-bit and 10-bit address mode in serial transfer.

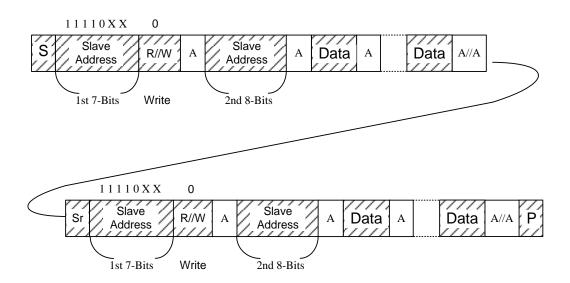


Figure 6-43 One more device transmitted with a 10-bit Slave Address

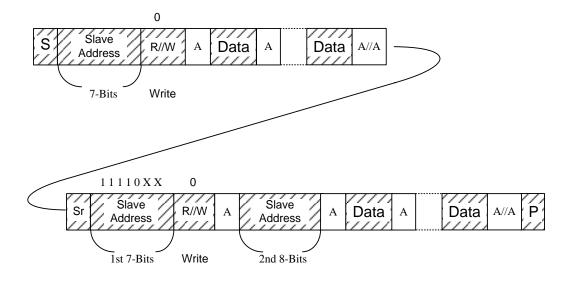


Figure 6-44 7-bit and 10-bit Slave Address Mode

6.11.3 Master Mode

In transmitting (receiving) serial data, the I2C operates as follows:

- 1. Set I2CTS1~0, and ISS bits to select I2C transmit clock source.
- 2. Set I2CEN and IMS bits to enable I2C master function.
- 3. Write slave address into the I2CSA register and IRW bit to select read or write.
- 4. Set strobe bit will start transmit and then Check I2CTSF (I2CTSF) bit.
- 5. Write 1st data into the I2CDB register, set strobe bit and Check I2CTSF (I2CRSF) bit.
- 6. Write 2nd data into the I2CDB register, set strobe bit, STOP bit and Check I2CTSF (I2CRSF) bit.

6.11.4 Slave Mode

In receiving (transmitting) serial data, the I2C operates as follows:

- 1. Set I2CTS1~ 0 and ISS bits to select I2C transmit clock source.
- 2. Set I2CEN and IMS bits to enable I2C slave function.
- 3. Write device address into the I2CDA register.
- 4. Check I2CRSF (I2CTSF) bit, read I2CDB register (address) and then clear Pend bit.
- 5. Check I2CRSF (I2CTSF) bit, read I2CDB register (1st data) and then clear Pend bit.
- 6. Check I2CRSF (I2CTSF) bit, read I2CDB register (2st data) and then clear Pend bit.
- 7. Check I2CSTPSF bit, end transmission.

6.12 Enhance Protect

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Bank 2	0 0::47 LOOKED		LOCKPR[7:0]												
Bank 2 0x47	UX41	LOCKPR	R/W												
Bank 2	040	040	0×40	0×40	0×40	0×40	LOCKCB	LOCKEN							
Bank 2 0x48	UX48	0x48 LOCKCR	R/W												

The EM88F758N supports a protect function to prevent source code from overwriting or reading. When the instruction TBRDA/TBRD/TBWR be execute at protect area, it can write or read all flash ROM. When the instruction TBRDA/TBRD/TBWR be execute at normal area, it can write or read the ROM at normal area only.

6.12.1 Enhance Protect Programming

The Enhance Protect operates as follows:

- 1. Set LOCKEN.
- 2. Write 0xC5 into FLKR.
- 3. Write LOCKPR to set lock range.

*Instruction "TBRDA/TBRD/TBWR" cannot be writing at the end of lock area

*The base unit of LOCKPR is 128 words.

*When use the TBWR instruction, the code option "TBWEN" must be enabled.

6.13 Oscillator

6.13.1 Oscillator Modes

The EM88F758N can be operated in the five different oscillator modes, such as Internal RC oscillator mode (IRC) and XTAL oscillator mode (XT). User needs to set main-oscillator modes by selecting the OSC2~OSC0, and set sub-oscillator modes by selecting the FSS1~FSS0 in the CODE Option register to complete the overall oscillator mode setting. Tables 10, 11, and 12 depict how these four modes are defined.

The up-limited operation frequency of crystal/resonator on the different VDD is listed in Table 13.

Table 10 Main-oscillator modes defined by OSC[2:0]

Main-oscillator mode	OSC2	OSC1	OSC0
IRC (Internal RC oscillator mode) (default) RCOUT (P80) acts as I/O pin	0	0	0
IRC (Internal RC oscillator mode) RCOUT (P80) acts as clock output pin	0	0	1
HXT1 (High XTAL1 oscillator mode) Frequency range: 12~20 MHz	0	1	0
HXT2(High XTAL2 oscillator mode) Frequency range: 6~12 MHz	0	1	1
XT (XTAL oscillator mode) Frequency range: 1~6 MHz	1	0	0
LXT1 (Low XTAL1 oscillator mode) Frequency range: 100K~1MHz	1	0	1
LXT2 (Low XTAL2 oscillator mode) Frequency range: 32.768kHz	1	1	0
Reserve	1	1	1

Table 11 Sub-oscillator modes defined by FSS1 ~ FSS0

Sub-oscillator Mode	FSS1	FSS0
LXT3 (Low XTAL3) oscillator mode Frequency range: 32.768KHz	1	х
Fs is 16KHz, Xin (P83) / Xout (P84) pin act as I/O (default)	0	0
Fs is 128KHz, Xin (P83) / Xout (P84) pin act as I/O	0	1

Note: WDT frequency is always 16KHz whatever the FSS[1:0] bits are set.

Table 12 Combination of main-oscillator and sub-oscillator modes

Combination	Main Clock	Sub-clock
1	Crystal	Crystal
2	Crystal	IRC
3	IRC	Crystal
4	IRC	IRC

Table 13 Summary of Maximum Operating Speeds

Conditions	VDD	F _{xT} max.(MHz)
	1.8	4.0
Two evelop with two clocks	2.0	8.0
Two cycles with two clocks	3.5	16.0
	5.0	20.0

6.13.2 Crystal Oscillator/Ceramic Resonators (XTAL)

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation and such circuitry are depicted in the following Figures. The same thing applies whether it is in HXT mode or in LXT mode. Table 14 provides the recommended values of C1 and C2. Since each resonator has its own attribute, user should refer to its specification for appropriate values of C1 and C2. The serial resistor, RS, may be necessary for AT strip cut crystal or low frequency mode.

