3129557 0002045 15T #FLA 50 MHz Current Feedback Amplifier #### ELANTEC INC - 79-07-10 #### **Features** - Slew rate 500 V/µs - ±33 mA output current - Drives ± 2.4 V into 75Ω - Differential phase < 0.1° - Differential gain < 0.1% - V supply $\pm 5V$ to $\pm 18V$ - Output short circuit protected - Uses current mode feedback - 1% settling time of 50 ns for 10V step - Low cost - 9 mA supply current - 8-pin mini-dip #### **Applications** - · Video gain block - Residue amplifier - · Radar systems - · Current to voltage converter - · Coax cable driver with gain of 2 #### **Ordering Information** | Part No. | Temp. Range | Pkg. | Outline# | |---------------|-----------------|----------------|------------| | EL2020CN | 0°C to +75°C | P-DIP | MDP0031 | | EL2020CJ | 0°C to +75°C | CerDIP | MDP0010 | | EL2020J | -55°C to +125°C | CerDIP | MDP0010 | | EL2020J/883B | -55°C to +125°C | CerDIP | MDP0010 | | EL2020CM | 0°C to +75°C | 20-Lead
SOL | MDP0027 | | EL2020L | -55°C to +125°C | 20-Pad
LCC | MDP0007 | | EL2020L/883B | -55°C to +125°C | 20-Pad
LCC | MDP0007 | | 5962-89620 is | the SMD version | n of th | is device. | #### General Description The EL2020 is a fast settling, wide bandwidth amplifier optimized for gains between -10 and +10. Built using the Elantec monolithic Complementary Bipolar process, this amplifier uses current mode feedback to achieve more bandwidth at a given gain then a conventional voltage feedback operational amplifi- The EL2020 will drive two double terminated 75 Ω coax cables to video levels with low distortion. Since it is a closed loop device. the EL2020 provides better gain accuracy and lower distortion than an open loop buffer. The device includes output short circuit protection, and input offset adjust capability. The bandwidth and slew rate of the EL2020 are relatively independent of the closed loop gain taken. The 50 MHz bandwidth at unity gain only reduces to 30 MHz at a gain of 10. The EL2020 may be used in most applications where a conventional op amp is used, with a big improvement in speed power product. Elantec products and facilities comply with MIL-I-45208A. MIL-STD-883 Rev C and other applicable quality specifications. For information on Elantec's military processing, see: Elantec's Military Processing-Monolithic Products. #### Connection Diagrams #### ELANTEC INC ### 50 MHz Current Feedback Amplifier #### Absolute Maximum Ratings (25°C) **Output Short Circuit Duration** (Note 2) | TUSU | IUte maximum ram | LIES (23 C) | | | | |------------------|---------------------------------|-----------------------------|---------------------------|--------------------------------|-----------------| | v_s | Supply Voltage | ± 18V or 36V | $T_{\mathbf{A}}$ | Operating Temperature Range | | | VIN | Input Voltage | \pm 15V or V _S | | EL2020 | -55°C to +125°C | | ΔVIN | Differential Input Voltage | ±10V | | EL2020C | 0°C to +75°C | | I _{IN} | Input Current (Pins 2 or 3) | $\pm 10 \text{ mA}$ | $\mathbf{T}_{\mathbf{J}}$ | Operating Junction Temperature | | | I _{INS} | Input Current (Pins 1, 5, or 8) | ± 5 mA | | LCC, CerDIP Package | 175°C | | PD | Maximum Power Dissipation | | | Plastic Package | 150°C | | _ | (See Curves) | 1.25W | T_{ST} | Storage Temperature | -65°C to +150°C | | I _{OP} | Peak Output Current | Short Circuit | | Lead Temperature | | | | | Protected | | (Soldering, 5 seconds) | 300°C | | | | | | | | #### Important Note: