

8-Bit Microcontroller

Product Specification

DOC. VERSION 4.5

ELAN MICROELECTRONICS CORP. March 2009

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo

Copyright © 2002~2009 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, TAIWAN 308 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd. Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn USA:

Elan Information Technology Group (U.S.A.) PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

Elan Microelectronics Shanghai, Ltd.

#23, Zone 115, Lane 572, Bibo Rd. Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-4600 elan-sh@elanic.com.cn

Contents

1	General Description1				
2	Features 1				
3	Application3				
4	Block Diagram				
5	Pin Configuration				
6	Pin Description				
7	Functional Description				
-	7.1		ional Registers		
	7.2	•	ional Registers Detailed Description		
		7.2.1	R0 (Indirect Addressing Register)		
		7.2.2	R1 (TCC)		
		7.2.3	R2 (Program Counter)		
		7.2.4	R3 (Status, Page Selection)	10	
		7.2.5	R4 (RAM Select for Common Registers R20 ~ R3F)	11	
		7.2.6	R5 (Port 5 I/O Data, Program Page Select, LCD Address, SPI Control)	11	
		7.2.7	R6 (Port 6 I/O Data, LCD Data, SPI Data Buffer)	17	
		7.2.8	R7 (Port 7 I/O Data, Data RAM Bank)	19	
		7.2.9	R8 (Port 8 I/O Data, Data RAM Address)		
		7.2.10	R9 (Port 9 I/O Data, Data RAM Data Buffer)	21	
			RA (PLL, Main Clock Select, Watchdog Timer)		
			RB (Port B I/O Data, ADC Output Data Buffer)		
			RC (Port C I/O Data, Counter 1 Data)		
			RD (LCD Control, Counter 2 Data)		
			RE (Interrupt Flag, Wake-up Control)		
			RF (Interrupt Status)		
		7.2.17	R10~R3F (General Purpose Register)	34	
	7.3	•	I Purpose Registers		
			A (Accumulator)		
		7.3.2	CONT (Control Register)		
		7.3.3	IOC5 (Port 5 I/O Control, LCD Bias Control)		
		7.3.4	IOC6 (Port 6 I/O Control, P60~P66 Pins Switch Control)		
		7.3.5	IOC7 (Port 7 I/O Control, Port 7 Pull-high Control)		
		7.3.6	IOC8 (Port 8 I/O Control, Port 8 Pull-high Control)		
		7.3.7	IOC9 (Port 9 I/O Control, Port 9 Switches)		
		7.3.8	IOCA (Reserved)		
		7.3.9	IOCB (Port B I/O Control, ADC Control)		
		7.3.10	IOCC (Port C I/O Control, ADC Control)	46	

		7.3.11 IOCD (Clock Source, Prescaler of CN1 and CN2)	47
		7.3.12 IOCE (Interrupt Mask)	48
		7.3.13 IOCF (Interrupt Mask)	49
	7.4	I/O Port	51
	7.5	Reset	52
	7.6	Wake-up	53
	7.7	Interrupt	53
	7.8	Instruction Set	53
	7.9	Code Option	56
	7.10	Dual Sets of PWM (Pulse Width Modulation)	57
		7.10.1 Overview	57
		7.10.2 Increment Timer Counter (TMRX: TMR1H/TWR1L or TMR2H/TWR2L)	58
		7.10.3 PWM Period (PRDX: PRD1 or PRD2)	58
		7.10.4 PWM Duty Cycle (DTX: DT1H/ DT1L and DT2H/ DT2L;	
		DTL: DL1H/DL1L and DL2H/DL2L)	
		7.10.5 PWM Programming Procedures/Steps	
		7.10.6 Timer	59
8	Abso	olute Maximum Ratings	60
9	DC E	Electrical Characteristics	60
10	AC E	Electrical Characteristics	61
11	Timi	ng Diagrams	65

APPENDIX

Α	Note on EM78569 Developing Tool (ICE569)	66
В	User Application Note	66

Doc. Version	Revision Description	Date
EM78569		
1.0	Initial version	2002/06/10
3.1	Modified the Multiplier architecture	2003/03/10
3.2	 Moved the DARES bit from Bit 7 to Bit 3. Changed the instruction "MUL" → "INT A" Modified the Sink/Driver current 	2003/05/02
3.3	 Updated the Application Note Added 17.91MHz main CLK 	2003/06/09
3.4	 Added data RAM address auto-increase function Added mclk/2 signal output (output shared with PC0) Added carry bit calculation function.(ADD, SUB) 	2003/08/01
3.5	Modified the code option definition	2003/09/17
3.6	Added a description about the ADC's offset voltage	2003/10/22
3.7	 Decreased the stack from 16 to 12 Modified the operating temperature Modified the Port 9 sink/driver current 	2004/04/10
3.8	Added the OSC stable and reset timing diagram.	2004/07/02
3.9	Modified the Normal mode power consumption.	2004/08/19
4.0	Removed the Idle mode. Modified the operating temperature.	2004/08/31
4.1	Added DAC Vref level control (code option).	2004/10/04
4.2	Removed the code option "MER".	2004/12/29
4.3	Changed the minimum operating voltage from 2.2V to 2.0V.	2008/05/27
4.4	Updated the User Application Notes	2008/11/27
4.5	 Modified the stack level on Figure 7-1 Modified Ports 80~83 location on the wake-up source list Removed any redundant words on Bits 1, 0 on the IOCA Page 1. Added enable/disable description on Bits 4, 7 on the IOCE Page 0 Updated the Ports 70~73 external INT description 	2009/03/16

Contents

1 General Description

The EM78569 is an 8-bit RISC type microprocessor with low power, high speed CMOS technology. This integrated single IC has an on-chip watchdog timer (WDT), program ROM, data RAM, LCD driver, programmable real time clock/counter, internal interrupt, power down mode, built-in 3-wire SPI, dual PWM (Pulse Width Modulation), 10-bit A/D converter, 10-bit DA converter and tri-state I/O.

2 Features

CPU

■ Operating voltage: 2.0V~5.5V at main CLK less than 3.58 MHz

Main CLK (Hz)	Under 3.58M	7.16M	10.74M	14.4M	17.9M
Operating Voltage (min)	2.0	2.5	3	3.6	4V

- 16×13 on-chip Program ROM
- 1K×8 on-chip data RAM
- Up to 51 bi-directional tri-state I/O ports (22 pin shared with LCD)
- 12-level stack for subroutine nesting
- 8-bit real time clock/counter (TCC)
- Two 8-bit counters: Counter 1 and Counter 2
- On-chip watchdog timer (WDT)
- Single instruction cycle commands
- Three modes (Main clock can be programmed from 447.829k to 17.9 MHz generated by internal PLL)

Mode	CPU Status	Main Clock	32.768kHz Clock Status
Sleep mode	Turn off	Turn off	Turn off
Green mode	Turn on	Turn off	Turn on
Normal mode	Turn on	Turn on	Turn on

- 8-level Normal mode frequency : 447.8kHz , 895.7kHz , 1.79 MHz, 3.58 MHz, 7.16 MHz, 10.75 MHz, 14.3 MHz, 17.9 MHz
- Input port interrupt function
- 10 interrupt sources: 4 external, 6 internal
- Dual clock operation (Internal PLL main clock, External 32.768kHz)

SPI

- Serial Peripheral Interface (SPI) : a kind of serial I/O interface
- Interrupt flag available for the read buffer full or transmitter buffer empty
- Programmable baud rates of communication
- Three-wire synchronous communication (shared with I/O)

PWM

- Dual PWM (Pulse Width Modulation) with 10-bit resolution
- Programmable period (or baud rate)
- Programmable duty cycle

ADC

- Operating voltage: 2.5V ~ 5.5V
- 6 channel 10-bit successive approximation A/D converter
- Internal (VDD) or external reference

DAC

- Operating voltage: 2.5V ~ 5.5V under VDD reference
 2.8V ~ 5.5V under 2.5V reference
- 10-bit R-2R D/A converter
- Internal (VDD or 2.5V) reference

POR

2.0V Power-on voltage detector reset

Built-in LCD driver (4×32)

- Common driver pins: 4
- Segment driver pins: 32
- 1/3 bias
- 1/4 duty, 1/2 duty
- 16-Level LCD contrast control by software

Multiplication

8×8 multiplication

Package

■ 73-pin die or 100-pin QFP

3 Application

Communication or general product

4 Block Diagram

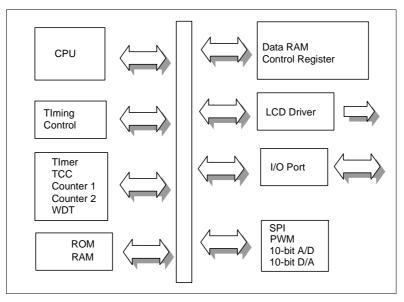


Figure 4-1a Block Diagram

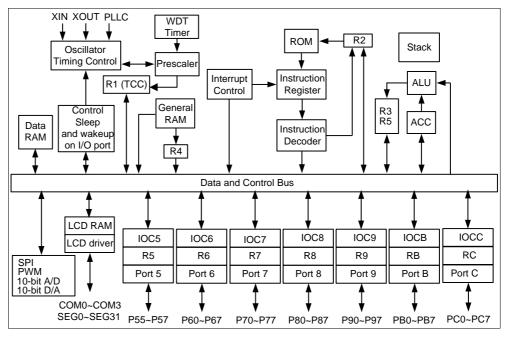


Figure 4-1b Block Diagram

5 Pin Configuration

	SEG1 SEG2 SEG2 SEG3 SEG4 SEG4 SEG4 SEG5 SEG5 SEG6 SEG6 SEG13/P97 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P95 SEG13/P91 SEG20/P90	
NC N	B B B B B B B B B B B B B B B B D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	C C C C C C C C C C C C C C C C C C C

Figure 5 EM78569 74-pin die or 100-pin QFP

6 Pin Description

Pin	I/O	Description			
Power	Power				
VDD	Damar	Digital power			
AVDD	Power	Analog power			
VSS	Power	Digital ground			
AVSS	1 Ower	Analog ground			
Clock					
XIN	Ι	Input pin for 32.768kHz oscillator			
XOUT	0	Output pin for 32.768kHz oscillator			
PLLC	I	Phase loop lock capacitor. Connect a $0.047\mu \sim 0.1\mu$ capacitor to the ground.			
LCD					
COM0 ~ COM3	0	Common driver pins of LCD drivers			
SEG0 ~ SEG9	0				
SEG10 ~ SEG12	O (I/O : Port 5)	Segment driver pins of LCD drivers			
SEG13 ~ SEG20	O (I/O : Port 9)	SEG10 to SEG31 are shared with I/O port.			
SEG21 ~ SEG28	O (I/O : Port B)				
SEG29 ~ SEG31	O (I/O : Port C)				
10-bit 6 Channel	A/D				
VREF	I (P66)	ADC reference input. Shared with Port 66			
AD1	I (P60)	ADC input Channel 1. Shared with Port 60			
AD2	I (P61)	ADC input Channel 2. Shared with Port 61			
AD3	I (P62)	ADC input Channel 3. Shared with Port 62			
AD4	I (P63)	ADC input Channel 4. Shared with Port 63			
AD5	I (P64)	ADC input Channel 5. Shared with Port 64			
AD6	I (P65)	ADC input Channel 6. Shared with Port 65			
10-bit D/A					
DAO	O (P67)	DAO is 10-bit DA output shared with Port 67			
SPI					
SCK	IO (Port 76)	Master: output pin, Slave: input pin. This is pin-shared with Port 76.			
SDO	O (Port 75)	Output pin for serial data transfer. This is pin-shared with Port 75.			
SDI	I (Port 74)	Input pin for receiving data. This is pin-shared with Port 74.			
PWM					
PWM1	0	Pulse Width Modulation Output Channel 1			
PWM2	0	Pulse Width Modulation Output Channel 2			

Pin I/O		Description		
I/O				
P55~P57	I/O	Each bit in Port 5 can be Input or Output port. Port 5 (7:5) are shared with LCD Segment signal.		
P60 ~P67	I/O	Each bit in Port 6 can be Input or Output port.		
P70 ~ P77	Ι/Ο	Each bit in Port 7 can be Input or Output port. Port 7 (4~6) are shared with SPI interface pins. Internal Pull-high function Interrupt function		
P80 ~ P87	I/O	Each bit in Port 8 can be Input or Output port. Internal pull high function Port 85 ~ P87 are pin-shared with ADC input Port 8 (0~3) have wake-up functions (set by RE PAGE 0)		
P90 ~ P97 I/O		Each bit in Port 9 can be Input or Output port. Port 9 are shared with LCD Segment signal.		
PB0 ~ PB7 I/O		Each bit in Port B can be Input or Output port. Port B are shared with LCD Segment signal.		
PC0 ~ PC7	I/O	Each bit in Port C can be Input or Output port. Port C (7:5) are shared with LCD Segment signal.		
INTO	Port 70	Interrupt sources. Once Port 70 has a falling edge or rising edge signal (controlled by CONT register), it will generate an interrupt.		
INT1	Port 71	Interrupt sources which has the same interrupt flag. When any pin from Port 71 has a falling edge signal, it will generate an interrupt.		
INT2	Port 72	Interrupt sources which has the same interrupt flag. When any pin from Port 72 has a falling edge signal, it will generate an interrupt.		
INT3	Port 73	Interrupt sources which has the same interrupt flag. When any pin from Port 73 has a falling edge signal, it will generate an interrupt.		
/RESET	I	Low reset		

7 Functional Description

7.1 Operational Registers

Register Configuration

Addr	R Page Registers					
Addr	R Page 0	R Page 1	R Page 2	R Page 3		
00	Indirect addressing					
01	тсс					
02	PC					
03	Page, Status					
04	RAM bank, RSR					
05	Port 5 I/O data, Program ROM page	LCD RAM address	SPI control	PWM control		
06	Port 6 I/O data	LCD data buffer	SPI data buffer	Duty of PWM1		
07	Port 7 I/O data	Data RAM bank		PWM1 control Duty of PWM1		
08	Port 8 I/O data	Data RAM address		Period of PWM1		
09	Port 9 I/O data	Data RAM data buffer		Duty of PWM2		
0A	PLL, Main clock, WDTE	DAC input data buffer	Multiplier control	PWM2 control Duty of PWM2		
0B	Port B I/O data	ADC output data buffer	Multiplicand Y	Period of PWM2		
0C	Port C I/O data	Counter 1 data	MR (0~7)			
0D	LCD control	Counter 2 data	MR (8~15)			
0E	Wake-up control, Interrupt flag		MR (16~23)			
0F	Interrupt flag					
10	16 bytes					
:	Common registers					
1F						
20	Bank 0~Bank 3					
:	Common registers					
3F	(32×8 for each bank)					

Addr	IOC Page Registers			
Addr	IOC Page 0	IOC Page 1		
00				
01				
02				
03				
04				
05	Port 5 I/O control, LCD bias control			
06	Port 6 I/O control	Port 6 switches		
07	Port 7 I/O control	Port 7 pull high		
08	Port 8 I/O control	Port 8 pull high		
09	Port 9 I/O control	Port 9 switches		
0A		DAC control		
0B	Port B I/O control	ADC control		
0C	Port C I/O control	Port 5, 8, B, C switch		
0D		Clock source (CN1, CN2) Prescaler (CN1, CN2)		
0E	Interrupt mask			
0F	Interrupt mask			
10				
:				
1F				
20				
:				
3F				

7.2 Operational Registers Detailed Description

7.2.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as indirect addressing pointer. Any instruction using R0 as register actually accesses data pointed by the RAM Select Register (R4).