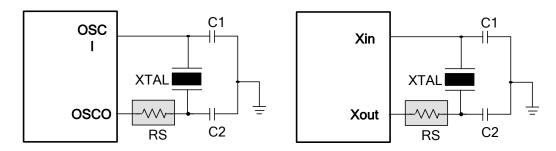


Figure 6-45 Crystal/Resonator Circuits

Table 14 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator

Oscillator Type	Frequency Mode	Frequency	C1 (pF)	C2 (pF)
		100kHz	60pF	60pF
	LXT1	200kHz	60pF	60pF
	(100K~1 MHz)	455kHz	40pF	40pF
Main-oscillator (Ceramic Resonators)		1.0 MHz	30pF	30pF
(Octamic resonators)		1.0 MHz	30pF	30pF
	XT (1M~6 MHz)	2.0 MHz	30pF	30pF
	(1111-0 111112)	4.0 MHz	20pF	20pF
	LXT2 (32.768kHz)	32.768kHz	40pF	40pF
		100kHz	60pF	60pF
	LXT1 (100K~1 MHz)	200kHz	60pF	60pF
		455kHz	40pF	40pF
		1.0 MHz	30pF	30pF
		1.0 MHz	30pF	30pF
Main-oscillator	XT	2.0 MHz	30pF	30pF
(Crystal Oscillator)	(1M~6 MHz)	4.0 MHz	20pF	20pF
		6.0 MH	30pF	30pF
		6.0 MHz	30pF	30pF
	HXT2 (6M~12 MHz)	8.0 MHz	20pF	20pF
	(5141 12 1411 12)	12.0 MHz	30pF	30pF
	10/4	12.0 MHz	30pF	30pF
	HX1 (12M~20 MHz)	16.0 MHz	20pF	20pF
	(20.0 MHz	20pF	20pF
Sub-oscillator (Crystal Oscillator)	LXT3 (32.768kHz)	32.768kHz	20pF	20pF

6.13.3 Internal RC Oscillator Mode

EM88F758N offer a versatile internal RC mode with default frequency value of 4 MHz. Internal RC oscillator mode has other frequencies (20 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 1 MHz) that can be set by Code Option Bits RCM2 \sim RCM0.

Internal RC Drift Rate (Ta=25°C, VDD=5V±5%, VSS=0V)

1.4	Drift Rate						
Internal RC Frequency	Temperature (-40°C~+85°C)	Voltage (1.8V~5.5V)	Process	Total			
1 MHz	±2%	±1%	±1%	±4%			
4 MHz	±2%	±1%	±1%	±4%			
6 MHz	±2%	±1%	±1%	±4%			
8 MHz	±2%	±1%	±1%	±4%			
12 MHz	±2%	±1%	±1%	±4%			
16 MHz	±2%	±1%	±1%	±4%			
20 MHz	±2%	±1%	±1%	±4%			

Theoretical values are for reference only. Actual values may vary depending on actual process.

6.14 Power-on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply has remained stabilized. The EM88F758N has an on-chip Power—on Voltage Detector (POVD) with a detecting level of 1.6V. It will work well if VDD is rising quick enough (50ms or less). In many critical applications, however, extra devices are still required to assist in solving power-up problems.

6.15 External Power-on Reset Circuit

The circuit as shown in Figure 6-46 implements an external RC to produce the reset Pulse. The Pulse width (time constant) should be kept long enough for VDD to reached minimum operation voltage. This circuit is used when the power supply has slow rise time. Because the current leakage from the /RESET pin is about $\pm 5\mu$ A, it is recommended that R should not be greater than 40K. In this way, the /RESET pin voltage is held below 0.2V. The diode (D) acts as a short circuit at the moment of power down. The capacitor C will discharge rapidly and fully. Rin, the current-limited resistor, will prevent high current or ESD (electrostatic discharge) from flowing to pin /RESET.

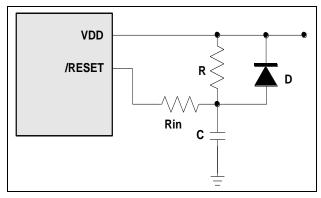


Figure 6-46 External Power-Up Reset Circuit

6.16 Residue-Voltage Protection

When battery is replaced, device power (VDD) is taken off but residue-voltage remains. The residue-voltage may trips below VDD minimum, but not to zero. This condition may cause a poor power on reset. Figure 6-47 and Figure 6-48 show how to build a residue-voltage protection circuit.

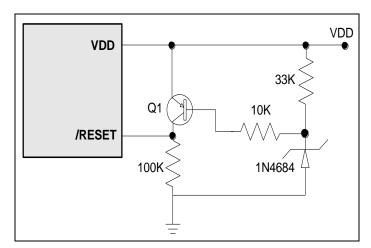


Figure 6-47 Circuit 1 for the Residue Voltage Protection

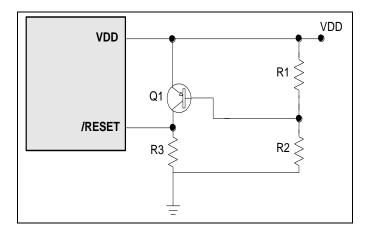


Figure 6-48 Circuit 2 for the Residue Voltage Protection

6.17 Code Option

6.17.1 Code Option Register (Word 0)

				Word 0				
Mnemonic	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
	-	-	IRCWUT	IODG1	IODG0	HLFS	HLP	LVR1
1	High	High	32 clks	High	High	Green	Low PWR	High
0	Low	Low	8 clks	Low	Low	Normal	High PWR	Low
Default	0	0	0	0	0	0	0	0
Mnemonic	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
winemonic	LVR0	RESETEN	ENWDT	NRHL	NRE	-	•	-
1	High	/RST	Enable	8/fc	Disable		High	
0	Low	P82	Disable	32/fc	Enable	Low		
Default	0	0	0	0	0		0	

Bits 15~14: Not used, set to "0" all the time.