All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection, Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore T_J = T_A. Continuous | | Contract Contract Contract of the Contract Contr | And the second of o | | Bottom of the part of the last | | |--|--|--|--|--|--| | Carried Control of the th | | _ | Acceptable of the Control Con | | | | Test Level | Test Proc | adura . | | | 2.125,000,000,000,000,000 | | TOACH FIGARE | 2005 4 5 41 | | | | | | | | | | | | | and the second second | 1000, | motion tested one | OA commis tests | ed per QA test plan | OCXOBB2 | | | TAN NO PATA | HOUSENIE ECHOLOGIC GER | . Any agree his mon | on here And sear house | Acres voya. | | | and the second s | | | | | | 1 | 1000 | The backed water | . at 75°C and Ol | sample tested at T | · = 25°C | | | 100 10 100 | incress retord as a | A na mann de | s peanific morne er a | | | | | | | | | | | 7 | I TMTN per QA to | er volum OC Y (MO)? | | | | | - 4 MAX | THE RESERVE OF THE PERSON T | ar hear American | | AND THE RESERVE OF THE PARTY | | | | | | | | | III | Of second | tested per QA tal | a elen OCKOOO | | | | | Arr service | and the Art on | a been American. | Control of the Contro | | | | | and the second second second | | | | | TV | Donomater | in mineromenad from | t most teastern) by D | esign and Character | ization Data | | 4.0 | T GI GINGENEL | TO E CONSTITUTION (NO | | named and an arrangements | Control of the Contro | | ************************************** | | | | | | | V | Dorowater | is turnical unima of | T. = 95°C CALL | aformation purposes | LOGIU | | | E STREET | TO CA STREET, ASSESSED IN | | seems someoned to be broader | | | | | | | | | #### Open Loop Characteristics v_s = ±15V | | Description | Temp Lim | | Limits | | Test Level | | Units | |---------------------------|---|-------------------------------------|-----|--------|------|------------|---------|--------------------| | Parameter | | 1emb | Min | Тур | Max | EL2020 | EL2020C | Omis | | V _{OS} (Note 1) | Input Offset Voltage | 25°C | -10 | 3 | + 10 | 1 | 1 | mV | | | | T _{MIN} , T _{MAX} | -15 | | + 15 | 1 | ш | mV | | $\Delta V_{OS}/\Delta T$ | Offset Voltage Drift | | | -30 | | V | ٧ | μV/°C | | CMRR (Note 3) | Common Mode Rejection Ratio | ALL | 50 | 60 | | 1 | 11 | dB | | PSRR (Note 4) | Power Supply Rejection Ratio | 25°C | 65 | 75 | | I | 1 | dB | | | | T _{MIN} , T _{MAX} | 60 | | | 1 | Ш | dB | | + I _{IN} | Non-inverting Input Current | 25°C, T _{MAX} | -15 | 5 | + 15 | I | 11 | μΑ | | | | T _{MIN} | -25 | | + 25 | 1 | Ш | μΑ | | +R _{IN} | Non-Inverting Input Resistance | ALL | 1 | 5 | | 1 | п | $\mathbf{M}\Omega$ | | + IPSR (Note 4) | Non-Inverting Input Current
Power Supply Rejection | 25°C, T _{MAX} | | 0.05 | 0.5 | 1 | п | μ A /V | | | | T _{MIN} | | | 1.0 | I | III | μ A /V | | -I _{IN} (Note 1) | -Input Current | 25°C, T _{MAX} | -40 | 10 | + 40 | 1 | 11 | μΑ | | | | T _{MIN} | 50 | | + 50 | 1 | ш | μА | ### 50 MHz Current Feedback Amplifier ### Open Loop Characteristics $v_s = \pm 15V$ — Contd. | Parameter | Description | Temp | Limits | | | Test | | | |--------------------|---|-------------------------------------|--------|--------|-----|--------|---------|--------------| | | Description | | Min | Тур | Max | EL2020 | EL2020C | Units | | -ICMR (Note 3) | - Input Current | 25°C, T _{MAX} | | 0.5 | 2.0 | 1 | 11 | μA/V | | | Common Mode Rejection | T _{MIN} | | | 4.0 | ι | 111 | μ A/V | | -IPSR (Note 4) | -Input Current | 25°C, T _{MAX} | | 0.05 | 0.5 | 1 | п | μ A/V | | | Power Supply Rejection | T _{MIN} | | | 1.0 | 1 | ш | μ A/V | | R_{ol} | Transimpedence $(\Delta V_{OUT}/\Delta(-I_{IN}))$ | 25°C, T _{MAX} | 300 | 1000 | | 1 | 11 | V/mA | | | $R_{L} = 400\Omega, V_{OUT} = \pm 10V$ | T _{MIN} | 50 | | | 1 | ш | V/mA | | A_{VOL1} | Open Loop DC Voltage Gain | 25°C, T _{MAX} | 70 | 80 | | 1 | 11 | dB | | | $R_{L} = 400\Omega, V_{OUT} = \pm 10V$ | T _{MIN} | 60 | | | 1 | ш | dB | | A_{VOL2} | Open Loop DC Voltage Gain $R_L = 100\Omega, V_{OUT} = \pm 2.5V$ | 25°C, T _{MAX} | 60 | 70 | | 1 | п | dB | | | | T _{MIN} | 55 | | | 1 | ш | dB | | v_0 | Output Voltage Swing $R_L = 400\Omega$ | 25°C, T _{MAX} | ± 12 | ±13 | | 1 | 11 | v | | | | T _{MIN} | ±11 | | | 1 | Ш | v | | I_{OUT} | Output Current | 25°C, T _{MAX} | ±30 | ± 32.5 | | 1 | п | mA | | | $R_{\rm L} = 400\Omega$ | T _{MIN} | ± 27.5 | | | 1 | III | mA | | I_s | Quiescent Supply Current | 25°C | | 9 | 12 | 1 | 1 | mA | | | | T _{MIN} , T _{MAX} | | | 15 | 1 | m | mA | | I _{s off} | Supply Current, Disabled, $V_8 = 0V$ | ALL | | 5.5 | 7.5 | 1 | 11 | mA | | I _{logic} | Pin 8 Current, Pin 8 = 0V | ALL | | 1.1 | 1.5 | 1 | 11 | mA | | I_D | Min Pin 8 Current to Disable | ALL | | 120 | 250 | 1 | п | <u>μ</u> Α | | I _e | Max Pin 8 Current to Enable | ALL | | | 30 | 1 | п | μΑ | ELANTEC INC 50 MHz Current Feedback Amplifier #### AC Closed Loop Characteristics EL2020/EL2020C v_S = ±15V, T_A = 25°C | Parameter | Description | Min | Тур | Max | Test
Level | Units | |--|---|-------------|-------------------------------|-----|------------------|-------------------------| | SR1
FPBW1
t _r 1
t _f 1
t _p 1 | Closed Loop Gain of 1 V/V (0 dB), $R_F = 1 k\Omega$
Slew Rate, $R_l = 400\Omega$, $V_O = \pm 10V$, test at $V_O = \pm 5V$
Full Power Bandwidth (Note 5)
Rise Time, $R_l = 100\Omega$, $V_{OUT} = 1V$, 10% to 90%
Fall Time, $R_l = 100\Omega$, $V_{OUT} = 1V$, 10% to 90%
Propagation Delay, $R_l = 100\Omega$, $V_{OUT} = 1V$, 50% Points | 300
4.77 | 500
7.95
6
6
8 | | < < < 1 | V/μs
MHz
ns
ns | | BW t _s t _s | Closed Loop Gain of 1 V/V (0 dB), $R_F=820\Omega$
-3 dB Small Signal Bandwidth, $R_l=100\Omega$, $V_O=100$ mV
1% Settling Time, $R_l=400\Omega$, $V_O=10V$
0.1% Settling Time, $R_l=400\Omega$, $V_O=10V$ | | 50
50
90 | | Y
Y
V | MHz
ns
ns | | SR10
FPBW10
t_r 10
t_f 10
t_p 10 | Closed Loop Gain of 10 V/V (20 dB), $R_F=1~k\Omega$, $R_G=111\Omega$ Slew Rate, $R_I=400\Omega$, $V_O=\pm10V$, Test at $V_O=\pm5V$ Full Power Bandwidth (Note 5) Rise Time, $R_I=100\Omega$, $V_{OUT}=1V$, 10% to 90% Fall Time, $R_I=100\Omega$, $V_{OUT}=1V$, 10% to 90% Propagation Delay, $R_I=100\Omega$, $V_{OUT}=1V$, 50% points | 300
4.77 | 500
7.95
25
25
12 | | 1
1
V
V | V/µs
MHz
ns
ns | | BW t _s t _s | Closed Loop Gain of 10 V/V (20 dB), $R_F=680\Omega$, $R_G=76\Omega$ -3 dB Small Signal Bandwidth, $R_I=100\Omega$, $V_O=100$ mV 1% Settling Time, $R_I=400$ Ω , $V_O=10$ V 0.1% Settling Time, $R_I=400\Omega$, $V_O=10$ V | | 30
55
280 | | V
V
V | MHz
ns
