
15.11.2007

rev. 05

Radiation	Туре	Technology	Case	
Infrared	Water clear	InGaAs/InP	3 mm plastic lens	

Description

High-power, high-speed infrared LED in standard 3 mm housing, small package allows compact design, housing without standoff leads

Note: Special packages with standoff available on request

Applications

Optical communications, optical switches, optical sensors, medical applications, safety equipment

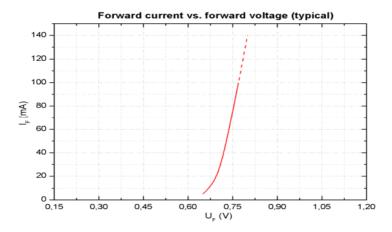
Maximum Ratings

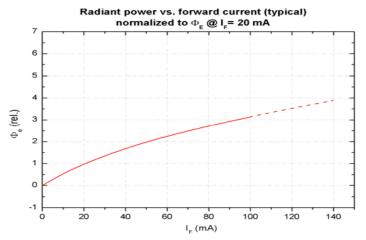
T_{amb} = 25°C, unless otherwise specified

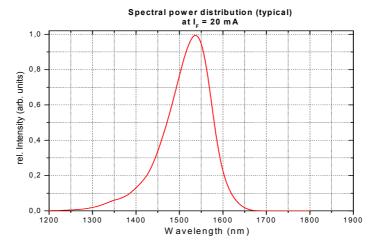
Parameter	Test conditions	Symbol	Value	Unit
Forward current (DC)		I _F	100	mA
Peak forward current	$(t_p \le 10 \ \mu s, T = 10 ms)$	I _{FM}	200	mA
Operating temperature range		T_{amb}	-20 to +85	°C
Storage temperature range		T _{stg}	-55 to +100	°C
Soldering temperature	$t \le 5$ s, 3 mm from case	T _{sd}	260	°C

Optical and Electrical Characteristics

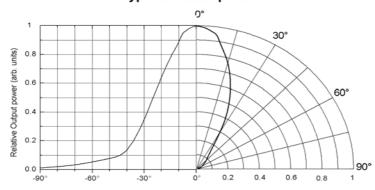
T_{amb} = 25°C, unless otherwise specified


Parameter	Test conditions	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F = 20 mA	V _F		0.65	0.85	V
Forward voltage*	I _F = 100 mA	V_{F}		0.8	1.1	V
Reverse voltage	I _R = 100 μA	V_{F}		5		V
Radiant power	I _F = 20 mA	Φ_{e}	1.2	1.6		mW
Radiant power*	I _F = 100 mA	Φ_{e}	4.5	5.5		mW
Radiant intensity	I _F = 20 mA	I_{e}	2.2	2.8		mW/sr
Radiant intensity*	I _F = 100 mA	I_{e}	8	10		mW/sr
Peak wavelength	I _F = 20 mA	λ_{p}	1530	1550	1570	nm
Spectral bandwidth at 50%	I _F = 20 mA	$\Delta\lambda_{0.5}$		110		nm
Viewing angle₁	I _F = 20 mA	φ		55		deg.
Switching time	I _F = 20 mA	$t_{r,} t_{f}$		10		ns


^{*}measured after 30s current flow


Note: All measurements carried out on EPIGAP equipment

15.11.2007

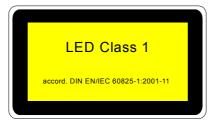

rev. 05

Typical radiant pattern

www.DataSheet4U.com

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications.All operating parameters must be validated for each customer application by the customer.

LED - Lamp ELD-1550-345


15.11.2007

ev. 05

Remarks concerning optical radiation safety*

Up to maximum forward current, at continuous operation, this LED may be classified as LED product *Class 1*, according to standard IEC 60825-1:A2. *Class 1* products are safe to eyes and skin under reasonably predictable conditions. This implicates a direct observation of the light beam by means of optical instruments.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.

www.DataSheet4U.com