Bit 13 (IRCWUT): IRC Warm Up Time (IRC Frequency Range 1 MHz ~8 MHz)

0: 8 clocks (default)

1: 32 clocks

CPU mode switch	IRC Frequency	Waiting Time before CPU Starts to Work
Sleep → Normal	12M, 16M, 20M	WSTO + 32 clocks (main frequency)
Green → Normal	1M, 4M, 6M, 8M	WSTO + 8/32 clocks (main frequency)
Sleep → Green Idle → Green	128kHz	WSTO + 8 clocks (sub frequency)

Bits 12~11 (IODG1~IODG0): I2C pin deglitch time select bits.

IODG1~0	SPI Pin Deglitch Time	I2C Pin Deglitch Time	OCDS Pin Deglitch Time
00	Typical delay = 8ns	50ns@5V,Typical (default)	
01	Typical delay = 15ns	100ns@5V,Typical	20ns@5V,Typical (default)
10	Typical delay = 25ns	150ns@5V,Typical	
11	No deglitch	No deglitch	No deglitch

Bit 10 (HLFS): Reset to Normal or Green Mode Select Bit

0: CPU is selected as Normal mode when a reset occurs (default)

1: CPU is selected as Green mode when a reset occurs.

Bit 9 (HLP): Power Consumption Selection

0: High power consumption, apply to working frequency above 4 MHz

1: Low power consumption, apply to working frequency at 4 MHz or below

4 MHz

Bits 8~7 (LVR1~LVR0): Low Voltage Reset enable bit.

LVR1, LVR0	VDD Reset Level	VDD Release Level
00	NA (Power on	reset) (default)
01	2.7V	2.9V
10	3.5V	3.7V
11	4.0V	4.2V

Note: If VDD < 2.7V and keep about 5 μ s, IC will be reset. If VDD < 3.5V and keep about 5 μ s, IC will be reset. If VDD < 4.0V and keep about 5 μ s, IC will be reset.

Bit 6 (RESETEN): P82/RESET pin selection bit

0: Disable, P82 as I/O pin (default)

1: Enable, P82 as RESET pin.

Bit 5 (ENWDT): WDT enable bit

0: Disable (default)

1: Enable

Bit 4 (NRHL): Noise rejection high/low Pulse define bit (For the INT Pin)

0: Pulses equal to 32/Fc [s] is regarded as signal (default)

1: Pulses equal to 8/Fc [s] is regarded as signal

<Note> In Low XTAL oscillator (LXT) mode the noise rejection high/low Pulses always 8/Fm.

Bit 3 (NRE): Noise Rejection Enable bit

0: Enable (default) .**But in Green, Idle, and Sleep modes, the noise rejection circuit is always disabled.**

1: Disable

Bits 2~0: Not used, set to "0" all the time.

6.17.2 Code Option Register (Word 1)

Word 1								
	Bit 15	Bit 14	Bit 13	Bit 12	Bit11	Bit10	Bit9	Bit8
Mnemonic	-	FSS1	FSS0	-	-	-	-	-
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	-	RCM2	RCM1	RCM0	OSC2	OSC1	OSC0	RCOUT
1	High	High	High	High	High	High	High	High
0	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0

Bit 15: Not used, set to "0" all the time.

Bits 14~13 (FSS1~FSS0): Sub-oscillator mode selection bits

Sub-oscillator Mode	FSS1	FSS0
LXT3 (Low XTAL3) oscillator mode Frequency range: 32.768kHz	1	х
Fs is 16kHz, Xin (P83) / Xout (P84) pin act as I/O (default)	0	0
Fs is 128kHz, Xin (P83) / Xout (P84) pin act as I/O	0	1

Note: WDT frequency is always 16kHz, whatever the FSS bits are set.

Bits 12~7: Not used, set to "0" all the time.

Bits 6~4 (RCM2~RCM0): IRC frequency selection.

* Corresponding with control register Bank0 RE RCM2~RCM0

RCM2	RCM1	RCM0	Frequency (MHz)
0	0	0	4 (default)
0	0	1	1
0	1	0	6
0	1	1	8
1	0	0	12
1	0	1	16
1	1	0	20
1	1	1	N/A

Bits 3~1 (OSC2~OSC0): Main-oscillator mode selection bits.

Main-oscillator Mode	OSC2	OSC1	OSC0
IRC (Internal RC oscillator mode) (default) RCOUT (P80) acts as I/O pin	0	0	0
IRC (Internal RC oscillator mode) RCOUT (P80) acts as clock output pin	0	0	1
HXT1 (High XTAL1 oscillator mode) Frequency range: 12~20 MHz	0	1	0
HXT2(High XTAL2 oscillator mode) Frequency range: 6~12 MHz	0	1	1
XT (XTAL oscillator mode) Frequency range: 1~6 MHz	1	0	0
LXT1 (Low XTAL1 oscillator mode) Frequency range: 100K~1 MHz	1	0	1
LXT2 (Low XTAL2 oscillator mode) Frequency range: 32.768kHz	1	1	0
Reserve	1	1	1

Bit 0 (RCOUT): System Clock Output Enable Bit in IRC mode

0: RCOUT output instruction cycle time (default)

1: RCOUT pin is open drain

6.17.3 Code Option Register (Word 2)

Word 2								
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Mnemonic	-	SHEN	-	-	BOREN	BORT2	BORT1	BORT0
1	High	Disable	High	High	Disable	High	High	High
0	Low	Enable	Low	Low	Enable	Low	Low	Low
Default	0	0	0	0	0	0	0	0
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	IRCPSS	-	-	I2COPT	-	-	-	-
1	VDD	-	-	High	-	-	-	
0	Int. Vref	-	-	Low	-	-	-	-
Default	0	0	0	0	0	0	0	0

Bit 15: Not used, set to "0" all the time.

Bit 14 (SHEN): System hold enable bit.

0: Enable1: Disable

Bits 13~12: Not used, set to "0" all the time.

Bit 11 (BOREN): BOR Enable bit.

0: BOR Enable (default)

1: BOR Disable

Bits 10~8 (BORT2~ BORT0)

BORT2~0	BOR Sample Time (µs)
000	NA
001	16000
010	8000
011	4000
100	2000
101	1000
110	500
111	250 (default)

Bit 7 (IRCPSS): IRC Power Source Selection

0: Internal reference (default)

1: VDD

Bits 6~5: Not used, set to "0" all the time.