ns | Note 1: The offset voltage and inverting input current can be adjusted with an external 10 k Ω pot between pins 1 and 5 with the wiper connected to V_{CC} (Pin 7) to make the output offset voltage zero. Note 2: A heat sink is required to keep the junction temperature below the absolute maximum when the output is short circuited. Note 3: $V_{CM} = \pm 10V$. Note 4: $\pm 4.5V \le V_S \le \pm 18V$. Note 5: Full Power Bandwidth is guaranteed based on Slew Rate measurement, FPBW = SR/2\pi V_{peak}. ELANTEC INC ## EL2020/EL2020C ### 50 MHz Current Feedback Amplifier #### Typical Performance Curves Non-Inverting Gain of One #### ELANTEC INC ### 50 MHz Current Feedback Amplifier #### Typical Performance Curves — Contd. Inverting Gain of One 50 MHz Current Feedback Amplifier #### Typical Performance Curves — Contd. Non-Inverting Gain of Two #### **ELANTEC INC** 50 MHz Current Feedback Amplifier #### Typical Performance Curves - Contd. Non-Inverting Gain of Ten #### Typical Performance Curves - Contd. 2020-B #### ELANTEC INC ### 50 MHz Current Feedback Amplifier #### Typical Performance Curves - Contd. 8-Lead Plastic DIP Maximum Power Dissipation vs Ambient Temperature 20-Lead SOL Maximum Power Dissipation vs Ambient Temperature ELANTEC INC ### EL2020/EL2020C #### 50 MHz Current Feedback Amplifier #### **Application Information** #### Theory of Operation The EL2020 has a unity gain buffer similar to the EL2003 from the non-inverting input to the inverting input. The error signal of the EL2020 is a current flowing into (or out of) the inverting input. A very small change in current flowing through the inverting input will cause a large change in the output voltage. This current amplification is the transresistance (R_{OL}) of the EL2020 [V_{OUT} = R_{OL} * I_{INV}]. Since R_{OL} is very large (\approx 106), the current flowing into the inverting input in the steady state (non-slewing) condition is very small. Therefore we can still use op-amp assumptions as a first order approximation for circuit analysis, namely that... - 1. The voltage across the inputs ≈ 0 and - 2. The current into the inputs is ≈ 0 #### Simplified Block Diagram of EL2020 ### Resistor Value Selection and Optimization The value of the feedback resistor (and an internal capacitor) sets the AC dynamics of the EL2020. A nominal value for the feedback resistor is $1~\mathrm{k}\Omega$, which is the value used for production testing. This value guarantees stability. For a given gain, the bandwidth may be increased by decreasing the feedback resistor and, conversely, the bandwidth will be decreased by increasing the feedback resistor. Reducing the feedback resistor too much will result in overshoot and ringing, and eventually oscillations. Increasing the feedback resistor results in a lower -3 dB frequency. Attenuation at high frequency is limited by a zero in the closed loop transfer function which results from stray capacitance between the inverting input and ground. #### Power Supplies The EL2020 may be operated with single or split power supplies as low as $\pm 3V$ (6V total) to as high as $\pm 18V$ (36V total). The slew rate degrades significantly for supply voltages less than ±5V (10V total), but the bandwidth only changes 25% for supplies from $\pm 3V$ to $\pm 18V$. It is not necessary to use equal value split power supplies, i.e., -5V and +12V would be excellent for 0V to 1Vvideo signals. Bypass capacitors from each supply pin to a ground plane are recommended. The EL2020 will not oscillate even with minimal bypassing, however, the supply will ring excessively with inadequate capacitance. To eliminate supply ringing and the errors it might cause, a 4.7 µF tantalum capacitor with short leads is recommended for both supplies. Inadequate supply bypassing can also result in lower slew rate and longer settling times. #### Non-Inverting Amplifier 2020-11 #### EL2020 Typical Non-Inverting Amplifier Characteristics | A_{V} | $\mathbf{R_F}$ | $\mathbf{R}_{\mathbf{G}}$ | Bandwidth | _ | .0V