Example:

Mov	A, @0x20	; store an address at R4 for indirect ; addressing
Mov	0x04, A	
Mov	A, @0xAA	; write data 0xAA to R20 at Bank0 through R0
Mov	0x00, A	

7.2.2 R1 (TCC)

TCC data buffer. Increased by 16.384kHz or by the instruction cycle clock (controlled by CONT register).

Written and read by the program as any other register.

7.2.3 R2 (Program Counter)

The structure is depicted in Figure 7-1 *Program Counter Organization,* and it generates 16K×13 external ROM addresses to the relative programming instruction codes.

The "JMP" instruction allows direct loading of the low 10 program counter bits.

The "CALL" instruction loads the low 10 bits of the PC, PC+1, and then pushes onto the stack.

The "RET" ("RETL k", "RETI") instruction loads the program counter with the contents at the top of the stack.

The "MOV R2,A" allows the loading of an address from the A register to the PC, and the ninth and tenth bits are cleared to "0".

The "ADD R2,A" allows a relative address to be added to the current PC, and the contents of the ninth and tenth bits are cleared to "0".

"TBL" allows a relative address to be added to the current PC, and the contents of the ninth and tenth bits remain unchanged. The most significant Bit (A10~A13) will be loaded with the contents of Bits PS0~PS3 in the status register (R5 Page 0) upon the execution of a "JMP", "CALL", "ADD R2, A", or "MOV R2,A" instruction.

If an interrupt is triggered, Program ROM will jump to Address 0x08 at Page 0. The CPU will store ACC, R3 status and R5 Page automatically, and they will be restored after instruction RETI.

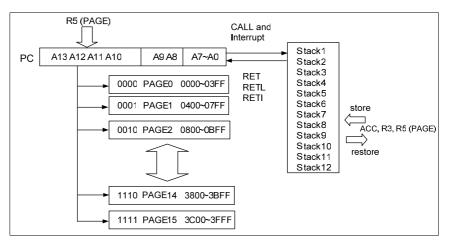


Figure 7-1 Program Counter Organization

7.2.4 R3 (Status, Page Selection)

(Status Flag, Page Select Bits)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPAGE1	RPAGE0	IOCPAGE	Т	Р	Z	DC	С
R/W-0	R/W-0	R/W-0	R	R	R/W	R/W	R/W

Bit 0 (C): Carry flag

Bit 1 (DC): Auxiliary carry flag

Bit 2 (Z): Zero flag

Bit 3 (P): Power down bit

Set to 1 during power-on or by a "WDTC" command and reset to 0 by a "SLEP" command.

Bit 4 (T): Time-out bit

Set to 1 by the "SLEP" and "WDTC" commands or during power up and reset to 0 by WDT timeout.

Event	Т	Р	Remark
WDT wake up from sleep mode	0	0	
WDT time out (not sleep mode)	0	1	
/RESET wake up from sleep	1	0	
Power up	1	1	
Low pulse on /RESET	×	×	×: don't care

Bit 5 (IOCPAGE): Change IOC5 ~ IOCE to another page

Refer to Figure 7-1 Program Counter Organization for details.

0: IOC Page 0

1: IOC Page 1

Bit 6 (RPAGE0 ~ RPAGE1): Change R5 ~ RE to another page

Refer to Section 7.1 *Operational Registers* for detailed register configuration

(RPAGE1, RPAGE0)	R Page # Selected
(0,0)	R Page 0
(0,1)	R Page 1
(1,0)	R Page 2
(1,1)	R Page 3

7.2.5 R4 (RAM Select for Common Registers R20 ~ R3F)

RAM Select Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RB1	RB0	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
R/W-0	R/W-0	R/W	R/W	R/W	R/W	R/W	R/W

Bit 0 ~ Bit 5 (RSR0 ~ RSR5): Indirect addressing for Common Registers R20 ~ R3F

RSR bits are used to select up to 32 registers (R20 to R3F) in the indirect addressing mode.

Bit 6 ~ Bit 7 (RB0 ~ RB1): Bank select bits for Common Registers R20 ~ R3F

These select bits are used to determine which bank is activated among the 4 banks of the 32 registers (R20 to R3F).

Refer to Section 7.1 Operational Registers for details.

7.2.6 R5 (Port 5 I/O Data, Program Page Select, LCD Address, SPI Control)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P57	P56	P55	-	PS3	PS2	PS1	PS0
R/W	R/W	R/W	-	R/W-0	R/W-0	R/W-0	R/W-0

Page 0 (Port 5 I/O Data Register, Program Page Register)

Bit 0 ~ Bit 3 (PS0 ~ PS3): Program page select bits

PS3	PS2	PS1	PS0	Program Memory Page (Address)
0	0	0	0	Page 0
0	0	0	1	Page 1
0	0	1	0	Page 2
0	0	1	1	Page 3
:	:	:	:	:
:	:	:	:	:
1	1	1	0	Page 14
1	1	1	1	Page 15

User can use the PAGE instruction to change page to maintain the program page by user. Otherwise, user can use far jump (FJMP) or far call (FCALL) instructions to program user's code. And the program page is maintained by EMC's compiler. It will change user's program by inserting instructions within the program.

Bit 4: unused

Bit 5 ~ Bit 7 (P55 ~ P57): 8-bit Port 5 (5~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (LCD Address)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA9	DA8	-	-	LCDA3	LCDA2	LCDA1	LCDA0
R/W-0	R/W-0	-	-	R/W-0	R/W-0	R/W-0	R/W-0

Bit 0 ~ Bit 3 (LCDA0 ~ LCDA3): LCD address for LCD RAM read or write

The address of the LCD RAM corresponds to the Common and Segment signals as shown in the table.

COM3 ~ COM0	LCD Address (LCDA3 ~ LCDA0)
SEG1, SEG0	00H
SEG3, SEG2	01H
SEG5, SEG4	02H
SEG7, SEG6	03H
SEG9, SEG8	04H
SEG11, SEG10	05H
SEG13, SEG12	06H
SEG15, SEG14	07H
SEG17, SEG16	08H
SEG19, SEG18	09H
SEG21, SEG20	0AH
SEG23, SEG22	0BH
SEG25, SEG24	0CH
SEG27, SEG26	0DH
SEG29, SEG28	0EH
SEG31, SEG30	0FH

Bit 4 ~ Bit 5: unused

Bit 6 ~ Bit 7 (DA8~DA9): DA8 and DA9 are DAC MSB when R7 Page 1 Bit 3 (DARES) is set or unused when DAREF is cleared to 0. When using 10 bits resolution DAC, DAO output voltage will not change after writing data to these 2 bits. DAO pin will change after writing new data to the DAC low 8 bits data buffer (RA Page 1).

Page 2 (SPI Control)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RBF	SPIE	SRO	SE	SCES	SBR2	SBR1	SBR0
R/W-0							

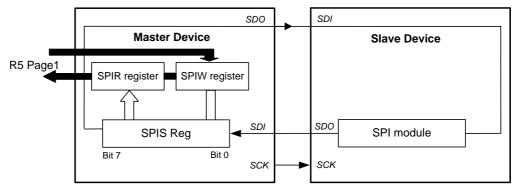


Figure 7-2 Single SPI Master / Salve Communication

Figure 7-2 shows how the SPI communicates with other device by SPI module. If the SPI is a master controller, it sends clock through the SCK pin. An 8-bit data is transmitted and received at the same time. If the SPI, however, is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted on a basis of both the clock rate and the selected edge.

SBR2	SBR1	SBR0	Mode	Baud Rate
0	0	0	Master	Fosc
0	0	1	Master	Fosc/2
0	1	0	Master	Fosc/4
0	1	1	Master	Fosc/8
1	0	0	Master	Fosc/16
1	0	1	Master	Fosc/32
1	1	1	Slave	_
1	1	0	Master	16.384k

Bit 0 ~ Bit 2 (SBR0 ~ SBR2): SPI baud rate select bits

NOTE Fosc = CPU instruction clock

For example:

If PLL is enabled and the main clock selected 3.5826 MHz, the instruction clock is 3.5826 MHz / 2 \rightarrow Fosc=3.5862 MHz / 2

If PLL is enabled and the main clock selected 0.895 MHz, the instruction clock is 0.895 MHz / 2 \rightarrow Fosc=0.895 MHz / 2

If PLL is disabled, the instruction clock is 32.768kHz/2 \rightarrow Fosc=32.768kHz/2.

Bit 3 (SCES): SPI clock edge selection bit

- **0** : Data shifts out on a rising edge, and shifts in on a falling edge. Data is on hold during a low level.
- **1**: Data shifts out on falling edge, and shifts in on a rising edge. Data is on hold during the high level.

Bit 4 (SE): SPI shift enable bit

- **0** : Reset as soon as the shifting is completed, and the next byte is ready to shift.
- **1** : Start to shift, and keep at 1 while the current byte is still being transmitted.

NOTE This bit has to be reset by software.

- Bit 5 (SRO): SPI read overflow bit
 - 0: No overflow
 - 1 : A new data is received while the previous data is still on hold in the SPIB register. In this situation, the data in the SPIS register will be destroyed. To avoid setting this bit, it is better for users to read the SPIB register even if the transmission is implemented only.

	NOTE This can only occur in slave mode.
Bit 6 (SPIE):	SPI enable bit
	0 : Disable SPI mode
	1 : Enable SPI mode
Bit 7 (RBF):	SPI read buffer full flag
	0 : Receiving is not finished yet, SPIB is empty.
	1: Receiving is finished, SPIB is full.

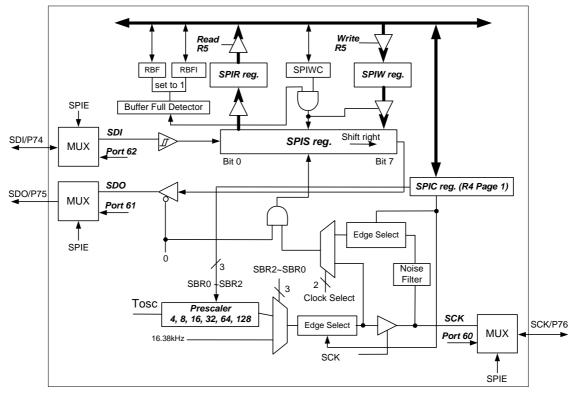


Figure 7-3 SPI Structure

SPIC reg. : SPI control register

SDO/P61 : Serial data out

SDI/P62 : Serial data in

SCK/P60 : Serial clock

RBF : Set by buffer full detector, and reset by software.

RBFI: Interrupt flag. Set by buffer full detector, and reset by software.

Buffer Full Detector : Set to 1, while an 8-bit shifting is completed.

SE : Loads the data in the SPIW register, and begin to shift.

SPIE : SPI control register

SPIS reg. : Shifting byte out and in.

The MSB will be shifted first. Both the SPIS register and the SPIW register are loaded at the same time. Once data are being written to, SPIS starts transmission/reception. The received data will be moved to the SPIR register, as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flags and the RBFI (Read Buffer Full Interrupt) flags are set.

SPIR reg. : Read buffer

The buffer will be updated as the 8-bit shifting is completed. The data must be read before the next reception is finished. The RBF flag is cleared as the SPIR register is read.

SPIW reg. : Write buffer

The buffer will ignore any write until the 8-bit shifting is completed. The SE bit will be kept in 1 if the communication is still undergoing. This flag must be cleared as the shifting is finished. Users can determine if the next write attempt is available.

- SBR2 ~ SBR0 : Programming the clock frequency/rates and sources.
- **Clock Select :** Selecting either the internal instruction clock or the external 16.338kHz clock as the shifting clock.

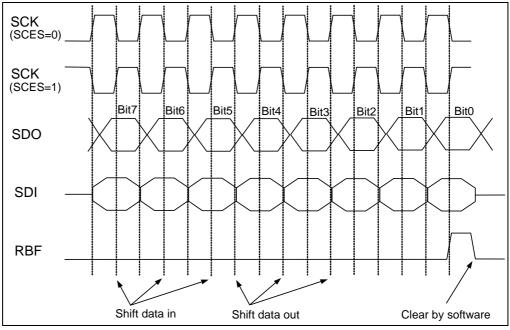


Figure 7-4 SPI Timing

Page 3 (PWMCON)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2E	PWM1E	T2EN	T1EN	T2P1	T2P0	T1P1	T1P0
R/W-0							

Bit 0 ~ Bit 1 (T1P0 ~ T1P1): TMR1 clock prescaler option bits.

T1P1	T1P0	Prescaler
0	0	1:2 (Default)
0	1	1:8
1	0	1:32
1	1	1:64

Bit 2 ~ Bit 3 (T2P0 ~ T2P1): TMR2 clock prescaler option bits.