Bit 4 (I2COPT): I2C optional bit. It is used to switch the pin position of I2C function.

0: Placed I2C pins in P62 (SDA0) & P82 (SCL0) (default)

1: Placed I2C pins in P84 (SDA1) & P83 (SCL1)

*Corresponding with control register Bank 0 R31 I2COPT

Bits 3~0: Not used, set to "0" all the time.

6.17.4 Code Option Register (Word 3)

Word 3								
Macania	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Mnemonic	-	EFTIM	-	-	ADFM	-	-	-
1	High	Heavy	High	High	High	High	High	High
0	Low	Light	Low	Low	Low	Low	Low	Low
Default	0	0	0	0	0	0	0	0
Maamania	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	-	TBWEN	ID5	ID4	ID3	ID2	ID1	ID0
1	High	Enable						
0	Low	Disable	Customer ID					
Default	0	0						

Bit 15: Not used, set to "0" all the time.

Bit 14 (EFTIM): Low Pass Filter (0: heavy, 1: light)

0: Pass ~ 25 MHz (light LPS) (default)

1: Pass ~ 10 MHz (heavy LPS)

Bits 13~12: Not used, set to "0" all the time.

Bit 11 (ADFM): This bit controls the format of AD data buffer (ADDH and ADDL), Refer to the following table

	ADF	М	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		ADDH					ADD11	ADD10	ADD9	ADD8
12	0	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
bits	1	ADDH	ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4
	1	ADDL					ADD3	ADD2	ADD1	ADD0

Note: There is no use to have the hardware bit set to 0. As ADFM=0 and when

12-bit resolution, ADDH<7:4> = 0000.

Bits 10~7: Not used, set to "0" all the time

Bit 6 (TBWEN): Table Write Enable bit

0: Disable (default)

1: Enable

Bits 5~0 (ID5~ID0): Customer's ID Code

6.18 Instruction Set

Each instruction in the instruction set is a 15-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", ····). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

"LCALL", "LJMP", or the conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA", "SJC", "SJNC", "SJNZ") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

In addition, the instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on I/O register.

The symbol "R" represents a register designator that specifies which one of the registers (including operational registers and general purpose registers) is to be utilized by the instruction. "b" represents a bit field designator that selects the value for the bit which is located in the register "R", and affects operation. "k" represents an 8 or 10-bit constant or literal value.

Mnemonic	Operation	Status Affected
NOP	No Operation	None
DAA	Decimal Adjust A	С
SLEP	0 → WDT, Stop oscillator	T,P
WDTC	$0 \rightarrow WDT$	T,P
ENI	Enable Interrupt	None
DISI	Disable Interrupt	None
RET	[Top of Stack] → PC	None
RETI	[Top of Stack] → PC, Enable Interrupt	None
RESET	Software Device Reset	ALL Registers = Reset Value Flags* = Reset Value

Mnemonic	Operation	Status Affected
TBWR	Table Writer Start instruction	None
INT k	PC+1 → [SP], k*2 → PC	None
BTG R,b	Bit Toggle R ; /(R)->R *Range R5~RA	None
MOV R,A	$A \rightarrow R$	None
CLRA	$0 \rightarrow A$	Z
CLR R	$0 \rightarrow R$	Z
SUB A,R	$R-A \rightarrow A$	Z,C,DC,OV,N
SUB R,A	$R-A \rightarrow R$	Z,C,DC,OV,N
DECA R	$R-1 \rightarrow A$	Z,C,DC,OV,N
DEC R	$R-1 \rightarrow R$	Z,C,DC,OV,N
OR A,R	$A \vee R \to A$	Z,N
OR R,A	$A \vee R \to R$	Z,N
AND A,R	$A \& R \rightarrow A$	Z,N
AND R,A	$A \& R \rightarrow R$	Z,N
XOR A,R	$A \oplus R \to A$	Z,N
XOR R,A	$A \oplus R \to R$	Z,N
ADD A,R	$A + R \rightarrow A$	Z,C,DC,OV,N
ADD R,A	$A + R \rightarrow R$	Z,C,DC,OV,N
MOV A,R	$R \rightarrow A$	Z
MOV R,R	$R \rightarrow R$	Z
COMA R	$/R \rightarrow A$	Z,N
COM R	$/R \rightarrow R$	Z,N
INCA R	$R+1 \rightarrow A$	Z,C,DC,OV,N
INC R	$R+1 \rightarrow R$	Z,C,DC,OV,N
DJZA R	R-1 → A, skip if zero	None
DJZ R	$R-1 \rightarrow R$, skip if zero	None
RRCA R	$R(n) \rightarrow A(n-1),$ $R(0) \rightarrow C, C \rightarrow A(7)$	C,N
RRC R	$R(n) \rightarrow R(n-1),$ $R(0) \rightarrow C, C \rightarrow R(7)$	C,N

Mnemonic	Operation	Status Affected
RLCA R	$R(n) \rightarrow A(n+1),$ $R(7) \rightarrow C, C \rightarrow A(0)$	C,N
RLC R	$R(n) \rightarrow R(n+1),$ $R(7) \rightarrow C, C \rightarrow R(0)$	C,N
SWAPA R	$R(0-3) \rightarrow A(4-7),$ $R(4-7) \rightarrow A(0-3)$	None
SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
JZA R	R+1 \rightarrow A, skip if zero	None
JZ R	$R+1 \rightarrow R$, skip if zero	None
BC R,b	$0 \rightarrow R(b)$	None <note 2=""></note>
BS R,b	1 → R(b)	None <note 3=""></note>
JBC R,b	if R(b)=0, skip	None
JBS R,b	if R(b)=1, skip	None
CALL k	$PC+1 \rightarrow [SP],$ $(Page, k) \rightarrow PC$	None
JMP k	$(Page, k) \rightarrow PC$	None
MOV A,k	$k \rightarrow A$	None
JE R	Compare R with ACC, Skip =	None
JGE R	Compare R with ACC, Skip >	None
JLE R	Compare R with ACC Skip <	None
OR A,k	$A \lor k \to A$	Z, N
JE k	Compare K with ACC, Skip =	None
TBRDA R	ROM[(TABPTR)] → R, A A ← program code (low byte) R ← program code (high byte)	None
AND A,k	$A \& k \rightarrow A$	Z,N
SJC k	Jump to K if Carry *Range [Address+127~-128]	None
SJNC k	Jump to K if Not Carry *Range [Address+127~-128]	None
SJZ k	Jump to K if Zero *Range [Address+127~-128]	None
XOR A,k	$A \oplus k \to A$	Z, N

