


EIC1415-3

UPDATED 11/22/2004

14.40 – 15.35GHz 3-Watt Internally Matched Power FET

FEATURES

- 14.40-15.35 GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +34.5 dBm Output Power at 1dB Compression
- 6.0 dB Power Gain at 1dB Compression
- 25% Power Added Efficiency
- -42 dBc IM3 at Po = 23.5 dBm SCL
- Hermetic Metal Flange Package
- 100% Tested for DC, RF, and R_{TH}

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Caution! ESD sensitive device.

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	TYP	MAX	UNITS
P _{1dB}	Output Power at 1dB Compression f = 14.40-15.35GHz V_{DS} = 10 V, $I_{DSQ} \approx 800$ mA	33.5	34.5		dBm
G _{1dB}	Gain at 1dB Compression $f = 14.40-15.35GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800\text{mA}$	5.0	6.0		dB
ΔG	Gain Flatness $f = 14.40-15.35GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800\text{mA}$			±0.6	dB
PAE	Power Added Efficiency at 1dB Compression $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800 \text{mA}$ f = 14.40-15.35GHz		25		%
Id _{1dB}	Drain Current at 1dB Compression f = 14.40-15.35GHz		900	1100	mA
IM3	Output 3rd Order Intermodulation Distortion Δf = 10 MHz 2-Tone Test; Pout = 23.5 dBm S.C.L ² V_{DS} = 10 V, I_{DSQ} ≈ 65% IDSS f = 15.35GHz	-38	-42*		dBc
I _{DSS}	Saturated Drain Current $V_{DS} = 3 \text{ V}, V_{GS} = 0 \text{ V}$		1400	1800	mA
V_P	Pinch-off Voltage $V_{DS} = 3 \text{ V}, I_{DS} = 15 \text{ mA}$		-2.5	-4.0	V
R_{TH}	Thermal Resistance ³		8.0	9.0	°C/W

Notes:

ABSOLUTE MAXIMUM RATINGS FOR CONTINUOUS OPERATION^{1,2}

SYMBOL	CHARACTERISTIC	VALUE	
V_{DS}	Drain to Source Voltage	10 V	
V_{GS}	Gate to Source Voltage	-4.5 V	
I_{DS}	Drain Current	IDSS	
I _{GSF}	Forward Gate Current	30 mA	
P _{IN}	Input Power	@ 3dB compression	
P_T	Total Power Dissipation	14 W	
T _{CH}	Channel Temperature	150°C	
T_{STG}	Storage Temperature	-65/+150°C	

Notes:

1. Operating the device beyond any of the above ratings may result in permanent damage or reduction of MTTF.

Specifications are subject to change without notice.

Tested with 100 Ohm gate resistor.
S.C.L. = Single Carrier Level.
Overall Rth depends on case mounting.
These devices are available screened for IM3 performance. Please contact factory with your requirement.

^{2.} Bias conditions must also satisfy the following equation $P_T < (T_{CH} - T_{PKG})/R_{TH}$; where $T_{PKG} =$ temperature of package, and $P_T = (V_{DS} * I_{DS}) - (P_{OUT} - P_{IN})$.