T2P1	T2P0	Prescaler
0	0	1:2 (Default)
0	1	1:8
1	0	1:32
1	1	1:64

Bit 4 (T1EN): TMR1 enable bit

0: TMR1 is off (default value)

1: TMR1 is on

Bit 5 (T2EN): TMR2 enable bit

- **0**: TMR2 is off (default value)
- 1: TMR2 is on

Bit 6 (PWM1E): PWM1 enable bit

0 : PWM1 is off (default value), and its related pin carries out the PC1 function.

1: PWM1 is on, and its related pin will automatically be set to output.

Bit 7 (PWM2E): PWM2 enable bit

0 : PWM2 is off (default value), and its related pin carries out the PC2 function.

1: PWM2 is on, and its related pin will automatically be set to output.

7.2.7 R6 (Port 6 I/O Data, LCD Data, SPI Data Buffer)

Page 0 (Port 6 I/O Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P67	P66	P65	P64	P63	P62	P61	P60
R/W							

Bit 0 ~ Bit 8 (P60 ~ P67): 8-bit Port 6 (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (LCD Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LCDD7	LCDD6	LCDD5	LCDD4	LCDD3	LCDD2	LCDD1	LCDD0
R/W							

LCD Data v		
LCDD7 ~ LCDD4	LCDD3 ~ LCDD0	LCD Address (LCDA3 ~ LCDA0)
COM3 ~ COM0	COM3 ~ COM0	(LCDA3 ~ LCDA0)
SEG1	SEG0	00H
SEG3	SEG2	01H
SEG5	SEG4	02H
SEG7	SEG6	03H
SEG9	SEG8	04H
SEG11	SEG10	05H
SEG13	SEG12	06H
SEG15	SEG14	07H
SEG17	SEG16	08H
SEG19	SEG18	09H
SEG21	SEG20	0AH
SEG23	SEG22	0BH
SEG25	SEG24	0CH
SEG27	SEG26	0DH
SEG29	SEG28	0EH
SEG31	SEG30	0FH

Bit 0 ~ Bit 7 (LCDD0 ~ LCDD7): LCD data buffer for LCD RAM read or write

Page 2 (SPI Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPIB7	SPIB6	SPIB5	SPIB4	SPIB3	SPIB2	SPIB1	SPIB0
R/W							

Bit 0 ~ Bit 7 (SPIB0 ~ SPIB7): SPI data buffer

If user writes data to this register, the data will be written to the SPIW register. If user reads this data, data from the SPIR register will be read. Refer to Figure 7.

■ Page 3 (DT1L: Least Significant Byte (Bit 7 ~ Bit 0) of PWM1 Duty Cycle)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1[7]	PWM1[6]	PWM1[5]	PWM1[4]	PWM1[3]	PWM1[2]	PWM1[1]	PWM1[0]
R/W-0							

A specified value keeps the output of PWM1 to remain at high until the value matches with TMR1.

7.2.8 R7 (Port 7 I/O Data, Data RAM Bank)

Page 0 (Port 7 I/O Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P77	P76	P75	P74	P73	P72	P71	P70
R/W							

Bit 0 ~ Bit 7 (P70 ~ P77): 8-bit Port 7 (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (Data RAM Bank Select Bits)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ſ		-	AD9	AD8	DARES	ADRES	RAM_B1	RAM_B0
			R	R	R/W-0	R/W-0	R/W-0	R/W-0

Bit 0~Bit 1 (RAM_B0~RAM_B1): Data RAM bank selection bits

Each bank has Address 0 ~ Address 255 or a total of 256 (0.25k) bytes RAM size.

RAM_B1	RAM_B0	Page
0	0	Page 0
0	1	Page 1
1	0	Page 2
1	1	Page 3

Bit 2 (ADRES): Resolution select for ADC

0: ADC has 8-bit resolution

When 8-bit resolution is selected, the most significant (MSB) 8-bit data output of the internal 10-bit ADC will be mapped to RB Page 1 so R7 Page 1 Bits 4 ~5 will be of no use.

1: ADC has 10-bit resolution

When 10-bit resolution is selected, 10-bit data output of the internal 10-bit ADC will be exactly mapped to RB Page 1 and R7 Page 1 Bits 4 ~5.

- Bit 3: Resolution select for DAC
 - 0: DAC has 8-bit resolution

When 8-bit resolution is selected, the most significant (MSB) 8-bit data output of the internal 10-bit DAC will be mapped to RA PAGE1 so R5 Page 1 Bits 6 ~7 will be of no use.

1: DAC has 10-bit resolution

When 10-bit resolution is selected, 10-bit data output of the internal 10-bit DAC will be exactly mapped to RA Page 1 and R5 Page 1 Bits 6 ~7.

Bit 4 ~ Bit 5 (AD8 ~ AD9): Most significant 2 bits of the 10-bit ADC conversion output data.

Combine these 2 bits and RB Page 1 as complete 10-bit ADC conversion output data.

Bit 6~Bit 7: Unused

- Page 2 (Reserved): (Unused register, not allowed for use)
- Page 3 (DT1H: Most Significant Byte (Bit 1 ~ Bit 0) of PWM1 Duty Cycle)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PWM1[9]	PWM1[8]
						R/W-0	R/W-0

Bit 0 ~ Bit 1 (PWM1[8] ~ PWM1[9]): Most Significant Byte of PWM1 Duty Cycle

A specified value keeps the PWM1 output to remain at high until the value matches with TMR1.

Bit 2 ~ Bit 7: unused

7.2.9 R8 (Port 8 I/O Data, Data RAM Address)

Page 0 (Port 8 I/O Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P87	P86	P85	P84	P83	P82	P81	P80
R/W							

Bit 0 ~ Bit 7 (P80 ~ P87): 8-bit Port 8 (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 ("VERSEL = 0" → Data RAM Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RAM_A7	RAM_A6	RAM_A5	RAM_A4	RAM_A3	RAM_A2	RAM_A1	RAM_A0
R/W-0							

Bit 0 ~ Bit 7 (RAM_A0 ~ RAM_A7): data RAM address

The data RAM bank's selection is from R7 Page1 Bit 0 ~ Bit 1 (RAM_B0 ~ RAM_B1).

■ Page 1 ("VERSEL = 1" \rightarrow Un-defined)

When "VERSEL = 1", Data RAM address buffer is mapping to RB Page2 and R8 Page 1 is unused.

■ Page 2 (Reserved): (undefined) not allowed for use

Page 3 (PRD1: Period of PWM1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
R/W-0							

The content of this register is a period (time base) of PWM1. The frequency of PWM1 is the reverse of the period.

7.2.10 R9 (Port 9 I/O Data, Data RAM Data Buffer)

Page 0 (Port 9 I/O Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P97	P96	P95	P94	P93	P92	P91	P90
R/W							

Bit 0 ~ Bit 7 (P90 ~ P97): 8-bit Port 9 (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (Data RAM Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RAM_D7	RAM_D6	RAM_D5	RAM_D4	RAM_D3	RAM_D2	RAM_D1	RAM_D0
R/W							

Bit 0 ~ Bit 7 (RAM_D0 ~ RAM_D7): Data RAM's data

The address for the data RAM is accessed from R8 Page 1. The data RAM bank is selected by R7 Page 1 Bit 0 ~ Bit 1 (RAM_B0 ~ RAM_B1).

Page 2 (Unused, the Page is not Allowed for Use)

Page 3 (DT2L: Least Significant Byte (Bit 7 ~ Bit 0) of PWM2 Duty Cycle)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2[7]	PWM2[6]	PWM2[5]	PWM2[4]	PWM2[3]	PWM2[2]	PWM2[1]	PWM2[0]
R/W-0							

A specified value keeps the output of PWM2 to remain at high until the value matches with TMR2.

7.2.11 RA (PLL, Main Clock Select, Watchdog Timer)

Page 0 (PLL Enable Bit, Main Clock Select Bits, Watchdog Timer Enable Bit)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	PLLEN	CLK2	CLK1	CLK0	-	-	WDTEN
R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	-	-	R/W-0

Bit 0 (WDTEN): Watchdog control bit

User can use the WDTC instruction to clear the watchdog counter. The counter's clock source is 32768/2 Hz. If the prescaler is assign to TCC, the Watchdog will time out by $(1/32768) \times 2 \times 256 = 15.625$ ms. If the prescaler is assign to WDT, the duration of time-out will be longer, depending on the prescaler ratio.

- 0: disable
- 1: enable

Bit 1~Bit 2: Unused

Bit 3 ~ Bit 5 (CLK0 ~ CLK2): main clock select bits

User can choose different frequency for the main clock by CLK1 and CLK2. All the clock selection is listed below.

PLLEN	CLK2	CLK1	CLK0	Sub Clock	Main Clock	CPU Clock
1	0	0	0	32.768kHz	447.829kHz	447.829kHz (Normal mode)
1	0	0	1	32.768kHz	895.658kHz	895.658kHz (Normal mode)
1	0	1	0	32.768kHz	1.791 MHz	1.791 MHz (Normal mode)
1	0	1	1	32.768kHz	3.582 MHz	3.582 MHz (Normal mode)
1	1	0	0	32.768kHz	7.165 MHz	7.165 MHz (Normal mode)
1	1	0	1	32.768kHz	10.747 MHz	10.747 MHz (Normal mode)
1	1	1	0	32.768kHz	14.331 MHz	14.331 MHz (Normal mode)
1	1	1	1	32.768kHz	17.91 MHz	17.91 MHz (Normal mode)
0	Don't care	Don't care	Don't care	32.768kHz	don't care	32.768kHz (Green mode)

Bit 6 (PLLEN): PLL's power control bit which is CPU mode control register

- 0 : disable PLL
- 1 : enable PLL

If enable PLL, CPU will operate at normal mode (high frequency). Otherwise, it will run at green mode (low frequency, 32768 Hz).

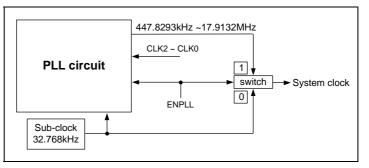


Figure 7-5 Correlation between 32.768kHz and PLL

Bit 7: Unused register. Always keep this bit to 0 or some unexpect error will occur.

Wake-up Signal	Sleep Mode
	RA(7,6)=(0,0) + SLEP
TCC time out IOCF Bit 0=1	No function
Counter 1 time out IOCF Bit 1 = 1	No function
Counter 2 time out IOCF Bit 2 = 2	No function
WDT time out	Reset and Jump to Address 0
Port 8 (0~3) RE Page 0 Bit 0 or Bit 1 or Bit 2 or Bit 3 = 1	Reset and Jump to Address 0
Port 7 (0~3) IOCF Bit 3 or Bit 4 or Bit 5 or Bit 7= 1	Reset and Jump to Address 0

The status after wake-up and the wake-up sources are listed on the table below.

NOTE

Port 70's wake-up function is controlled by IOCF Bit 3. It is falling edge or rising edge triggered (controlled by CONT register Bit 7).

Port 71's wake-up function is controlled by IOCF Bit 4. It is falling edge triggered. Port 72~Port 73's wake-up function is controlled by IOCF. They are falling edge triggered.

Port 80~Port 83's wake-up function are controlled by RE Page 0 Bit 0 ~ Bit 3. They are falling edge triggered.

Page 1 (DAC Output Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
R/W-1							

Bit 0 ~ Bit 7 (DA0 ~ DA7): This 8-bit is full DAC data buffer when 8-bit resolution is selected (R7 Page 1 Bit 7 DAREF = 0), or the least significant 8-bit data when 10-bit resolution (DAREF = 1) is selected.

Page 2 (Multiplier Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INS	-	INDR	PLUS	MROPT3	MROPT2	MROPT1	MROPT0
R/W-0	-	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

MROPT3 ~ MROPT0	Mode	Description
0000	MR = sign(X)*sign(Y)	Sign-sign multiplication
0001	MR = sign(X)*unsign(Y)	Sign-unsign multiplication
0010	MR = unsign(X)*sign(Y)	Unsign-sign multiplication
0011	MR = unsign(X)*unsign(Y)	Unsign-unsign multiplication
1000	MR = MR + sign(X)*sign(Y)	Sign-sign accumulated multiplication addition
1001	MR = MR + sign(X)*unsign(Y)	Sign-unsign accumulated multiplication addition
1010	MR = MR + unsign(X)*sign(Y)	Unsign-unsign accumulated multiplication addition
1011	MR = MR + unsign(X)*unsign(Y)	Unsign-unsign accumulated multiplication addition
1100	MR = MR - sign(X)*sign(Y)	Sign-sign accumulated multiplication subtraction
1101	MR = MR - sign(X)*unsign(Y)	Sign-unsign accumulated multiplication subtraction
1110	MR = MR - unsign(X)*sign(Y)	Unsign-unsign accumulated multiplication subtraction
1111	MR = MR - unsign(X)*unsign(Y)	Unsign-unsign accumulated multiplication subtraction
0100~0111	unused	-

Bit 0 ~ Bit 3 (MROPT0 ~ MROPT3): Multiplier operation mode control

Bit 4 (PLUS): Base on "VERSEL", this bit is defined differently. If VERSEL = 0, the data RAM and multiplicand Y's address buffer is independent. When VERSEL=1, both data RAM and multiplicand Y's address are pointed to RB Page 2.

VERSEL	PLUS	Data RAM Address Buffer	Multiplicand Y's Address Buffer	Effect
0	0	R8 Page 1 RB Page 2		Data RAM's address will not auto-increase after an access, Y's address will not auto-increase after running instruction "INT A"
0	1	R8 Page 1	RB Page 2	Data RAM's address will not auto-increase after an access, Y's address will auto-increase after running instruction "INT A"
1	0	RB Page 2	RB Page 2	Data RAM's address will auto-increase after an access, Y's address will not auto-increase after running instruction "INT A"
1	1	RB Page 2	RB Page 2	Data RAM's address will auto-increase after an access, Y's address will auto-increase after running instruction "INT A"

Bit 5 (INDR): Indirect address pointer enable control

- 0: disable
- 1: enable

When (INDR, PLUS) = (1, 1), the address pointer and address auto-increment functions are enabled. When the functions are enabled, RB Page 1 acts as address pointer and it will automatically increase by 1 after "MUL" instruction execution. That is to say, RB Page 2 = RB Page 2 + 1. The multiplicand Y data is stored in R9 Page 1 data RAM buffer.