Mnemonic	Operation	Status Affected
SJNZ k	Jump to K if Not Zero *Range [Address+127~-128]	None
RRA R	$R(n) \to A(n\text{-}1), R(0) \to A(7)$	N
RR R	$R(n) \to R(n\text{-}1), R(0) \to R(7)$	N
RETL k	$\begin{array}{c} k \rightarrow A, \\ [Top \ of \ Stack] \rightarrow PC \end{array}$	None
XCH R	$R \longleftrightarrow A$	None
RLA R	$R(n) \to A(n+1), R(7) \to A(0)$	Ν
RL R	$R(n) \rightarrow R(n+1), R(7) \rightarrow R(0)$	N
SUB A,k	k-A o A	Z, C, DC, OV, N
SUBB A,R	$R-A-/C \rightarrow A$	Z, C, DC, OV, N
SUBB R,A	$R-A-/C \rightarrow R$	Z, C, DC, OV, N
SBANK k	K->R1(5:4)	None
GBANK k	K->R1(1:0)	None
LCALL k	Next instruction : k kkkk kkkk kkkk PC+1→[SP], k→PC	None
LJMP k	Next instruction : k kkkk kkkk kkkk K	None
TBRD R	ROM[(TABPTR)] \rightarrow R R \leftarrow Bit 7~Bit 0 (HLB = 0) R \leftarrow Bit 15~Bit 8 (HLB = 1)	None
ADD A,k	$k+A \rightarrow A$	Z, C, DC, OV, N
NEG R	2's complement, /R +1 → R	Z, C, DC, OV, N
ADC A,R	A+R+C → A	Z, C, DC, OV, N
ADC R,A	$A+R+C \rightarrow R$	Z, C, DC, OV, N

7 Absolute Maximum Ratings

Items		Rating			
Storage temperature	-65°C	to	150°C		
Input voltage	Vss-0.3V	to	Vdd+0.5V		
Output voltage	Vss-0.3V	to	Vdd+0.5V		
Morking Voltage	1.8	V to 5.5V (0°C to 8	5°C)		
Working Voltage	2.0V to 5.5V (-40°C to 85°C)				
Working Frequency	DC	to	20 MHz		

8 DC Electrical Characteristics

VDD=5.0V, VSS=0V, Ta=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	XTAL: VDD to 3V	Two avalor with two alones	DC	16	-	MHz
Fxt	XTAL: VDD to 5V	Two cycles with two clocks	DC	20	1	MHz
	IRC: VDD to 5V	4 MHz, 1 MHz, 6MHz, 8MHz, 16 MHz, 20 MHz	I	F	I	Hz
IRCE	Internal RC oscillator error per stage	1	I	±1	1	%
IRC1	IRC:VDD to 5V	RCM2~RCM0=000	1	4	1	MHz
IRC2	IRC:VDD to 5V	RCM2~RCM0=001	I	1	1	MHz
IRC3	IRC:VDD to 5V	RCM2~RCM0=010	I	6	1	MHz
IRC4	IRC:VDD to 5V	RCM2~RCM0=011	1	8	1	MHz
IRC5	IRC:VDD to 5V	RCM2~RCM0=100	ı	12	_	MHz
IRC6	IRC:VDD to 5V	RCM2~RCM0=101	I	16	1	MHz
IRC7	IRC:VDD to 5V	RCM2~RCM0=110	-	20	_	MHz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μΑ
VIH1	Input High Voltage (Schmitt trigger)	Ports 5, 6, 7, 8, 9, A	0.7VDD	_	VDD+ 0.3V	V
VIL1	Input Low Voltage (Schmitt trigger)	Ports 5, 6, 7, 8, 9, A	-0.3V	_	0.3VD D	V
VIHT1	Input High Threshold Voltage (Schmitt trigger)	/RESET	0.7VDD	_	VDD+ 0.3V	V
VILT1	Input Low Threshold Voltage (Schmitt trigger)	/RESET	-0.3V	_	0.3VD D	V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Output High Voltage	VOH - VDD 0.4VDD	2.2	2.7		A
IOH1	(Ports 5, 6, 7, 8, 9, A)	VOH = VDD-0.1VDD	-2.2	-3.7	_	mA
IOHI	Output High Voltage	VOH = VDD-0.3VDD	_	-8		mA
	(Ports 5, 6, 7, 8, 9, A)	VOH = VDD-0.3VDD	_	-0	_	IIIA
	Output High Voltage(Hi Drive)	VOH = VDD-0.1VDD	-6.9	-11.5	_	mA
IOH2	(Ports 5, 6, 7, 8, 9, A)	VOIT = VDD 0.1VDD	0.5	11.0		1117 \
10112	Output High Voltage(Hi Drive)	VOH = VDD-0.3VDD	_	-24	-	mA
	(Ports 5, 6, 7, 8, 9, A)	V 0.1. = V 22 0.0 V 22				
	Output Low Voltage	VOL = GND+0.1VDD	12.6	21	_	mA
IOL1	(Ports 5, 6, 7, 8, 9, A)					
IOLI	Output Low Voltage	VOL = GND+0.3VDD	_	32	_	mA
	(Ports 5, 6, 7, 8, 9, A)	V 02 = 0.10 10.0 V D		02		
	Output Low Voltage(Hi Sink)	VOL = GND+0.1VDD	37	54	_	mA
IOL2	(Ports 5, 6, 7, 8, 9, A)	VOL = CIVE 10.1 VEE	01	0.		1117 (
1022	Output Low Voltage(Hi Sink)	VOL = GND+0.3VDD	-	90	_	mA
	(Ports 5, 6, 7, 8, 9, A)	VOL - GND+0.3VDD				
IPH	Pull-high current	Pull-high active, input pin at VSS	-26	-51	-76	μΑ
IPL	Pull-low current	Pull-low active, input pin at VDD	-	17	42	μΑ
LVR1	Low voltage reset level	$TA = 25^{\circ}C$ 2.26	2.26	2.7	3.16	V
LVIXI	Low voltage reserver	TA = -40~85°C	1.86	2.7	3.56	V
LVR2	Low voltage reset level	TA = 25°C	3.0	3.5	4.01	V
LVIVZ	Low voltage reset level	TA = -40~85°C	2.51	3.5	4.5	V
LVR3	Low voltage reset level	TA = 25°C	3.42	4	4.61	V
LVKS	Low voltage reset level	TA = -40~85°C	2.87	4	5.11	V
	Power down current	/RESET= 'High', Fm & Fs off				
ISB1	(Sleep mode)	All input and I/O pins at VDD,		1	1.3	μΑ
	(Sieep Mode)	output pin floating, WDT disabled				
	Power down current	/RESET= 'High', Fm & Fs off				
ISB2	(Sleep mode)	All input and I/O pins at VDD,		5		μΑ
	(Gleep Illode)	output pin floating, WDT enabled				
	Dower down current	/RESET= 'High', Fm off,				
ISB3	Power down current (Idle mode) Fs=128kHz (IRC type) output			7.5		μΑ
	(late mode)	floating, WDT disabled,				
	Power down current	/RESET= 'High', Fm off,				
ISB4	(Idle mode)	Fs=128kHz (IRC type), output pin		7.5		μΑ
	(idie illode)	floating, WDT enabled				
	Operating supply current	/RESET= 'High', Fm off,				
ICC1	(Green mode)	Fs=128KHz (IRC type), output pin		90		μΑ
	(Green mode)	floating, WDT disabled				