ng Time | |---------|----------------|---------------------------|-----------|-------|----------------| | | | | | 1% | 0.1% | | +1 | 820Ω | None | 50 MHz | 50 ns | 90 ns | | +2 | 750Ω | 750Ω | 50 MHz | 50 ns | 100 ns | | +5 | 680Ω | 170Ω | 50 MHz | 50 ns | 200 ns | | +10 | 680Ω | 76Ω | 30 MHz | 55 ns | 280 ns | FLANTEC INC ### 50 MHz Current Feedback Amplifier #### Application Information — Contd. **Summing Amplifier** EL2020 Typical Inverting Amplifier Characteristics 10**V** $\mathbf{R}_{\mathbf{F}}$ R_1, R_2 Bandwidth **Settling Time** A_{V} 1% 0.1% 40 MHz 130 ns -1 750Ω 750Ω 50 ns 750Ω 40 MHz 160 ns -2 375Ω 55 ns 680Ω 130Ω 40 MHz 160 ns -5 55 ns -10 680Ω 68Ω 30 MHz 70 ns 170 ns #### **Input Range** The non-inverting input to the EL2020 looks like a high resistance in parallel with a few picofarads in addition to a DC bias current. The input characteristics change very little with output loading, even when the amplifier is in current limit. The input charactersitics also change when the input voltage exceeds either supply by 0.5V. This happens because the input transistor's base-collector junctions forward bias. If the input exceeds the supply by LESS than 0.5V and then returns to the normal input range, the output will recover in less than 10 ns. However if the input exceeds the supply by MORE than 0.5V, the recovery time can be 100's of nanoseconds. For this reason it is recommended that Schottky diode clamps from input to supply be used if a fast recovery from large input overloads is required. #### Source Impedance The EL2020 is fairly tolerant of variations in source impedances. Capacitive sources cause no problems at all, resistive sources up to 100 k Ω present no problems as long as care is used in board layout to minimize output to input coupling. Inductive sources may cause oscillations; a 1 k Ω resistor in series with the input lead will usually eliminate problems without sacrificing too much speed. #### **Current Limit** The EL2020 has internal current limits that protect the output transistors. The current limit goes down with junction temperature rise. At a junction temperature of +175°C the current limits are at about 50 mA. If the EL2020 output is shorted to ground when operating on $\pm 15V$ supplies, the power dissipation could be as great as 1.1W. A heat sink is required in order for the EL2020 to survive an indefinite short. Recovery time to come out of current limit is about 50 ns. #### Using the 2020 with Output Buffers When more output current is required, a wideband buffer amplifier can be included in the feedback loop of the EL2020. With the EL2003 the subsystem overshoots about 10% due to the phase lag of the EL2003. With the EL2004 in the loop, the overshoot is less than 2%. For even more output current, several buffers can be paralleled. #### EL2020 Buffered with an EL2004 #### Capacitive Loads The EL2020 is like most high speed feedback amplifiers in that it does not like capacitive loads between 50 pF and 1000 pF. The output resistance works with the capacitive load to form a second non-dominate pole in the loop. This results in excessive peaking and overshoot and can lead to oscillations. Standard resistive isolation techniques used with