Bit 5 (INDR)	Bit 4 (PLUS)	Function
1	0	Enable indirect addressing pointer. RB Page 2 acts as Multipliacand Y data address pointer for the multiplier. Multiplicand Y data is stored in R9 Page 1 for multiplier. Disable Multiplicand Y data address auto-increment for multiplier.
1	1	Enable indirect addressing pointer. RB Page 2 acts as Multiplicand Y data address pointer for multiplier. Multiplicand Y data is stored in R9 Page 1 for multiplier. Enable Multiplicand Y data address auto-increment for multiplier.
0	x	Disable indirect addressing pointer Disable Multiplicand Y data address auto-increment for multiplier RB Page 2 acts as Multiplicand Y data buffer for multiplier Multiplicand Y data is stored in RB Page 1 for multiplier

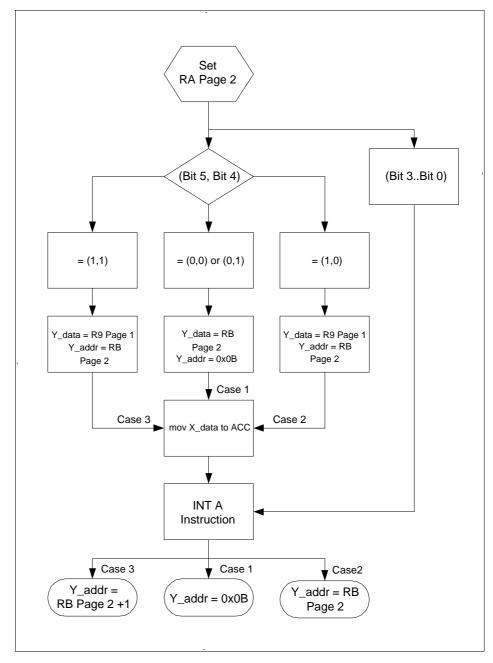


Figure 7-6 Multiplier Control Flow

Bit 6: Unused. This bit is not allowed for use.

Bit 7 (INS): Instruction "ADD" and "DEC" Calculation Select . This bit is a write only bit.

This bit is defined based on "VERSEL". If "VERSEL" = 0, this bit is undefined. If "VERSEL" = 1, this bit will affect the result after running "ADD" and "SUB" instructions.

VERSEL (Code Option)	INS (RA Page 2 Bit 7)	Instruction	Execution
		ADD A, R	$A + R \rightarrow A$
		ADD R, A	$A + R \rightarrow R$
0	X	ADD A, K	$A + K \rightarrow A$
0	×	SUB A, R	$R - A \rightarrow A$
		SUB R, A	$R - A \rightarrow R$
		SUB A, K	$K - A \rightarrow A$
	0	ADD A, R	$A + R \rightarrow A$
		ADD R, A	$A + R \rightarrow R$
1		ADD A, K	$A + K \rightarrow A$
I	0	SUB A, R	$R - A \rightarrow A$
		SUB R, A	$R - A \rightarrow R$
		SUB A, K	$K - A \rightarrow A$
		ADD A, R	$A + R + C \rightarrow A$
		ADD R, A	$A + R + C \rightarrow R$
1	1	ADD A, K	$A + K + C \rightarrow A$
I	I	SUB A, R	$R - A - /C \rightarrow A$
		SUB R, A	$R - A - /C \rightarrow R$
		SUB A, K	K – A - /C → A

Page 3 (DT2H: Most Significant Byte (Bit 1 ~ Bit 0) of PWM2 Duty Cycle)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PWM2[9]	PWM2[8]
						R/W-0	R/W-0

Bit 0 ~ Bit 1 (PWM2[8] ~ PWM2[9]): Most Significant Byte of PWM1 Duty Cycle

A specified value keeps the PWM1 output to remain high until the value matches with TMR1.

Bit 2 ~ Bit 7: unused

7.2.12 RB (Port B I/O Data, ADC Output Data Buffer)

Page 0 (Port B I/O Data Register)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
ĺ	R/W							

Bit 0 ~ Bit 7 (PB0 ~ PB7): 8-bit Port B (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (ADC Output Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
R	R	R	R	R	R	R	R

Bit 0 ~ Bit 7 (AD0 ~ AD7): These 8 bits are full ADC data buffer when 8-bit resolution is selected (R7 Page 1 Bit 2 ADREF = 0), or the least significant 8-bit data when 10 bit resolution (ADREF = 1) is selected.

Page 2 (Multiplicand Y Data Buffer and Data RAM's Data Buffer)

Base on "VERSEL", this page is defined differently.

For VERSEL = 0 :

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MULY7	MULY6	MULY5	MULY4	MULY3	MULY2	MULY1	MULY0
R/W-0							

Bit 0 ~ Bit 7 (MULY0 ~ MULY7): Multiplicand Y data buffer of multiplier

The multiplier can make a multiplication with X*Y. The multiplicator data buffer X is ACC and the multiplicand data buffer Y is RB Page 2. The maximum 24-bit multiplication result MR will be stored in RC Page 2 ~ RE Page 2. That is to say, MR = X*Y.

For VERSEL = 1 :

At this status, RB Page 2 is defined for multiplicand Y data buffer and Data RAM address buffer.

Example 1 : Read continue data from continuous data RAM address:

MOV	A , @0b001111	11
AND	0x03 , A	
BS	0x03 , 7	; Set R register to Page 2
CLR	0x0B	; Set RAM address = 0
BS	0x0A , 4	; Enable address auto-increase function
BC	0x03 , 7	
BS	0x03 , 6	; Set R register to Page 1
MOV	A , @0b111111	00
AND	0x07 , A	; Set RAM Bank 0
MOV	A , 0x09	; Read Data RAM Address 0x00's data
MOV	A , 0x09	; Read Data RAM Address 0x01's data
MOV	A , 0x09	; Read Data RAM Address 0x02's data
	:	
	:	

Example 2: Continuous multiplication and addition operation.

MOV	A , @0b001111	111
AND	0x03 , A	
BS	0x03 , 7	; Set R register to Page 2
CLR	0x0C	
CLR	0x0D	
CLR	0x0E	; Clear MR = 0
BS	0x0A , 5	; Enable multiplier's indirect address mode
BS	0x0A , 4	; Enable address auto-increase function
CLR	0x0B	; Set Address = 0
MOV	A , @0x55	
INT	A	; Multiplication instruction, operate MR \leftarrow ; 0x55(A) x (Address 0' data)
INT	A	; MR \leftarrow 0x55(A) x (Address 1' data) + MR
INT	A	; MR \leftarrow 0x55(A) x (Address 2' data) + MR

Page 3 (PRD2: Period of PWM2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
R/W-0							

The content of this register is a period (time base) of PWM2. The frequency of PWM2 is the reverse of the period.

7.2.13 RC (Port C I/O Data, Counter 1 Data)

Page 0 (Port 9 I/O Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W							

Bit 0 ~ Bit 7 (PC0 ~ PC7): 8-bit Port C (0~7) I/O data register

User can use the IOC register to define each bit as input or output.

Page 1 (Counter 1 Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CN17	CN16	CN15	CN14	CN13	CN12	CN11	CN10
R/W-0							

Bit 0 ~ Bit 7 (CN10 ~ CN17): Counter 1's buffer that user can read and write.

Counter 1 is an 8-bit up-counter with 8-bit prescaler and user can use the RC Page 1 to preset and read the counter (write \rightarrow preset). After an interrupt, it will reload the preset value.

Example for Writing:

MOV	0x0C,	A	;	write	the	data	at	accumulator	to	Counter	1
			;	(pres	et)						

Example for Reading:

MOV A,	0x0C	; read	the data	at Counte	r 1 tc	accumulator
--------	------	--------	----------	-----------	--------	-------------

Page 2 (LSB 8-bit Multiplication Result)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
R/W							

Bit 0 ~ Bit 7 (MR0 ~ MR7): Multiplication result data

The multiplier can make a multiplication with X*Y. The multiplicator data buffer X is ACC (accumulator) and the multiplicand data buffer Y is RB Page 2. The LSB 8-bit of maximum 24 bit multiplication result MR will be stored in RC Page 2.

RC Page 2 = MR (0~7) = LSB 8-bit (X*Y)

Page 3 (Reserved): (unused register)

7.2.14 RD (LCD Control, Counter 2 Data)

Page 0 (LCD Driver Control Bits)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	VERSEL	PHO	1	-	LCD_C1	LCD_C0	LCD_M
	R/W-0	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0

Bit 0 (LCD_M): LCD operation method including duty and frame frequency

Bit 1 ~ Bit 2 (LCD_C0 ~ LCD_C1): LCD display control

LCD_C1	LCD_C0	LCD_M	LCD Display Control	Duty	Bias
0	0	0	Change duty	1/4	1/3
	0	1	Disable (turn off LCD)	1/2	1/3
0	1	:	Blanking	:	:
1	1	:	LCD display enable	:	:

It should be noted that to change the display duty, user must set the "LCD_C1, LCD_C0" to "00".

The controller can drive the LCD directly. The LCD block is made up of common driver, segment driver, display LCD RAM, common output pins, segment output pins and LCD operating power supply. The basic structure contains a timing control. This timing control uses the basic frequency 32.768kHz to generate the proper timing for different duty and display access.

RD Page 0 Bit 0 ~ Bit 2 are LCD control bits for LCD driver. These LCD control bits determine the duty, the number of common and the frame frequency. The LCD display (disable, enable, blanking) is controlled by Bit 1 and Bit 2. The driving duty is determined by Bit 0. The display data is stored in LCD RAM which address and data access controlled by registers R5 Page 1 and R6 Page 1.

User can regulate the contrast of LCD display by IOC5 Page 0 Bit 0 ~ Bit 3 (BIAS0 ~ BIAS3). Up to 16 levels contrast is convenient for better display.

Bit 3, Bit 7: (undefined) not allowed for use

Bit 5 and Bit 6 only exist in EM78569's developing tool (ICE569). In OTP and mask chip, these two bits will be mapped to the code option. Set these 2 bits to fixed value at the initial stage and do not change these 2 bits in the program design. Besides, set Bit 4 to 1 or the AD function will be different between ICE 569 and EM78P569.

Bit 4: Always set this bit to 1.

Bit 5 (PHO): PCO status select.

0: PC0 is defined as normal I/O.

1 : PC0 defined to phase 1 output (VERSEL must be = 1)

Bit 6 (VERSEL): Version select

	VERSEL = 0	VERSEL = 1
Data RAM address	R8 Page 1	RB Page 2
Data RAM address auto-increase	Not supported	Enable
"ADD" and "SUB" include "carry" bit	Not supported	Determined by RA Page 2 Bit 7
Phase CLK output	Not supported	Phase1 CLK out from PC0 (determined by PHO)

Page 1 (Counter 2 Data Register)

Bi	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CN	N27	CN26	CN25	CN24	CN23	CN22	CN21	CN20
R	/W	R/W						

Bit 0 ~ Bit 7 (CN20 ~ CN27) : Counter 2's buffer that user can read and write.

Counter 2 is an 8-bit up-counter with 8-bit prescaler and user can use the RD Page 1 to preset and read the counter (write \rightarrow preset). After an interrupt, it will reload the preset value.

Example for Writing :

MOV	0x0D, A	; write the data at accumulator to Counter 2
		; (preset)

Example for Reading :

MOV A,	, C)x0D	;	read	the	data	at	Counter	2	to	accumulator
--------	-----	------	---	------	-----	------	----	---------	---	----	-------------

Page 2 (MID 8-bit Multiplication Result)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
R/W							

Bit 0 ~ Bit 7 (MR8 ~ MR15) : Multiplication result data

The multiplier can make a multiplication with X*Y. The multiplicator data buffer X is ACC (accumulator) and the multiplicand data buffer Y is RB Page 2. The MID 8-bit of maximum 24-bit multiplication result MR will be stored in RD Page 2.

RD Page 2 = MR (8~15) = MID 8-bit (X*Y)

■ Page 3 (Reserved): (unused register)

7.2.15 RE (Interrupt Flag, Wake-up Control)

Page 0 (Interrupt Flag, Wake-up Control Bits)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2	RBF	ADI	PWM1	/WUP83	/WUP82	/WUP81	/WUP80
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Bit 0 (/WUP80) : Port 80 wake-up control

0: disable

1 : enable P80 pin wake-up function

Bit 1 (/WUP81) : Port 81 wake-up control

0: disable

- 1 : enable P81 pin wake-up function
- Bit 2 (/WUP82) : Port 82 wake-up control

0: disable

1 : enable P82 pin wake-up function

Bit 3 (/WUP83) : Port 83 wake-up control

0: disable

- 1 : enable P83 pin wake-up function
- Bit 4(PWM1): PWM1 one period reach interrupt flag.
- Bit 5 (ADI) : ADC interrupt flag after a sampling
- Bit 6 (RBF) : SPI data transfer complete interrupt
 - If SPI's RBF signal has a rising edge signal (RBF is set to "1" when data transfer is completed), CPU will set this bit.

Bit 7(PWM2) : PWM2 one period reach interrupt flag.

Page 1 (Reserved)

Page 2 (MSB 8-bit Multiplication Result)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR23	MR22	MR21	MR20	MR19	MR18	MR17	MR16
RW-0							

Bit 0 ~ Bit 7 (MR23 ~ MR16): Multiplication result data

The multiplier can make a multiplication with X*Y. The multiplicator data buffer X is ACC (accumulator) and the multiplicand data buffer Y is RB Page 2. The MSB 8-bit of maximum 24 bit multiplication result MR will be stored in RE Page 2.

RE Page 2 = MR (16~23) = MSB 8-bit (X*Y)

Page 3 (Reserved)

7.2.16 RF (Interrupt Status)

(Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT3	-	INT2	INT1	INT0	CNT2	CNT1	TCIF
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

"1" means with interrupt request,

"0" means non-interrupt

Bit 0 (TCIF): TCC timer overflow interrupt flag

Set when TCC timer overflows.