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ICC2	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=128kHz (IRC type), output pin floating, WDT enabled	in			μA
ICC3	Operating supply current (Green mode)	/RESET= 'High', Fm off, HLP=0,Fs=32.768KHz (Crystal type), output pin floating, WDT enabled		30		μA
ICC4	Operating supply current (Normal mode)	/RESET= 'High', Fm=4 MHz (IRC type), Fs on, output pin floating, WDT enabled	= 'High', Fm=4 MHz (IRC s on, output pin floating,			μA
ICC5	Operating supply current (Normal mode)	/RESET= 'High', Fm =4 MHz (Crystal type), Fs on, output pin floating, WDT enabled	RESET= 'High', Fm =4 MHz (Crystal type), Fs on, output pin floating,			μA
ICC6	Operating supply current (Normal mode)	/RESET= 'High', Fm =12 MHz (IRC type), Fs on, output pin floating, WDT enabled	/RESET= 'High', Fm =12 MHz (IRC type), Fs on, output pin floating,			μΑ
ICC7	Operating supply current (Normal mode)	/RESET= 'High', Fm =16 MHz (IRC type), Fs on, output pin floating, WDT enabled	RESET= 'High', Fm =16 MHz (IRC type), Fs on, output pin floating,			μΑ
ICC8	Operating supply current (Normal mode)	/RESET= 'High', Fm=16 MHz (Crystal type), Fs on, output pin floating, WDT enabled		5000		μA

Note: These parameters are theoretical values and have not been tested. Such parameters are for design reference only.

Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C.

Data EEPROM Characteristics (VDD=1.8V to 5.5V, VSS=0V)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Tprog	Erase/Write cycle time		-	2	-	ms
Treten	Data Retention	Vdd = 1.8V~ 5.5V	-	10	-	Years
Tendu	Endurance time		_	100K	-	Cycles

Program Flash Memory Electrical Characteristics (VDD=1.8V to 5.5V, VSS=0V)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Tprog	Erase/Write cycle time		-	1	-	ms
Treten	Data Retention	Vdd = 5.0V	-	10	-	Years
Tendu	Endurance time		-	100K	-	Cycles

A/D Converter Characteristics (VDD=1.8V to 5.5V, VSS=0V)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Operating Range	Vdd	For 5.5v Fs=100kHz, Fin=2kHz For 1.8v Fs=50kHz, Fin=1kHz	1.8	-	5.5	V
	V_{REFT}		1.8	-	Vdd	V
Current	lvdd	V _{REFT} = Vdd=5.5V	ı	-	0.7	mA
Consumption	Iref	Fs=100kHz, Fin=2kHz	1	-	100	μA
Standby Current	Isb		ı	-	0.1	μΑ
ZAI	ZAI		1	-	10k	Ω
SNR	SNR	V _{REFT} = Vdd=3.3V Fs=100kHz, Fin=2kHz	70	-	ı	dBc
THD	THD	V _{REFT} = Vdd=3.3V Fs=100kHz, Fin=2kHz	ı	-	-70	dBc
SNDR	SNDR	V _{REFT} = Vdd=3.3V Fs=100kHz, Fin=2kHz	68	-	ı	dBc
Worst Harmonic	WH	V _{REFT} = Vdd=3.3V Fs=100KHz, Fin=2kHz	1	-	-73	dBc
SFDR	SFDR	V _{REFT} = Vdd=3.3V Fs=100kHz, Fin=2kHz	73	-	-	dBc
Offset Error	OE	V _{REFT} = Vdd=3.3V Fs=100kHz	-	-	+/-4	LSB
Gain Error	GE	V _{REFT} = Vdd=3.3V Fs=100kHz	-	-	+/-8	LSB
DNL	DNL	V _{REFT} = Vdd=3.3V Fs=100KHz, Fin=2kHz	-	-	+/-1	LSB
INL	INL	V _{REFT} = Vdd=3.3V Fs=100KHz, Fin=2kHz	-	-	+/-4	LSB
	Fs1	Vdd=2.7~5.5V, Fin=2kHz	100	-	1	K SPS
Conversion Rate	Fs2	Vdd=2.2~2.7V Fin=1kHz	50	-	-	K SPS
	Fs3	Vdd=1.8~2.2V Fin=1kHz	25	-	-	K SPS
Power Supply Rejection Ratio	PSRR	V _{REFT} =1.8V Vdd=1.8V ~ 5.5V Fs=50kHz, Vin=0V ~ 1.8V	-	-	2	LSB

Note: ¹These parameters are hypothetical (not tested) and are provided for design reference only.