other op amps work well to isolate capacitive loads from the EL2020. ### 50 MHz Current Feedback Amplifier #### Application Information — Contd. #### Offset Adjust To calculate the amplifier system offset voltage from input to output we use the equation: Output Offset Voltage = $V_{OS} (R_F/R_G+1) \pm$ $I_{BIAS}(R_F)$ The EL2020 output offset can be nulled by using a 10 k Ω potentiometer from pins 1 to 5 with the slider tied to pin 7 (+ V_{CC}). This adjusts both the offset voltage and the inverting input bias current. The typical adjustment range is ±80 mV at the output. #### Compensation The EL2020 is internally compensated to work with external feedback resistors for optimum bandwidth over a wide range of closed loop gain. The part is designed for a nominal 1 k Ω of feedback resistance, although it is possible to get more bandwidth by decreasing the feedback resistance. The EL2020 becomes less stable by adding capacitance in parallel with the feedback resistor, so feedback capacitance is not recommended. The EL2020 is also sensitive to stray capacitance from the inverting input to ground, so the board should be laid out to keep the physical size of this node small, with ground plane kept away from this node. #### **Active Filters** The EL2020's low phase lag at high frequencies makes it an excellent choice for high performance active filters. The filter response more closely approaches the theoritical response than with conventional op amps due to the EL2020's smaller propagation delay. Because the internal compensation of the EL2020 depends on resistive feedback, the EL2020 should be set up as a gain block. #### Driving Cables The EL2020 was designed with driving coaxial cables in mind. With 30 mA of output drive and low output impedance, driving one to three 75Ω double terminated coax cables with one EL2020 is practical. Since it is easy to set up a gain of +2, the double matched method is the best way to drive coax cables, because the impedance match on both ends of the cable will suppress reflections. For a discussion on some of the other ways to drive cables, see the section on driving cables in the EL2003 data sheet. #### Video Performance Characteristics The EL2020 makes an excellent gain block for video systems, both RS-170 (NTSC) and faster. It is capable of driving 3 double terminated 75Ω cables with distortion levels acceptable to broadcasters. A common video application is to drive a 75Ω double terminated coax with a gain of 2. To measure the video performance of the EL2020 in the non-inverting gain of 2 configuration, 5 identical gain-of-two circuits were cascaded (with a divide by two 75Ω attenuator between each stage) to increase the errors. The results, shown in the photos, indicate the entire system of 5 gain-of-two stages has a differential gain of 0.5% and a differential phase of 0.5°. This implies each device has a differential gain/phase of 0.1% and 0.1°, but these are too small to measure on single devices. #### Differential Phase of 5 Cascaded Gain-Of-Two Stages Differential Gain of 5 Cascaded Gain-Of-Two Stages #### ELANTEC INC 50 MHz Current Feedback Amplifier #### Application Information - Contd. #### Video Distribution Amplifier The distribution amplifier shown below features a difference input to reject common mode signals on the 75Ω coax cable input. Common mode rejection is often necessary to help to eliminate 60 Hz noise found in