Bit 1 (CNT1): Counter 1 timer overflow interrupt flag

Set when Counter 1 timer overflows.

Bit 2 (CNT2): Counter 2 timer overflow interrupt flag

Set when Counter 2 timer overflows.

Bit 3 (INT0): external INT0 pin interrupt flag

If Port 70 has a falling edge/rising edge (controlled by CONT register) trigger signal, CPU will set this bit.

Bit 4 (INT1): external INT1 pin interrupt flag

If Port 71 has a falling edge trigger signal, CPU will set this bit.

Bit 5 (INT2): external INT2 pin interrupt flag

If Port 72 has a falling edge trigger signal, CPU will set this bit.

- Bit 6: (undefined) not allowed for use
- Bit 7 (INT3): external INT3 pin interrupt flag

If Port 73 has a falling edge trigger signal, the CPU will set this bit.

NOTE	
The IOCF is the interrupt mask register.	User can read and clear it.

Trigger edge as the table

Signal	Trigger
ТСС	Time out
Counter 1	Time out
Counter 2	Time out
INT0	Falling
	Rising edge
INT1	Falling edge
INT2	Falling edge
INT3	Falling edge

7.2.17 R10~R3F (General Purpose Register)

R10~R3F (Banks 0 ~ 3) : all are general purpose registers.

7.3 Special Purpose Registers

7.3.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator. The Accumulator is not an addressable register.

7.3.2 CONT (Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P70EG	INT	TS	RETBK	PAB	PSR2	PSR1	PSR0

Bit 0 ~ Bit 2 (PSR0 ~ PSR2) : TCC/WDT prescaler bits

PSR2	PSR1	PSR0	TCC Rate	WDT Rate
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

Bit 3 (PAB) : Prescaler assigned bit

0 : TCC

1:WDT

Bit 4 (RETBK) : Return value backup control for interrupt routine

- 0: disable
- 1: enable

When this bit is set to 1, the CPU will store ACC,R3 status and R5 PAGE automatically after an interrupt is triggered. It will be restored after instruction RETI. When this bit is set to 0, user needs to store ACC, R3 and R5 PAGE in the user program.

- Bit 5 (TS): TCC signal source
 - 0 : internal instruction cycle clock
 - 1:16.384kHz
- Bit 6 (INT) : INT enable flag
 - 0: interrupt masked by DISI or hardware interrupt
 - 1 : interrupt enabled by ENI/RETI instructions
- Bit 7 (P70EG) : interrupt edge type of P70
 - **0** : P70's interrupt source is a rising edge signal.
 - **1** : P70's interrupt source is a falling edge signal.

CONT register is readable (CONTR) and writable (CONTW).

TCC and WDT

There is an 8-bit counter available as prescaler for the TCC or WDT. The prescaler is available for the TCC only or WDT only, not at the same time.

An 8 bit counter is available for TCC or WDT as determined by the status of the Bit 3 (PAB) of the CONT register.

See the prescaler ratio in the CONT register.

Figure 7-7 depicts the circuit diagram of TCC/WDT.

Both TCC and prescaler will be cleared by instructions each time there is a write instruction to TCC.

The prescaler will be cleared by the WDTC and SLEP instructions, when assigned to WDT mode.

The prescaler will not be cleared by SLEP instructions, when assigned to TCC mode.

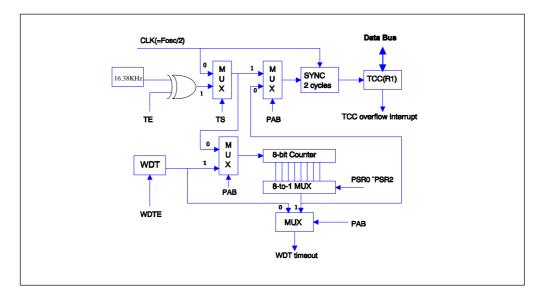
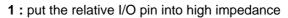


Figure 7-7 Block Diagram of TCC WDT

7.3.3 IOC5 (Port 5 I/O Control, LCD Bias Control)

Page 0 (LCD Bias Control Bits)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC57	IOC56	IOC55	-	BIAS3	BIAS2	BIAS1	BIAS0
R/W-1	R/W-1	R/W-1	-	R/W-0	R/W-0	R/W-0	R/W-0


Bit 0 ~ Bit 3 (BIAS0 ~ BIAS3): LCD operation voltage selection. V1 = VDD * (1 - n/60)

BIAS3	BIAS2	BIAS1	BIAS0	Vop (=VDD-VLCD)	Example (VDD = 3V)
0	0	0	0	VDD * (1-0/60)	3V
0	0	0	1	VDD * (1-1/60)	2.95V
0	0	1	0	VDD * (1-2/60)	2.90V
0	0	1	1	VDD * (1-3/60)	2.85V
0	1	0	0	VDD * (1-4/60)	2.80V
:	•••	•••	•••		:
1	1	0	1	VDD * (1-13/60)	2.35V
1	1	1	0	VDD * (1-14/60)	2.30V
1	1	1	1	VDD * (1-15/60)	2.25V

Bit 4: unused

Bit 5 ~ Bit 7 (IOC55 ~ IOC57): Port 5 (5~7) I/O direction control register

0 : set the relative I/O pin as output

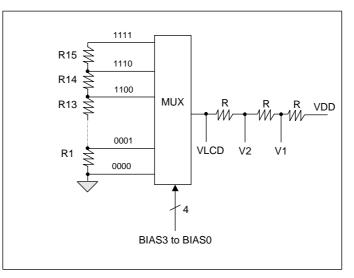


Figure 7-8 LCD Driver Bias Circuit

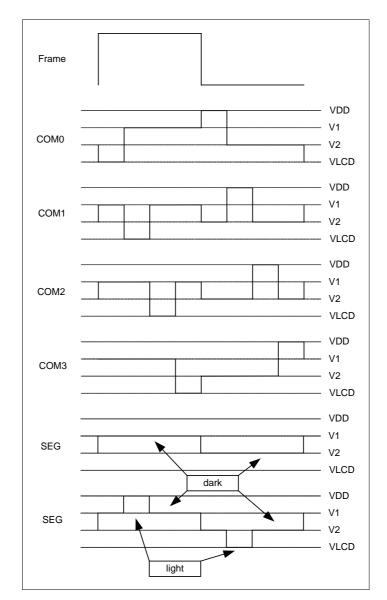


Figure 7-9 LCD Waveform for 1/3 Bias, 1/4 Duty

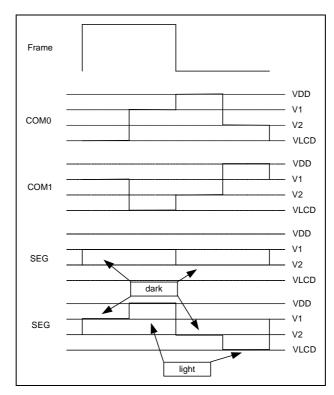


Figure 7-10 LCD Waveform for 1/3 Bias, 1/2 Duty

Page 1 (Reserved)

7.3.4 IOC6 (Port 6 I/O Control, P60~P66 Pins Switch Control)

Page 0 (Port 6 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	IOC61	IOC60
R/W-1							

Bit 0 ~ Bit 7 (IOC60 ~ IOC67) : Port 6 (0~7) I/O direction control register

0 : set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (P60~P66 Pins Switch Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	P66S	P65S	P64S	P63S	P62S	P61S	P60S
	R/W-0						

Bit 0 (P60S) : Select normal I/O Port 60 pin or Channel 1 input AD1 pin of ADC

0 : P60 (I/O Port 60) pin is selected

- 1: AD1 (Channel 1 input of ADC) pin is selected
- Bit 1 (P61S) : Select normal I/O Port 61 pin or Channel 2 input AD2 pin of ADC

0: P61 (I/O Port 61) pin is selected

- 1: AD2 (Channel 2 input of ADC) pin is selected
- Bit 2 (P62S) : Select normal I/O Port 62 pin or Channel 3 input AD3 pin of ADC
 - 0: P62 (I/O Port 62) pin is selected
 - 1: AD3 (Channel 3 input of ADC) pin is selected
- Bit 3 (P63S) : Select normal I/O Port 63 pin or Channel 4 input AD4 pin of ADC

0: P63 (I/O Port 63) pin is selected

- 1: AD4 (Channel 4 input of ADC) pin is selected
- Bit 4 (P64S) : Select normal I/O Port 64 pin or Channel 5 input AD5 pin of ADC
 - 0: P64 (I/O Port 64) pin is selected
 - 1 : AD5 (Channel 5 input of ADC) pin is selected
- Bit 5 (P65S) : Select normal I/O Port 65 pin or Channel 6 input AD6 pin of ADC
 - 0: P65 (I/O Port 65) pin is selected
 - 1 : AD5 (Channel 6 input of ADC) pin is selected
- Bit 6 (P66S) : Select modulation transmitting output pin of AD or I/O Port 66 pin
 - **0** : P66 (I/O Port 66) pin is selected and ADC reference voltage come from internal VDD
 - 1: VREF (External reference voltage input of ADC) pin is selected
- Bit 7: (undefined) not allowed for use

7.3.5 IOC7 (Port 7 I/O Control, Port 7 Pull-high Control)

Page 0 (Port 7 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70
R/W-1							

Bit 0 ~ Bit 7 (IOC70 ~ IOC77) : Port 7 (0~7) I/O direction control register

0 : set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (Port 7 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH77	PH76	PH75	PH74	PH73	PH72	PH71	PH70
R/W-0							

Bit 0 ~ Bit 7 (PH70 ~ PH77) : Port 7 Bit 0~Bit 7 pull-high control register

0: disable pull-high function

1 : enable pull-high function

7.3.6 IOC8 (Port 8 I/O Control, Port 8 Pull-high Control)

Page 0 (Port 8 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80
R/W-1							

Bit 0 ~ Bit 7 (IOC80 ~ IOC87): Port 8 (0~7) I/O direction control register

0: set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (Port 8 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH87	PH86	PH85	PH84	PH83	PH82	PH81	PH80
R/W-0							

Bit 0 ~ Bit 7 (PH80 ~ PH87): Port 8 Bit 0~Bit 7 pull-high control register

0: disable pull-high function

1 : enable pull-high function

7.3.7 IOC9 (Port 9 I/O Control, Port 9 Switches)

Page 0 (Port 9 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC97	IOC96	IOC95	IOC94	IOC93	IOC92	IOC91	IOC90
R/W-1							

Bit 0 ~ Bit 7 (IOC90 ~ IOC97): Port 9 (0~7) I/O direction control register

0 : set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (Port 9 Switches)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P97S	P96S	P95S	P94S	P93S	P92S	P91S	P90S
R/W-0							

Bit 0 (P90S) : Switch I/O Port 90 or LCD segment signal

0: (P90 pin is selected) : normal Port 90

1: (SEG20 pin) : Segment output

Bit 1 (P91S) : Switch I/O Port 91 or LCD segment signal

0: (P91 pin is selected) : normal Port 91

1: (SEG19 pin) : Segment output

Bit 2 (P92S) : Switch I/O Port 92 or LCD segment signal

0: (P92 pin is selected) : normal Port 92

1: (SEG18 pin) : Segment output

Bit 3 (P93S) : Switch I/O Port 93 or LCD segment signal

0: (P93 pin is selected) : normal Port 93

1: (SEG17 pin) : Segment output

P90~P93 are shared with AD input channel. P90~P93 are defined as AD input when :

Bit 4 (P94S) : Switch I/O Port 94 or LCD segment signal

0: (P94 pin is selected) : normal Port 94

1: (SEG16 pin) : Segment output

Bit 5 (P95S) : Switch I/O Port 95 or LCD segment signal

0: (P95 pin is selected) : normal Port 95

1: (SEG15 pin) : Segment output

Bit 6 (P96S) : Switch I/O Port 96 or LCD segment signal

0: (P96 pin is selected) : normal Port 96

1: (SEG14 pin) : Segment output

Bit 7 (P97S) : Switch I/O Port 97 or LCD segment signal

0: (P97 pin is selected) : normal Port 97

1: (SEG13 pin) : Segment output

7.3.8 IOCA (Reserved)

- Page 0 (Unused)
- Page 1 DAC Control

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	VREF	-	-	DAST/P67	-	-	-
-	R/W-0	-	-	R/W-0	-	-	-

Bit 0~Bit 1 : Undefined

Bit 3 (DAST/P67) : DAC enable control or P67 switch

- 0: switch DAO/P67 pin as normal I/O P67
- 1 : enable DAC, enable DAC output buffer B1 and DAC output to DAO/P67 pin

When this bit is set by software, the DA converter will start converting and output to DAO/P67 pin. If user clears this bit, the DA converter will stop and DAO/P67 pin will become normal I/O P67.

Bit 4 ~ Bit 5 : Unused

Bit 6 (VREF) : Reference voltage selection bit for the DA converter circuit

DAC reference setting is shown as following. Also see Figure 7-11.

VREF	DAST/P67	Function
×	0	Disable VREF and DAC
1	1	Select internal Vref, enable DAC, enable output to DAO/P67 pin
0	1	Select VDD, disable internal Vref, enable DAC, enable output to DAO/P67 pin

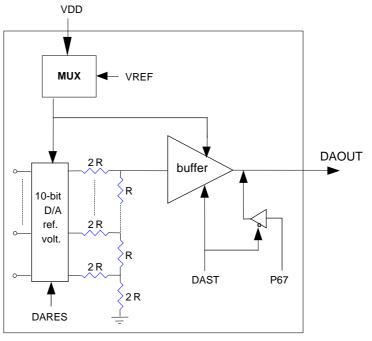


Figure 7-11 D/A Converter (DAC)

7.3.9 IOCB (Port B I/O Control, ADC Control)

Page 0 (Port B I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0
R/W-1							

Bit 0 ~ Bit 7 (IOCB0 ~ IOCB7) : Port B (0~7) I/O direction control register

0: set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (ADC Control Bits)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IN2	IN1	IN0	ADCLK1	ADCLK0	ADPWR	-	ADST
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	-	R/W-0

Bit 0 (ADST) : AD converter start to sample

By setting to "1", the AD will start to sample data. This bit will be automatically cleared by hardware after a sampling.