²There is no current consumption when ADC is off other than minor leakage current.

The A/D conversion result will not decrease with an increase in the input voltage, and has no missing code.

These parameters are subject to change without prior notice.

Touch Key Characteristics (VDD=2.4V to 5.5V, VSS=0V)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VDD	Supply voltage	-	2.4	5	5.5	V
Iss	Supply current	VDD=5V, 10pF, 10.5μA - 660 charge discharge current		660	-	μА
Тор	Operating temperature	4		25	85	С
larray	Current source	VDD=5V	3	-	36	μΑ
Ftpout	Oscillator Output frequency	C _s @50pf+Imin~5pF+Imax, VDD=5V	65k	-	36M	Hz
Cs	Capacitance of sensor	Total capacitance	5		50	pF

Note: These parameters are theoretical values and have not been tested. Such parameters are for design reference only.

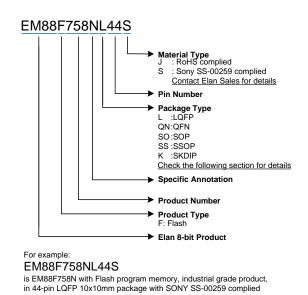
Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C.

9 AC Electrical Characteristics

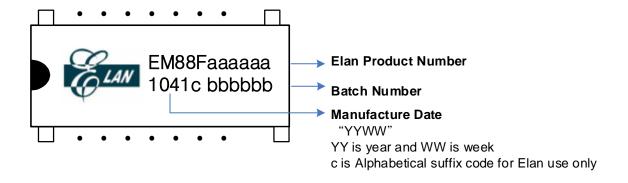
EM88F758N (VDD=5V, VSS=0V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Dclk	Input CLK duty cycle	_	45	50	55	%
<u></u> .		Crystal type	100	-	DC	ns
Tins	Instruction cycle time	RC type	100	-	DC	ns
Ttcc	TCC input period	_	(Tins+20)/N*	-	_	ns
Tdrh	Device reset hold time	_	11.8	16.8	21.8	ms
Trst	/RESET Pulse width	Ta = 25°C	2000	-	-	ns
Twdt	Watchdog timer period	Ta = 25°C	11.8	16.8	21.8	ms
Tset	Input pin setup time	_	_	0	_	ns
Thold	Input pin hold time	_	_	20	_	ns
Tdelay	Output pin delay time	Cload=20pF	_	50	_	ns

Note: These parameters are theoretical values and have not been tested. Such parameters are for design reference only.

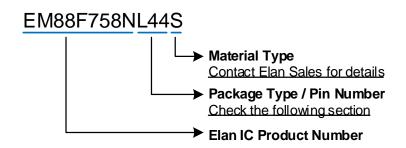

Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C.

^{*} N = selected prescaler ratio



APPENDIX

A Ordering and Manufacturing Information



IC Mark

Ordering Code

B Package Type

Flash MCU	Package Type	Pin Count	Package Size
EM88F758NL44	LQFP	44	10 mm × 10 mm
EM88F758NQN40	QFN	40	5 mm × 5 mm
EM88F758NSO28	SOP	28	300mil
EM88F758NSS28	SSOP	28	209mil
EM88F758NK28	SKDIP	28	300mil
EM88F758NSO20	SOP	20	300mil

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

Pb content is less than 100ppm and complies with Sony specifications.

Part No.	EM88F758NxJ/xS		
Electroplate type	Pure Tin		
Ingredient (%)	Sn:100%		
Melting point (°C)	232°C		
Electrical resistivity (μΩ-cm)	11.4		
Hardness (hv)	8~10		
Elongation (%)	>50%		

