QR 模式高压高精度中等功率 LED 恒流驱动器

特点

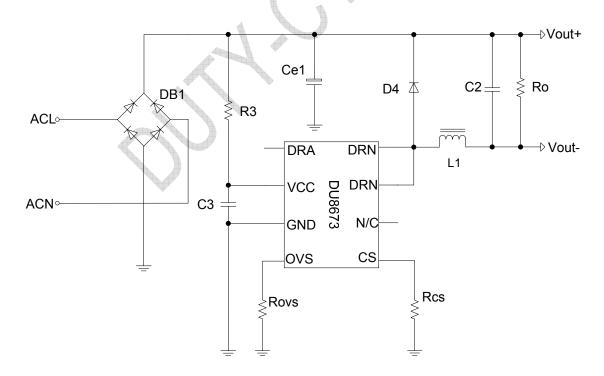
- ▶ 内置600V高压MOSFET
- ▶ TRUEC²闭环恒流控制技术
- ➤ TRUEQR控制技术
- ▶ 3%系统恒流精度
- ▶ 采样电阻开路、短路保护
- ▶ 输出短路保护
- > 可编程输出过压保护
- ▶ 过温保护
- ➤ DIP8封装

应用

LED 日光灯管 T5/T8/T10···

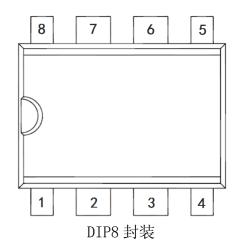
LED 球泡灯 E14/E27/PAR30/PAR38···

LED 吸顶灯


• • •

概述

DU8673是一款工作于准谐振模式下的降压式恒流驱动器,主要应用于中小功率的LED恒流驱动电源系统。采用独特的闭环恒流控制专利一TRUEC²技术,可在宽的输入、输出电压以及外围电感参数条件下实现高精度的输出电流,并保证批量生产时LED灯具亮度的一致性。采用专利的TRUEQR技术,使得MOSFET每个周期都在真正的谷底开通,从而降低了系统的开关损耗和EMI。DU8673集成了可编程的输出开路保护,多重的短路保护,过温保护以及各个引脚的开路、短路保护功能,从而使系统具备高可靠性。


DU8673采用DIP8封装。

典型应用图

引脚封装

引脚描述

引脚编号	引脚名称	描述		
1	CS	电流采样端		
2	N/C	悬空		
3	OVS	输出开路电压设置端		
4	GND	芯片接地端		
5	VCC	芯片电源端		
6	DRA	内置低压 MOSFET 漏极		
7,8	DRN	内置 600V 高压 MOSFET 漏极		

定购信息

定购型号	封装	包装	
DU8673	DIP8	颗/管 管装	

推荐应用

工作温度范围	最大输出电流		
-40℃~85℃	350mA		

Page 2 of 6 Duty-Cycle Semiconductor DS_DU8673_CN_V1.5

QR 模式高压高精度中等功率 LED 恒流驱动器

极限参数(1)(2)

符号	脚位	描述	范围	单位
DRN	7,8	内置高压MOSFET漏极	-0.3~600	V
ovs	3	输出开路电压设置端	-0.3~6	V
CS	1	电流采样端	-0.3~6	V
I _{VCC}	5	VCC 最大钳位电流	10	mA
DRA	6	内置低压MOSFET漏极	-0.3~40	V
θ_{JA}		热阻(结温-环境)	75	°C/W
Tj		最大工作结温	-40~150	${\mathbb C}$
Tstg		存储温度范围	-65~150	$^{\circ}$
ESD		静电(人体模式)	2	kV

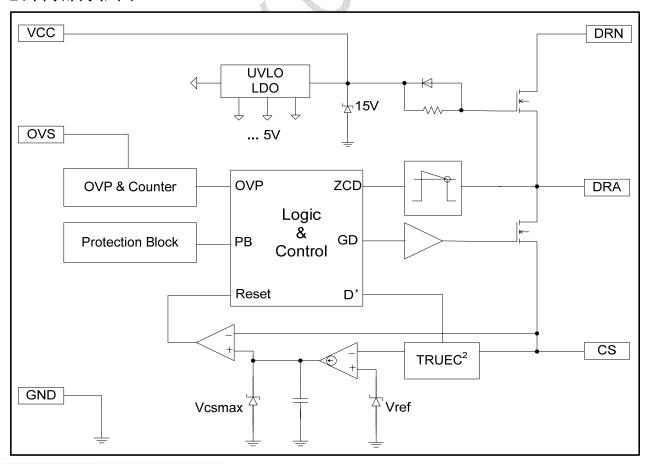
说明:

- (1)最大极限值是指超出该工作范围,芯片可能损坏。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试 条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值反映了器件性能。
- (2) 无特别说明,所有的电压以GND作为参考。

电气参数

(无特别说明外, VCC=15V, Ta=25°C)