Bit 1 : Undefined. This bit is not allowed for use.

Bit 2 (ADPWR) : AD converter power control

- 0 : disable
- 1: enable

Bit 3 ~ Bit 4 (ADCLK0 ~ ADCLK1) : AD circuit's sampling clock source.

For PLL Clock = 895.658kHz ~ 17.9 MHz (CLK2~CLK0 = 001 ~ 110)

ADCLK1	ADCLK0	Sampling Rate	Operation Voltage
0	0	74.6K	$\geq 3.5V$
0	1	37.4K	\geq 3.0V
1	0	18.7K	≥ 2.5V
1	1	9.3K	≥ 2.5V

For PLL Clock = 447.829kHz (CLK2~CLK0 = 000)

ADCLK1	ADCLK0	Sampling Rate	Operation Voltage
0	0	37.4K	\geq 3.0V
0	1	18.7K	≥ 3.0V
1	0	9.3K	≥ 2.5V
1	1	4.7K	≥ 2.5V

This is a CMOS multi-channel 10-bit successive approximation A/D converter.

Features

- 74.6kHz Maximum Conversion Speed at 5V
 - Adjusted full scale input
 - External reference voltage input or internal (VDD) reference voltage
 - Six analog inputs multiplexed into one A/D converter
 - Power down mode for power saving
 - A/D conversion completed interrupt
 - Interrupt register, A/D control and status register, and A/D data register

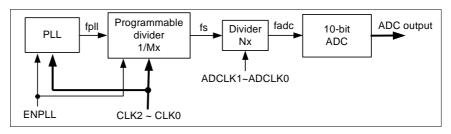


Figure 7-12 ADC Voltage Control Logic

foll	Mx	fs	Fadcon = fadc / 12						
fpll		15	Nx = 1	Nx = 2	Nx = 4	Nx = 8			
14.331 MHz	16	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
10.747 MHz	12	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
7.165 MHz	8	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
3.582 MHz	4	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
1.791 MHz	2	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
895.658kHz	1	895.658kHz	74.638kHz	37.391kHz	18.659kHz	9.329kHz			
447.829kHz	1	447.829kHz	37.391kHz	18.659kHz	9.329kHz	4.665kHz			

Bit 5 ~ Bit 7(IN0~ IN2): Input channel select of AD converter

These two bits can choose one of the three AD input.

IN2	IN1	INO	Input
0	0	0	AD1
0	0	1	AD2
0	1	0	AD3
0	1	1	AD4
1	0	0	AD5
1	0	1	AD6

7.3.10 IOCC (Port C I/O Control, ADC Control)

Page 0 (Port C I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCC7	IOCC6	IOCC5	IOCC4	IOCC3	IOCC2	IOCC1	IOCC0
R/W-1							

Bit 0 ~ Bit 7 (IOCC0 ~ IOCC7): Port C (0~7) I/O direction control register

0: set the relative I/O pin as output

1 : put the relative I/O pin into high impedance

Page 1 (Port Switch)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7S	PC6S	PC5S	PBSH	PBSL	P5SH	×	MS
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	-	R/W/0

Bit 0 (MS): P60~P66 switch mode select

 $0 \rightarrow$ (default unknown)

 $1 \rightarrow ADC$ input mode select

(Always set this bit to "1", otherwise partial ADC function cannot be used.)

Bit 1: Unused. Not allowed for use.

Bit 2 (P5SH): Switch I/O Port 5 high nibble (5~7) or LCD segment signal

0: (P55 ~ P57 pins are selected) : normal Port 5 high nibble (5~7)

1 : (SEG10 ~ SEG12 pins are selected) : Segment output

Bit 3 (PBSL): Switch I/O Port B low nibble (0~3) or LCD segment signal

0: (PB0 ~ PB3 pins are selected) : normal Port B low nibble (0~3)

1 : (SEG28 ~ SEG25 pins are selected) : Segment output

Bit 4 (PBSH): Switch I/O Port B high nibble (4~7) or LCD segment signal

0: (PB5 ~ PB7 pins are selected) : normal Port B high nibble (4~7)

1: (SEG24 ~ SEG21 pins are selected) : Segment output

Bit 5 (PC5S): Switch I/O Port C5 or LCD segment signal

0: (PC5 pin is selected) : normal Port C5

1: (SEG31 pin) : Segment output

Bit 6 (PC6S): Switch I/O Port C6 or LCD segment signal

0: (PC6 pin is selected) : normal Port C6

1: (SEG30 pin) : Segment output

Bit 7 (PC7S): Switch I/O Port C7 or LCD segment signal

- **0**: (PC7 pin is selected) : normal Port C7
- 1: (SEG29 pin) : Segment output

7.3.11 IOCD (Clock Source, Prescaler of CN1 and CN2)

Page 0 (Reserved)

Page 1 (Clock Source and Prescaler for Counter 1 and Counter 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CNT2S	C2_PSC2	C2_PSC1	C2_PSC0	CNT1S	C1_PSC2	C1_PSC1	C1_PSC0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Bit 0 ~ Bit 2 (C1_PSC0 ~ C1_PSC2): Counter 1 prescaler ratio

C1_PSC2	C1_PSC1	C1_PSC0	Counter 1
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 3 (CNT1S): Counter 1 clock source

- **0**: 16.384kHz
- 1: System Clock

Bit 4 ~ Bit 6 (C2_PSC0 ~ C2_PSC2): Counter 2 prescaler ratio

C2_PSC2	C2_PSC1	C2_PSC0	Counter 2
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 7(CNT2S): Counter 2 clock source

0:16.384kHz

1 : system clock

7.3.12 IOCE (Interrupt Mask)

Page 0 (Interrupt Mask)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2	RBF	ADI	PWM1	-	-	-	-
R/W-0	R/W-0	R/W-0	R/W-0	-	-	-	-

Bit 0 ~ Bit 3: unused

Bit 4 (PWM1): PWM1 one period reach interrupt mask.

- 0: disable interrupt
- 1 : enable interrupt

Bit 5 (ADI): ADC conversion complete interrupt mask

- 0 : disable interrupt
- 1: enable interrupt

There are four registers for the A/D converter. Use 1 bit of interrupt control register (IOCE Page 0 Bit 5) for A/D conversion completed interrupt. The status and control register of A/D (IOCB Page 1 and RE Page 0 Bit 5) responses to the A/D conversion status or takes control of the A/D. The A/D data register (RB Page 1) stores the A/D conversion result.

The ADI bit in IOCE Page 0 register is end of A/D conversion complete interrupt enable/disable. It enables/disables the ADI flag in the RE register when A/D conversion is completed. The ADI flag indicates the end of an A/D conversion. The A/D converter sets the interrupt flag, ADI in RE Page 0 register when a conversion is completed. The interrupt can be disabled by setting the ADI bit in IOCE Page 0 Bit 5 to '0'.

The A/D converter has four analog input channels, AD1~AD3 multiplexed into one sample and held to an A/D module. The reference voltage can be driven from VREF pin or internal power. The A/D converter itself is of an 8-bit successive approximation type and produces an 8-bit result in the RB Page 1 data register. A conversion is initiated by setting a control bit ADST in IOCB Page1 Bit 0. Prior to conversion, the appropriate channel must be selected by setting IN0~IN1 bits in the RE register and allowed with enough time to sample data. Every conversion data of the A/D needs 10-clock cycle time. The minimum conversion time required is 20 μ s (50K sample rate). The ADST Bit in IOCB Page 1 Bit 0 must be set to begin a conversion.

It will be automatically reset in the hardware when conversion is completed. At the end of conversion, the Start bit is cleared and the A/D interrupt is activated if ADI in IOCE Page 0 Bit 5 = 1. The ADI will be set when conversion is completed. It can be reset by software.

If ADI = 0 in IOCE Page 0 Bit 5, when A/D starts conversion by setting ADST (IOCB Page 1 Bit 0) = 1 then the A/D will continue conversion without stopping and the hardware will not reset the ADST bit. In this condition, the ADI is deactivated. After the ADI in IOCE Page 0 Bit 5 is set, ADI in RE Page 0 Bit 5 will be activated again.

For minimum operating current, all biasing circuits in the A/D module that consume DC current are powered down when ADPWR bit in IOCB Page 1 Bit 2 register is a '0'. When ADPWR bit is a '1', the A/D converter module is in operation.

User has to set Port 86, Port 87, Port 60, and Port 61 as AD converter input pins or bi-directional I/O Port.

Start Sample	
ADI (IOCE F	Page 0 Bit 5) = 1
ADI (RE Pag	e 0 Bit 5) Cleared by software
Data	

Figure 7-13 A/D Converter Timing

Bit 6 (RBF): SPI's RBF interrupt mask

- 0: disable interrupt
- 1 : enable interrupt

Bit 7 (PWM2): PWM2 one period reach interrupt mask.

- 0: disable interrupt
- 1 : enable interrupt

7.3.13 IOCF (Interrupt Mask)

(Interrupt Mask Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT3	0	INT2	INT1	INT0	CNT2	CNT1	TCIF
R/W-0							

Bits 0 ~ 5: interrupt enable bit

0: disable interrupt

1 : enable interrupt

- Bit 6: (Keep these values to "0" otherwise it will generate unpredictable interrupts)
- Bit 7: interrupt enable bit
 - 0: disable interrupt
 - 1 : enable interrupt

Interrupt Signal	Green Mode	Normal Mode
	RA (7, 6)=(x, 0) no SLEP	RA (7, 6)=(x,1) no SLEP
TCC time out IOCF Bit 0=1 And "ENI"	Interrupt (Jump to Address 8 at Page 0)	Interrupt (Jump to Address 8 at Page 0)
Counter 1 time out IOCF Bit1=1 And "ENI"	Interrupt (Jump to Address 8 at Page 0)	Interrupt (Jump to Address 8 at Page 0)
Counter 2 time out IOCF Bit 2=2 And "ENI"	Interrupt (Jump to Address 8 at Page 0)	Interrupt (Jump to Address 8 at Page 0)
Port 7 (0~3) IOCF Bit 3 or Bit 4 or Bit 5 or Bit 7=1 And "ENI"	Interrupt (Jump to Address 8 at Page 0)	Interrupt (Jump to Address 8 at Page 0)
RBF IOCE Bit 6 = 1 And "ENI	Interrupt <ps> (Jump to Address 8 at Page 0)</ps>	Interrupt (Jump to Address 8 at Page 0)
ADI IOCE Bit 5 = 1 And "ENI	No function	Interrupt (Jump to Address 8 at Page 0)
PWM1 IOCE Bit 4 = 1 And "ENI	Interrupt <ps> (Jump to Address 8 at Page 0)</ps>	Interrupt (Jump to Address 8 at Page 0)
PWM2 IOCE Bit 7 = 1 And "ENI	Interrupt <ps> (Jump to Address 8 at Page 0)</ps>	Interrupt (Jump to Address 8 at Page 0)

The status after interrupt and the interrupt sources are listed on the table below.

NOTE

- Port 70's interrupt function is controlled by IOCF Bit 3. It is falling edge or rising edge triggered (controlled by CONT register Bit 7).
- Port 7 (1~3)'s wake-up functions are controlled by IOCF Bits (4, 5, 7). They are falling edge triggered.
- ADI interrupt source function is controlled by RE Page 0 Bit 5. It is rising edge triggered after ADC sampling is completed.

It should be noted that this only occurs when master and 16.386kHz modes are selected.

7.4 I/O Port

The I/O registers are bidirectional tri-state I/O ports. The I/O ports can be defined as "input" or "output" pins by the I/O control registers under program control. The I/O data registers and I/O control registers are both readable and writable. The I/O interface circuit is shown in Figure 7-14.

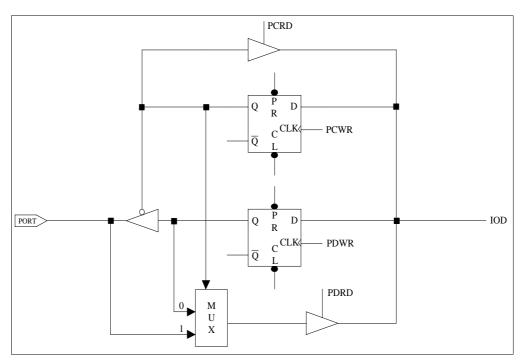


Figure 7-14a I/O Port and I/O Control Register Circuit

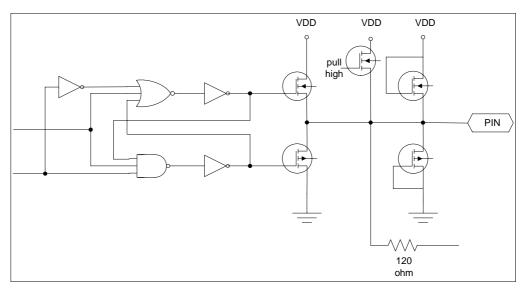


Figure 7-14b I/O Circuits of EM78569 Input/Output Ports

7.5 Reset

A reset can be caused by

- (1) Power-on reset
- (2) WDT timeout (if enabled and in Green or Normal mode)
- (3) /RESET pin pull low

Once a reset occurs, the following functions are performed.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- When in power on, the upper 3 bits of R3 and the upper 2 bits of R4 are cleared.
- The Watchdog timer and prescaler counter are cleared.
- The Watchdog timer is disabled.
- The CONT register is set to all "1".
- The other register (Bit 7 ~ Bit 0) default values are as follows.