production environments. ### Video Distribution Amplifier with Difference Input 2020-15 #### EL2020 Disable/Enable Operation The EL2020 has an enable/disable control input at pin 8. The device is enabled and operates normally when pin 8 is left open or returned to pin 7, V_{CC} . When more than 250 μA is pulled from pin 8, the EL2020 is disabled. The output becomes a high impedance, the inverting input is no longer driven to the positive input voltage, and the supply current is halved. To make it easy to use this feature, there is an internal resistor to limit the current to a safe level (~ 1.1 mA) if pin 8 is grounded. To draw current out of pin 8 an "open collector output" logic gate or a discrete NPN transistor can be used. This logic interface method has the advantage of level shifting the logic signal from 5V supplies to whatever supply the EL2020 is operating on without any additional components. #### Using the EL2020 as a Multiplexer An interesting use of the enable feature is to combine several amplifiers in parallel with their outputs common. This combination then acts similar to a MUX in front of an amplifier. A typical circuit is shown. When the EL2020 is disabled, the DC output impedance is very high, over 10 k Ω . However there is also an output capacitance that is non-linear, For signals of less than 5V peak to peak, the output capacitance looks like a simple 15 pF capacitor. However, for larger signals the output capacitance becomes much larger and non-linear. The example multiplexer will switch between amplifiers in 5 μ s for signals of less than \pm 2V on the outputs. For full output signals of 20V peak to peak, the selection time becomes 25 μ s. The disabled outputs also present a capacitive load and therefore only three amplifiers can have their outputs shorted together. However an unlimited number can sum together if a small resistor (25 Ω) is inserted in series with each output to isolate it from the "bus". There will be a small gain loss due to the resistors of course. #### Using the EL2020 as a Multiplexer 50 MHz Current Feedback Amplifier #### **Burn-In Circuit** 2020 17 Pin numbers are for DIP Packages. All Packages Use the Same Schematic. #### **Equivalent Circuit** **ELANTEC INC** 50 MHz Current Feedback Amplifier #### EL2020 Macromodel - * Revision A. March 1992 - * Enhancements include PSRR, CMRR, and Slew Rate Limiting ``` * Connections: +input -input +Vsupply -Vsupply output .subckt M2020 ``` * Input Stage e1 10 0 3 0 1.0 vis 10 9 0V h2 9 12 vxx 1.0 r1 2 11 50 11 11 12 29nH iinp 3 0 10μA iinm 2 0 5μA * Slew Rate Limiting h1 13 0 vis 600 r2 13 14 1K d1 14 0 dclamp d2 0 14 dclamp - * High Frequency Pole - *e2 30 0 14 0 0.00166666666 15 30 17 1.5µH c5 17 0 1pF r5 17 0 500 - * Transimpedance Stage - g1 0 18 17 0 1.0 rol 18 0 1Meg cdp 18 0 5pF * Output Stage q1 4 18 19 qp q2 7 18 20 qn q3 7 19 21 qn q4 4 20 22 qp r7 21 6 4 r8 22 6 4 # EL2020/EL2020C 50 MHz Current Feedback Amplifier #### EL2020 Macromodel - Contd. ``` ios1 7 19 2.5mA ios2 20 4 2.5mA ``` - * - * Supply - ips 7 4 3mA - * Error Terms - * - ivos 0 23 5mA - vxx 23 0 0V - e4 24 0 6 0 1.0 - e5 25 0 7 0 1.0 - e6 26 0 4 0 1.0 r9 24 23 1K - r10 25 23 1K - r11 26 23 1K - * Models - .model qn npn (is = 5e 15 bf = 100 tf = 0.2nS) - model qp pnp (is = 5e 15 bf = 100 tf = 0.2nS) - model dclamp d(is = 1e 30 ibv = 0.266 bv = 1.67 n = 4) - .ends ELANTEC INC 50 MHz Current Feedback Amplifier