C Package Information

C.1 EM88F758NL44

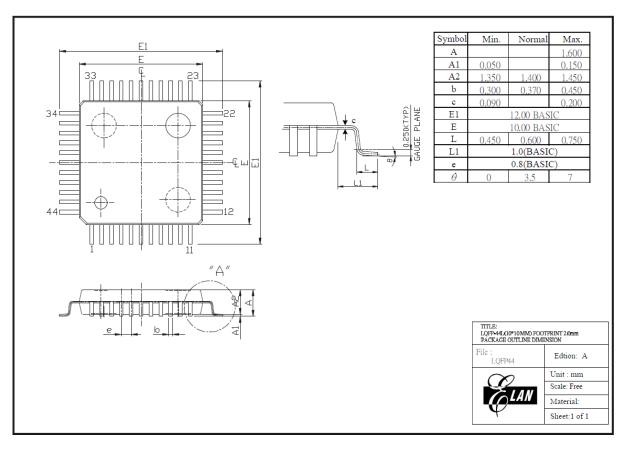


Figure C-1 EM88F758N 44-pin LQFP Package Type

C.2 EM88F758NQN40

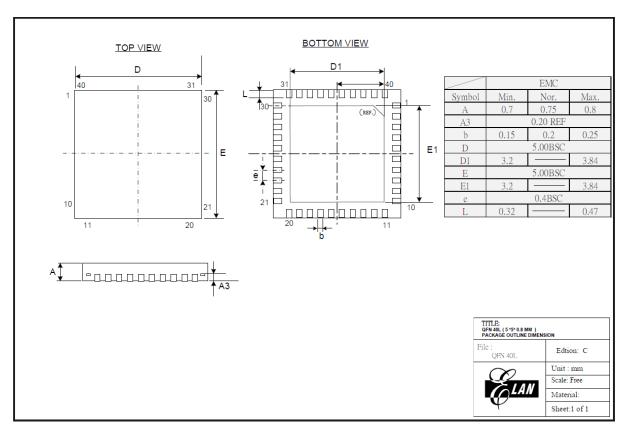


Figure C-2 EM88F758N 40-pin QFN Package Type

C.3 EM88F758NSO28

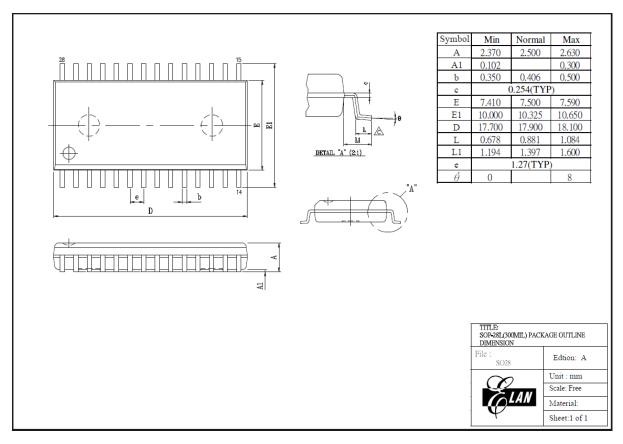


Figure C-3 EM88F758N 28-pin SOP Package Type

C.4 EM88F758NSS28

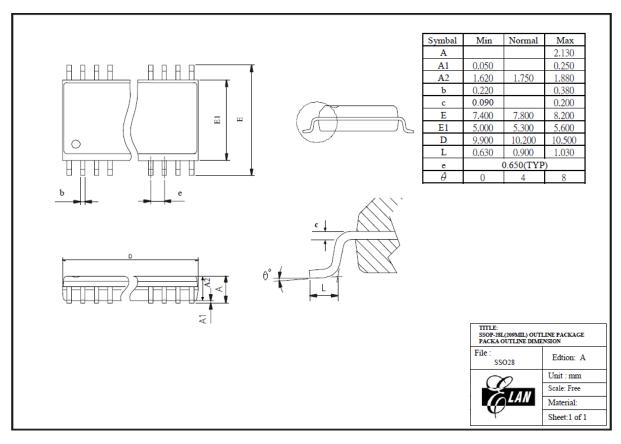


Figure C-4 EM88F758N 28-pin SSOP Package Type

C.5 EM88F758NK28

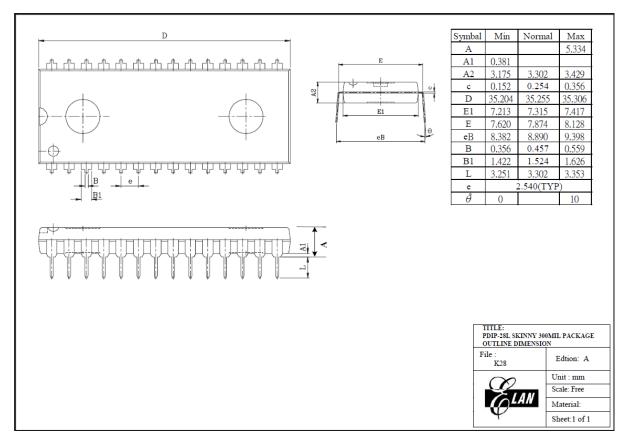


Figure C-5 EM88F758N 28-pin SKDIP Package Type

C.6 EM88F758NSO20

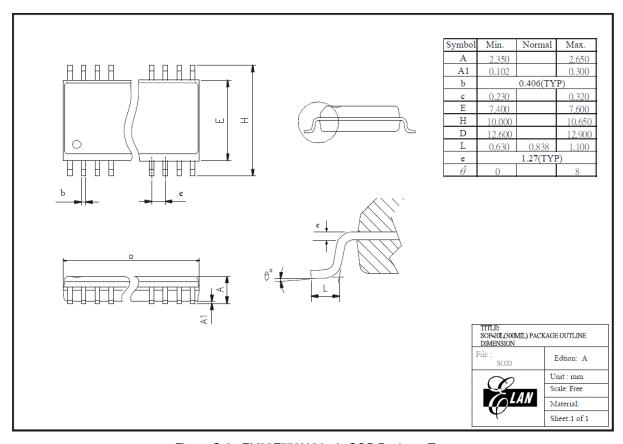


Figure C-6 EM88F758N 20-pin SOP Package Type

D Quality Assurance and Reliability

Test Category	Test Conditions	Remarks		
Solderability	Solder temperature=245±5°C, for 5 seconds up to the stopper using a rosin-type flux			
	Step 1: TCT, 65°C (15 min)~150°C (15 min), 10 cycles			
	Step 2: Bake at 125°C, TD (endurance)=24 hrs	For SMD IC (such as SOP, QFP, SOJ, etc)		
	Step 3: Soak at 30°C/60%, TD (endurance)=192 hrs			
Pre-condition	Step 4: IR flow 3 cycles			
	(Pkg thickness ≥ 2.5mm or			
	Pkg volume ≥ 350 mm ³ 225±5°C)			
	(Pkg thickness ≤ 2.5 mm or			
	Pkg volume ≤ 350 mm ³ 240±5°C)			
Temperature cycle test	-65°C (15mins)~150°C (15min), 200 cycles			
Pressure cooker test	TA =121°C, RH=100%, pressure = 2 atm,			
	TD (endurance)= 96 hrs			
High temperature / High humidity test	TA=85°C , RH=85% , TD (endurance)=168 , 500 hrs			
High-temperature storage life	TA=150°C, TD (endurance)=500, 1000 hrs			
High-temperature	TA=125°C, VDD=Max. operating voltage,			
operating life	TD (endurance) =168, 500, 1000 hrs			
Latch-up	TA=25°C, VDD=Max. operating voltage, 800mA/40V			
ESD (HBM)	TA=25°C, ≥ ± 4KV	IP_ND,OP_ND,IO_ND		
	TA=25 G, 2 ± 4KV	IP_NS,OP_NS,IO_NS		
ESD (MM)		IP_PD,OP_PD,IO_PD,		
	TA-25°C > 1 + 400\/	IP_PS,OP_PS,IO_PS,		
	TA=25°C, ≥ ± 400V	VDD-VSS(+),		
		VDD_VSS(-) mode		

D.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.

E EM88F758N Program Pin List

UWTR is used to program the EM88F758N IC's. The UWTR connector is selected by using Table E-1. The software is selected by EM88F758N.

UWTR-	ADP	UWTR-ADP106	UWTR-ADP107	UWTR-ADP109			
Program Pin Name	IC Pin Name	LQFP-44 Pin Number	QFN-40 Pin Number	SOP-28 Pin Number	SSOP-28 Pin Number	SKDIP-28 Pin Number	SOP-20 Pin Number
2W_SCL	P64	9	9	11	11	11	7
2W_SDA	P63	10	10	12	12	12	8
VDD	VDD	32	30	24	24	24	20
VSS	VSS	41	39	5	5	5	1

Table E-1 EM88F758N Program Pin Lis