Operational Registers:

Address	R Register	R Register	R Register	R Register	IOC Register	IOC Register
Addicoo	Page 0	Page 1	Page 2	Page 3	Page 0	Page 1
0x4	00xxxxxx					
0x5	xxxx0000	xxxx0000	00000000	00000000	111x0000	
0x6	xxxxxxx	xxxxxxxx	XXXXXXXX	00000000	11111111	00000000
0x7	xxxxxxx	xxxx0000		xxxxxx00	11111111	00000000
0x8	xxxxxxx	00000000		00000000	11111111	00000000
0x9	XXXXXXXX	xxxxxxx		00000000	11111111	0000000
0xA	00011xx0	11111111	0x000000	xxxxxx00	XXXXXXXX	x0xx0xx
0xB	xxxxxxx	xxxxxxx	XXXXXXXX	00000000	11111111	000000x0
0xC	xxxxxxx	00000000	XXXXXXXX		11111111	00000000
0xD	xxxxx000	00000000	XXXXXXXX		XXXXXXXX	00000000
0xE	00000000		XXXXXXXX		0000xxxx	XXXXXXXX
0xF	00000000				00000000	

7.6 Wake-up

The controller provides sleep mode for power conservation:

Sleep mode, RA(7) = 0 + "SLEP" instruction

The controller will turn off all the CPU and crystal. User has to turn off (by software) other circuits with power control like key tone control or PLL control (which has a register that can be enabled or disabled),.

Wake-up from Sleep mode

- (1) WDT time out
- (2) External interrupt
- (3) /RESET pull low

All these cases will reset the controller, and run the program at Address 0. The status is just like the power-on reset.

7.7 Interrupt

RF is the interrupt status register which records the interrupt request in flag bit. IOCF is the interrupt mask register. Global interrupt is enabled by ENI instruction and is disabled by DISI instruction. When one of the interrupts (when enabled) is generated, it will cause the next instruction to be fetched from Address 008H. Once in the interrupt service routine, the source of the interrupt can be determined by polling the flag bits in the RF register.

The interrupt flag bit must be cleared by software before leaving the interrupt service routine and before enabling interrupts to avoid recursive interrupts.

7.8 Instruction Set

The Instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on the I/O register.

Convention:

R = Register designator that specifies which one of the 64 registers (including operation and general purpose registers) is to be utilized by the instruction.

Bits 6 and 7 in R4 determine the selected register bank.

- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.
- **k** = 8 or 10-bit constant or literal value

E	Binary	Instru	uction	Hex	Mnemonic	Operation	Status Affected	Instruction Cycle
0	0000	0000	0000	0000	NOP	No Operation	None	1
0	0000	0000	0001	0001	DAA	Decimal Adjust A	С	1
0	0000	0000	0010	0002	CONTW	$A \rightarrow CONT$	None	1
0	0000	0000	0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	Τ, Ρ	1
0	0000	0000	0100	0004	WDTC	$0 \rightarrow WDT$	Τ, Ρ	1
0	0000	0000	rrrr	000r	IOW R	$A \rightarrow IOCR$	None	1
0	0000	0001	0000	0010	ENI	Enable Interrupt	None	1
0	0000	0001	0001	0011	DISI	Disable Interrupt	None	1
0	0000	0001	0010	0012	RET	$[Top \text{ of Stack}] \to PC$	None	2
0	0000	0001	0011	0013	RETI	[Top of Stack] \rightarrow PC Enable Interrupt	None	2
0	0000	0001	0100	0014	CONTR	$\text{CONT} \rightarrow \text{A}$	None	1
0	0000	0001	rrrr	001r	IOR R	$IOCR \to A$	None	1
0	0000	0010	0000	0020	TBL	R2+A \rightarrow R2 Bits 9,10 do not clear	Z, C, DC	2
0	0000	0011	0000	0030	INT A	(MR)(+/-)(s/µs X)*(s/µs Y)→MR	None	1
0	0000	01rr	rrrr	00rr	MOV R,A	$A \rightarrow R$	None	1
0	0000	1000	0000	0080	CLRA	$0 \rightarrow A$	Z	1
0	0000	11rr	rrrr	00rr	CLR R	$0 \rightarrow R$	Z	1
0	0001	00rr	rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z, C, DC	1
0	0001	01rr	rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z, C, DC	1
0	0001	10rr	rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z	1
0	0001	11rr	rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z	1
0	0010	00rr	rrrr	02rr	OR A,R	$A \lor R \rightarrow A$	Z	1
0	0010	01rr	rrrr	02rr	OR R,A	$A \lor R \to R$	Z	1
0	0010	10rr	rrrr	02rr	AND A,R	A & R \rightarrow A	Z	1
0	0010	11rr	rrrr	02rr	AND R,A	A & R \rightarrow R	Z	1
0	0011	00rr	rrrr	03rr	XOR A,R	$A \oplus R \to A$	Z	1
0	0011	01rr	rrrr	03rr	XOR R,A	$A \oplus R \to R$	Z	1
0	0011	10rr	rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z, C, DC	1
0	0011	11rr	rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z, C, DC	1
0	0100	00rr	rrrr	04rr	MOV A,R	$R \rightarrow A$	Z	1
0	0100	01rr	rrrr	04rr	MOV R,R	$R \rightarrow R$	Z	1
0	0100	10rr	rrrr	04rr	COMA R	$/R \rightarrow A$	Z	1
0	0100	11rr	rrrr	04rr	COM R	$/R \rightarrow R$	Z	1

E	linary	Instru	uction	Hex	Mnemonic	Operation	Status Affected	Instruction Cycle
0	0101	00rr	rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z	1
0	0101	01rr	rrrr	05rr	INC R	$R+1 \rightarrow R$	Z	1
0	0101	10rr	rrrr	05rr	DJZA R	$R-1 \rightarrow A$, skip if zero	None	2 if skip
0	0101	11rr	rrrr	05rr	DJZ R	$R-1 \rightarrow R$, skip if zero	None	2 if skip
0	0110	00rr	rrrr	06rr	RRCA R	$ \begin{array}{l} R(n) \rightarrow A(n\text{-}1) \\ R(0) \rightarrow C, C \rightarrow A(7) \end{array} $	С	1
0	0110	01rr	rrrr	06rr	RRC R	$ \begin{array}{l} R(n) \rightarrow R(n\text{-1}) \\ R(0) \rightarrow C, C \rightarrow R(7) \end{array} $	С	1
0	0110	10rr	rrrr	06rr	RLCA R	$ \begin{array}{l} R(n) \rightarrow A(n+1) \\ R(7) \rightarrow C, C \rightarrow A(0) \end{array} \end{array} $	С	1
0	0110	11rr	rrrr	06rr	RLC R	$R(n) \rightarrow R(n+1)$ R(7) \rightarrow C, C \rightarrow R(0)	С	1
0	0111	00rr	rrrr	07rr	SWAPA R	$R(0-3) \rightarrow A(4-7)$ $R(4-7) \rightarrow A(0-3)$	None	1
0	0111	01rr	rrrr	07rr	SWAP R	R(0-3) ↔ R(4-7)	None	1
0	0111	10rr	rrrr	07rr	JZA R	$R+1 \rightarrow A$, skip if zero	None	2 if skip
0	0111	11rr	rrrr	07rr	JZ R	$R+1 \rightarrow R$, skip if zero	None	2 if skip
0	100b	bbrr	rrrr	0xxx	BC R,b	$0 \rightarrow R(b)$	None	1
0	101b	bbrr	rrrr	0xxx	BS R,b	$1 \rightarrow R(b)$	None	1
0	110b	bbrr	rrrr	0xxx	JBC R,b	if R(b)=0, skip	None	2 if skip
0	111b	bbrr	rrrr	0xxx	JBS R,b	if R(b)=1, skip	None	2 if skip
1	00kk	kkkk	kkkk	1kkk	CALL k	$PC+1 \rightarrow [SP]$ (Page, k) $\rightarrow PC$	None	2
1	01kk	kkkk	kkkk	1kkk	JMP k	$(Page,k)\toPC$	None	2
1	1000	kkkk	kkkk	18kk	MOV A,k	$k \rightarrow A$	None	1
1	1001	kkkk	kkkk	19kk	OR A,k	$A \lor k \rightarrow A$	Z	1
1	1010	kkkk	kkkk	1Akk	AND A,k	A & $k \rightarrow A$	Z	1
1	1011	kkkk	kkkk	1Bkk	XOR A,k	$A \oplus k \to A$	Z	1
1	1100	kkkk	kkkk	1Ckk	RETL k	$k \rightarrow A$, [Top of Stack] $\rightarrow PC$	None	2
1	1101	kkkk	kkkk	1Dkk	SUB A,k	$k\text{-}A\toA$	Z, C, DC	1
1	1110	0000	0001	1E01	INT	$PC+1 \rightarrow [SP]$ 001H $\rightarrow PC$	None	1
1	1110	100k	kkkk	1E8k	PAGE k	K→R5(4:0)	None	1
1	1111	kkkk	kkkk	1Fkk	ADD A,k	$k+A \rightarrow A$	Z, C, DC	1

Note: * For ADD and SUB instruction execution, refer to RA Page 2 Bit 7

** Instruction cycle = 2 main CLKs

7.9 Code Option

Code Option Register

Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREFSEL	-	PHO	VERSEL	1	-	-	-	-	-	0	-	-	-

Bit 3: Clear this bit to 0.

Bit 9: This bit must be set to 1.

Bit 10 (VERSEL): Version select.

	VERSEL = 0	VERSEL = 1
Data RAM address	R8 Page 1	RB Page 2
Data RAM address auto-increase	Not supported	Enable
"ADD" and "SUB" include "carry" bit	Not supported	Determined by RA Page 2 Bit 7
Phase CLK output	Determined by PHO	Determined by PHO

Bit 11 (PHO): Port CO status select.

0: Port C0 defined as normal I/O.

1 : Port C0 defined as Phase1 output.

The following figure shows the relation between the main CLK and Phase 1 CLK.

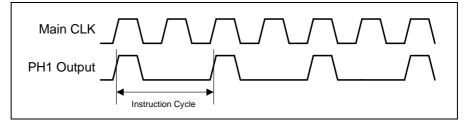


Figure 7-15 Correlation between Main CLK and PH1 Output

Bit 13 (VREFSEL): DAC internal reference voltage select.

 $\boldsymbol{0}$: DAC internal VREF $\cong 2.5 V$

1 : DAC internal VREF \cong 2.25V

7.10 Dual Sets of PWM (Pulse Width Modulation)

7.10.1 Overview

In PWM mode, both PWM1 and PWM2 pins produce up to 10-bit resolution PWM output (see. Figure 7-16 for the functional block diagram). A PWM output has a period and a duty cycle, and it keeps the output at high. The baud rate of the PWM is the inverse of the period. Figure 7-17 depicts the correlation between a period and a duty cycle.

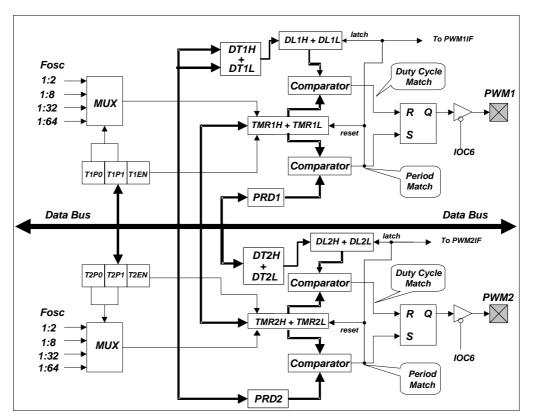


Figure 7-16 Functional Block Diagram of Dual PWMs

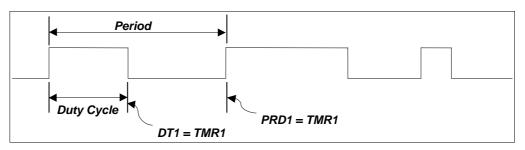


Figure 7-17 PWM Output Timing

7.10.2 Increment Timer Counter (TMRX: TMR1H/TWR1L or TMR2H/TWR2L)

TMRX are 10-bit clock counters with programmable prescalers. They are designed for the PWM module as baud rate clock generators. TMRX can be read, written to, and cleared at any reset conditions. If employed, they can be turned down for power conservation by setting the T1EN bit [PWMCON<4>] or T2EN bit [PWMCON<5>] to 0.

7.10.3 PWM Period (PRDX: PRD1 or PRD2)

The PWM period is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- TMRX is cleared.
- The PWMX pin is set to 1.
- The PWM duty cycle is latched from DT1/DT2 to DTL1/DTL2.

NOTE The PWM output will not be set if the duty cycle is 0.

The PWMXIF pin is set to 1.

The following formula describes how to calculate the PWM period:

$$Period = (PRDX + 1) \times 4 \times \left(\frac{1}{F_{osc}}\right) \times (TMRX \text{ Prescale Value})$$

where Fosc is the system clock

7.10.4 PWM Duty Cycle (DTX: DT1H/ DT1L and DT2H/ DT2L; DTL: DL1H/DL1L and DL2H/DL2L)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded at any time. However, it cannot be latched into DTL until the current value of DLX is equal to TMRX.

The following formula describes how to calculate the PWM duty cycle:

Duty Cycle =
$$(DTX) \times \left(\frac{1}{F_{osc}}\right) \times (TMRX \text{ Prescale Value})$$

7.10.5 PWM Programming Procedures/Steps

Load PRDX with the PWM period.

- Load DTX with the PWM Duty Cycle.
- Enable interrupt function by writing IOCF PAFE0, if required.
- Set PWMX pin to be output by writing a desired value to IOCC Page 0.
- Load a desired value to R5 Page 3 with TMRX prescaler value and enable both PWMX and TMRX.

7.10.6 Timer

Timer 1 (TMR1) and Timer 2 (TMR2) (TMRX) are 10-bit clock counters with programmable prescalers. They are designed for the PWM module as baud rate clock generators. TMRX can be read, written to, and cleared at any reset conditions.

The figure shows TMRX block diagram. Each signal and blocks are described as follows:

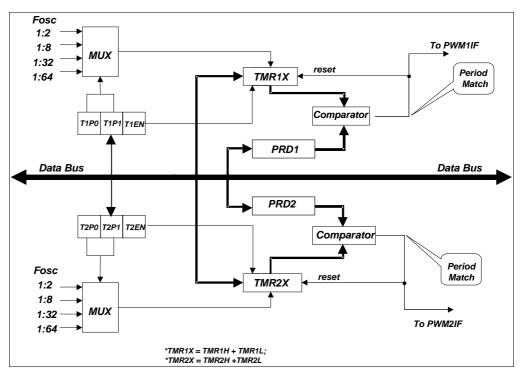


Figure 7-18 TMRX Block Diagram

- Fosc: Input clock.
- Prescaler (T1P0 and T1P1/T2P1 and T2P0): Options of 1:2, 1:8, 1:32, and 1:64 are defined by TMRX. It is cleared when any type of reset occurs.
- TMR1X and TMR2X (TMR1H/TWR1L and TMR2H/TMR2L): Timer X registers; TMRX is increased until it matches with PRDX, and then is reset to 0. TMRX cannot be read.
- PRDX (PRD1 and PRD2): PWM period register.