符号	参数	测试条件	最小值	典型值	最大值	单位	
电源供电部分							
VCC _{CLAMP}	VCC 钳位电压	I _{VCC} <10mA	13.5	15	17.5	V	
VCC _{ON}	芯片开启工作电压	VCC 上升	12	13.5	15	V	
VCC _{OFF}	芯片关断电压	VCC 下降	8.5	9	10.5	V	
VCC _{OVP}	VCC 过压保护电压	I _{VCC} >10mA	20	23	26	V	
I _{ss}	启动电流		140	180	220	uA	
I _{OP}	工作电流	Fsw=100kHz		210	240	uA	
电流采样							
V _{CS_MAX}	CS峰值电压比较基准		400	450	500	mV	
T _{LEB}	电流采样消隐时间			400		ns	
T _{DELAY}	关断延时时间			100		ns	


QR 模式高压高精度中等功率 LED 恒流驱动器

电气参数 (续)

(无特别说明外, VCC=15V, Ta=25℃)

符号	参数	测试条件	最小值	典型值	最大值	单位			
误差放大器与振	误差放大器与振荡器								
V_{REF}	输出电流比较基准		396	400	404	mV			
T _{OFF_MAX}	最大关断时间			350		us			
T _{OFF_MIN}	最小美断时间			1		us			
T _{ON_MAX}	最大开通时间			25		us			
MOSFET 参数	MOSFET 参数								
R _{DSON}	内部开关管导通电阻		A	5		Ω			
V _{DS_BD}	内部开关管最大耐压		600			V			
过温保护									
T _{SD}	过热关断温度			150		$^{\circ}$			
Hy_ _{TD}	过热保护迟滞			30		${\mathbb C}$			

芯片内部方框图

OR 模式高压高精度中等功率 LED 恒流驱动器

应用信息

DU8673 是一款工作于准谐振模式下的降压式恒流驱动器,内置 600V 高压 MOSFET,主要应用于中小功率的 LED 恒流驱动电源系统。

启动与供电

在上电后,母线电压通过启动电阻给VCC引脚的电容充电,直到VCC电压上升到启动阈值电压后,芯片启动工作,VCC的迟滞电压为4.5V。DU8673内置15V稳压管。由于芯片的典型工作电流只有200uA,因此,无需专门的供电电路,利用启动电阻就可以直接供电,可减少系统成本,提高了系统效率。

恒流控制

DU8673 采用独特的闭环恒流控制专利-TRUEC² 技术,可在宽输入电压、输出电压以及电感参数条件下实现高精度的输出电流,确保应用和批量生产时 LED 灯具亮度的一致性。

其输出电流为:

$$I_{LED} = \frac{V_{REF}}{2 \times R_{CS}} = \frac{0.4}{2 \times R_{CS}}$$

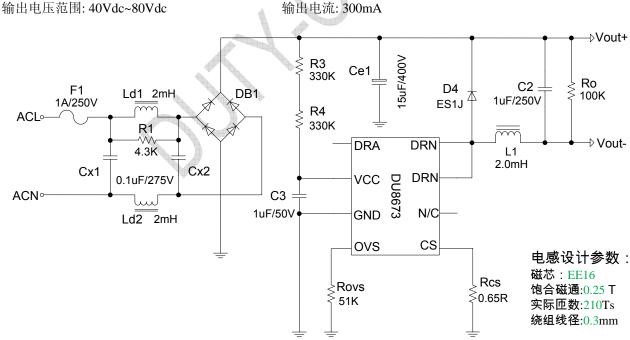
V_{REF}为输出电流比较基准 Rcs为电流采样电阻

保护功能

DU8673 集成了多重保护功能,以确保 LED 灯具工作 稳定可靠。

输出短路: DU8673 在输出短路的情况下,依然可以 实现很好的恒流特性:

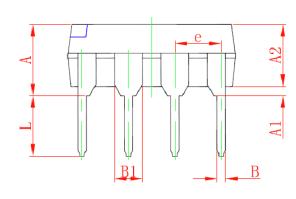
采样电阻开/短路: 当采样电阻出现开路或短路的情况,DU8673 会立即启动保护功能;

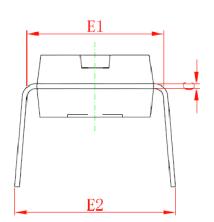

过温: 当芯片结温超过 150℃时,芯片会立即进入 过温保护,直到结温小于 120℃后,自动重启。

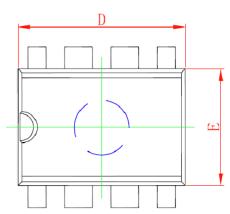
更多设计方法,请参考:《DU8673设计工具》

应用案例 (12~24 串 12 并)

输入电压范围: 176Vac~264Vac


功率因数: >0.5 输出电流: 300mA




Page 5 of 6 Duty-Cycle Semiconductor DS DU8673 CN V1.5

DIP8 PACKAGE OUTLINE DIMENSIONS

C	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
С	0. 204	0. 360	0. 008	0. 014	
D	9. 000	9. 400	0. 354	0. 370	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

Page 6 of 6 Duty-Cycle Semiconductor DS _DU8673_CN_V1.5