When defining TMRX, refer to the operation of its related registers as shown in the prescaler register. It must be noted that the PWMX bits must be disabled if their related TMRXs are employed. That is, Bit 7 and Bit 6 of the PWMCON register must be set to '0'.

Related Control Registers (R5 Page 3) of TMR1 and TMR2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2E	PWM1E	T2EN	T1EN	T2P1	T2P0	T1P1	T1P0

Timer Programming Procedures/Steps

- Load PRDX with the Timer period.
- Enable interrupt function by writing IOCF Page 0, if required
- Load a desired value to PWMCON with the TMRX prescaler value and enable both TMRX and disable PWMX.

8 Absolute Maximum Ratings

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0.3 To 6	V
Input Voltage	Vin	-0.5 to VDD +0.5	V
Operating Temperature Range	Та	0 to 70	°C

9 DC Electrical Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current for input pins	IIL1	VIN = VDD, VSS	_	-	±1	μA
Input leakage current for bi-directional pins	IIL2	VIN = VDD, VSS	Ι	-	±1	μA
Input high voltage	VIH	-	2.5	-		V
Input low voltage	VIL	-		-	0.8	V
Input high threshold voltage	VIHT	/RESET, TCC	2.0	-	-	V
Input low threshold voltage	VILT	/RESET, TCC	-	-	0.8	V
Clock input high voltage	VIHX	OSCI	3.5	_	-	V
Clock input low voltage	VILX	OSCI	-	-	1.5	V
Output high voltage for Ports 5, B, C,	VOH1	IOH = -6 mA	2.4	-	_	V
Output high voltage for Ports 6, 7, 8	VOH2	IOH = -12 mA	2.4	_	Ι	V
Output high voltage for Port 9	VOH3	IOH = -15 mA	2.4	-	-	V
Output low voltage for Ports 5, B, C	VOL1	IOH = 6 mA	_	-	0.4	V

Ta = 25°C, VDD=5V \pm 5%, VSS=0V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output low voltage for Ports 6, 7, 8	VOL2	IOH = 12 mA	_	-	0.4	V
Output low voltage for Port 9	VOL3	IOH = 15 mA	-	Ι	0.4	V
LCD drive reference voltage	VLCD	VDD=5V, Contrast adjust	-	4 ~ 5	-	V
Pull-high current	IPH	Pull-high active input pin at VSS	_	-10	-15	μA
Power down current (Sleep mode)	ISB1	All input and I/O pin at VDD, output pin floating, WDT disabled	-	4	8	μA
Low clock current (Green mode)	ISB2	CLK=32.768kHz, All analog circuits disabled, All input and I/O pin at VDD, output	_	35	50	μΑ
Operating supply current (Normal mode)	ICC1	/RESET=High, CLK=3.582 MHz, All analog circuits disabled, output pin floating	_	1	2	mA
Operating current for DAC	I_DA	_	_	0.65	0.9	mA
DAC internal reference	Vref	VREFSEL = 0	2.3	2.5	2.7	V
voltage	VIEI	VREFSEL = 1	2.1	2.25	2.4	V

10 AC Electrical Characteristics

CPU Instruction Timing (Ta = 25°C, VDD=5V, VSS=0V)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input CLK duty cycle	Dclk	Ι	45	50	55	%
Instruction cycle time	Tins	32.768kHz		60		μs
	TINS	3.582 MHz	_	550	_	ns
Device delay hold time	Tdrh	-	-	16	-	ms
TCC input period	Ttcc	Note 1	(Tins+20)/N	-	-	ns
Watchdog timer period	Twdt	Ta = 25°C	_	16	_	ms
DAC output delay	Tda	-	-	50	-	μs

Note: N= selected prescaler ratio.

ADC Characteristic (VDD = 5V, Ta = + 25°C, for Internal Reference Voltage)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Upper bound offset voltage	Vofh	-	_	44	52.8	mV
Lower bound offset voltage	Vofl	_	_	32	38.4	mV

*These parameters are characterized but not tested.

** For ADC characteristics, see next page.

		,								
Description		Symbol	Min.	Тур.	Max.	Unit				
Oscillator Timing Characteristic										
	32.768kHz	Toscs	400	_	1500	ms				
OSC start up	3.579 MHz PLL	_	_	5	10	μs				
SPI Timing Characteristics (CPU Clock 3.58 MHz and Fosc = 3.58 MHz / 2)										
/SS set-up time		Tcss	560	_	-	ns				
/SS hold time	Tcsh	250	-	-	_					
SCLK high time	Thi	250	-	-	ns					
SCLK low time	Tlo	250	-	-	ns					
SCLK rising time	Tr	-	15	30	ns					
SCLK falling time		Tf	-	15	30	ns				
SDI set-up time to the reading edg	ge of SCLK	Tisu	25	_	-	ns				
SDI hold time to the reading edge	Tihd	25	-	-	ns					
SDO disable time	Tdis	-	-	560	ns					
Reset Timing Characteristics										
Minimum width of reset low pulse	Trst	3	_	-	μs					
Delay between reset and program	Tdrs	-	18	-	Ms					

Timing Characteristic (AVDD=VDD=5V, Ta=+25°C)

Embedded LCD driver

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Ron	LCD driver ON resistance	LCD function enable	-	2	4	kΩ
Frame	LCD frame frequency	1/2 , 1/4 duty	-	64	-	Hz

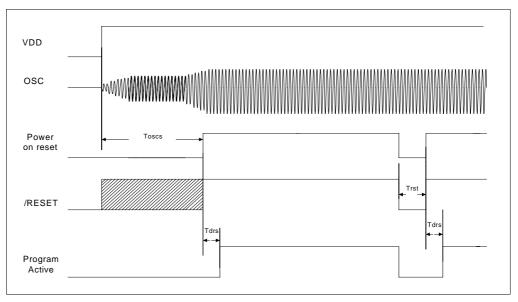
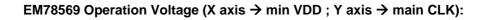



Figure 10-1 Correlation between OSC Stable Time and Power on Reset.

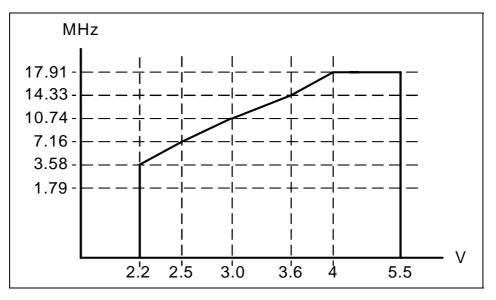


Figure 10-2 Correlation between Operating Voltage and Main CLK

EM78569 10-bit ADC Characteristic

The EM78569 has a built-in 10-bit resolution, multi channel ADC function. Ideally, if the ADC's reference voltage is 5V, the ADC's LSB will be 5V/1024. But in actual, for some physics or circuit's character, some un-ideal condition will affect the converter result. As shown in Figure 10-3, the offset voltage will reduce the AD's converter range. If AD's input voltage is less than VOFL, ADC will output 0; otherwise, if the input voltage is larger than (VDD-VOFH), ADC will output 1023. That is to say the physics AD converter range will be replaced by (VDD-VOFH+LSB-VOFL+LSB). If we defined that VRB = VOFL – LSB and VRT = VDD-VOFH+LSB, the physics LSB is:

$$LSB = \frac{(VRT - VRB)}{1024}$$
$$LSB = \frac{(VDD - (VOFH + VOFL))}{1022}$$

For real operation, consider the effect of AD's offset voltage. If the converter range is (VRT - VRB), the AD converter's opposite result will be precised.

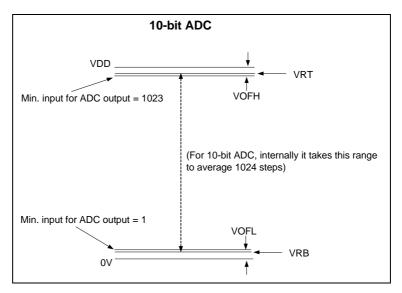
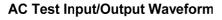
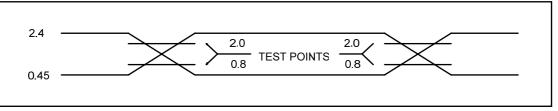




Figure 10-3 Correlation between ADC and Offset Voltage

11 Timing Diagrams

AC Testing: Input are driven at 2.4V for logic "1", and 0.45V for logic "0". Timing Measurements are made at 2.0V for logic "1", and 0.8V for logic "0".

Figure 11-1 AC Timing Diagram

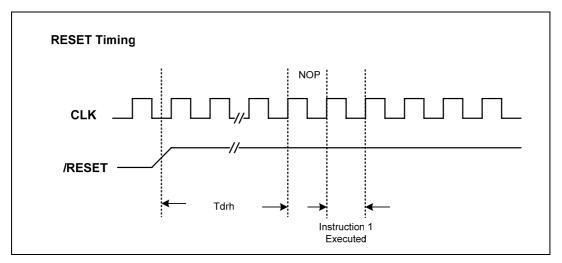


Figure 11-2 Reset Timing Diagram

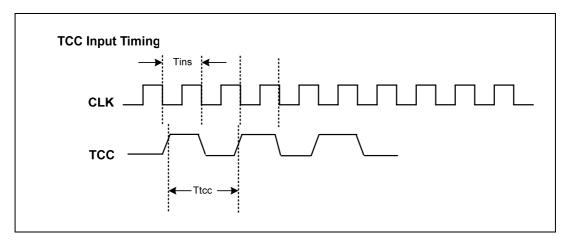


Figure 11-3 TCC Input Timing Diagram

APPENDIX

A Note on EM78569 Developing Tool (ICE569)

In masked EM78569, user can switch some function by setting the code option. But there is no code option in ICE569. For ICE569, 2 bits are mapped to RD Page 0 Bit 5 ~Bit 6. During developing program on the ICE569, user should initially fix these 2 bits and do not change them throughout the program.

RD Page 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	VERSEL	PHO	1	-			
	R/W-0	R/W-0	R/W-0				

For description of Bit 5~Bit 6, refer to EM78569's code option.

B User Application Note

(Before using this IC, take a look at the following description note, it includes important messages.)

- 1. There are some undefined bits in the registers. The values in these bits are unpredicted. These bits are not allowed for use. We use the symbol "-" in the spec to recognize them.
- 2. User will see some names for the register bits definitions. Some name will appear very frequently in the whole spec. The following describes the meaning for the register's definitions such as bit type, bit name, bit number, etc.

			RA PAGE0								
			7	6	5	4	3	2	1	0	
			RAB7	RAB6	BAB	5 RAB4	-	RAB2	RAB1	RAB0	
		┌►	R/W-0	R/W-0	R-1	R/W-1	A	R	R-0	R/W	
			in type -	Read/write lefault value=	:0)	Read/write (default value=	=1)	Read only (w/o default val	ue)	Read/write (w/o default v	/alue)
F	Bit number Read only Register name and its page (default value=1) (undefined) not allowed for use Read only Read only (default value=0)										

- 3. Set RA Page 2 Bit 7 to 1, or the LCD waveform will be different between mask and ROMless.
- 4. Set the IOCC Page 1 Bit 0 to "1" otherwise, partial ADC function cannot be used

- For 8 bits resolution DAC, the DAO pin will output the corresponding voltage after writing new data to DAC data buffer (RA Page 1). For 10 bits resolution, DAO pin will output constant after changing the DAC most significant 2 bits (R5 Page 1 Bits 6~7). The DAO will output the correct voltage after writing data to the least significant 8 bits. That is to say, when using 10 bits resolution DAC, user must write the most significant 2 bits and least significant 8 bits in order.
- 6. Base on "VERSEL" (Code Option) equal to 0 or 1, R8 Page 1 and RB Page 2's definition are different.
 - "VERSEL" = 0: R8 Page 1 defined to data RAM address buffer
 - RB Page 2 is defined as multiplier's Y data or Y address buffer (controlled by RA Page 2 Bit 5 "INDR").
 - RA Page 2 Bit 4 (PLUS) determines whether the RAM address will auto increase or not (only for multiplier's addressing).

RA Page 2 Bit 7 is undefined.

- "VERSEL" = 1: R8 Page 1 is undefined.
 - RA Page 2 Bit 4 (PLUS) determines whether the RAM address will auto increase or not (for data RAM and multiplier's addressing).
 - RA Page 2 Bit 7 (INS) is undefined.
 - RB Page 2 is defined as multiplier's Y data, Y address or data RAM address buffer.
- The carry bit's initial value is unknown, user should define the initial value before executing the first ADD or SUB instruction that includes carry bit (VERSEL =1 and INS = 1).
- 8. In EM78569's developing tool, "VERSEL" and "PHO" are at RD Page 2 Bit 6 and Bit 5, but in mask chip, these two bits will be mapped to code option. Set these two bits with fixed value initially and do not change these two bits within the program.
- 9. While switching to the main clock (regardless whether high freq to low freq or on vice versa), adding 6 instruction delays (NOP) is required.
- 10. Do not switch the MCU operation mode from normal mode to sleep mode directly. Before going into sleep mode, switch the MCU first to green mode.
- 11. The offset voltage will affect the ADC's result, refer to Figure 10-3 for details.

Difference between ICE569, EM78P569 and EM78569

	ICE569	EM78P569	EM78569
Stack	16	16	12
VERSEL, PHO	RD Page 0 Bits 5,6	Code option	Code option

12. Counter 1 and Counter 2 are used when the MCU runs in sub-frequency and main frequency alternately. The alternate timing should be larger than 200 ms between the sub-frequency and the main frequency. Too short alternate timing results in inaccurate interrupt timing on Counter 1 and Counter 2.

