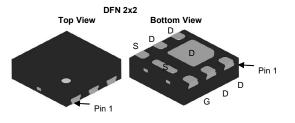

COMPLIANT

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) (Max.)	I _D (A)	Q _g (Typ.)			
- 20	0.028 at V _{GS} = - 4.5 V	- 10 ^a	21 nC			
20	0.038 at V _{GS} = - 2.5 V	- 9 ^a	21110			


FEATURES

- TrenchFET[®] Power MOSFET
- Thermally Enhanced DFN2X2
 - Package
 - Small Footprint Area
 - Low On-Resistance

APPLICATIONS

P-Channel MOSFET

· Load Switch, PA Switch, and Battery Switch for Portable Devices

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 20	v	
Gate-Source Voltage		V _{GS}	± 12	- V	
	T _C = 25 °C		- 10 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	I_	- 9 ^a		
	T _A = 25 °C	I _D	- 8 ^{b, c}	7	
	T _A = 70 °C		- 6 ^{b, c}	A	
Pulsed Drain Current (t = 300 µs)		I _{DM}	- 30		
Continuous Source-Drain Diode Current	T _C = 25 °C	I _S	- 10 ^a		
Continuous Source-Diain Diode Current	T _A = 25 °C	18	- 2.5 ^{b, c}		
	T _C = 25 °C		19		
Maximum Power Dissipation	T _C = 70 °C	P _D	12	w	
	T _A = 25 °C	'D	3.5 ^{b, c}		
	T _A = 70 °C		2.2 ^{b, c}		
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150			
Soldering Recommendations (Peak Temperature		260			

THERMAL	RESISTANCE	RATINGS

I RENMAL REJIJIANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R _{thJA}	28	39	°C/W		
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	5.3	7.2	0/11		

Notes:

a. Package limited.

b. Surface mounted on 1" x 1" FR4 board.

c. t = 5 s.

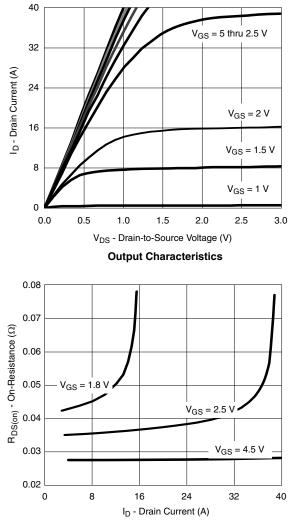
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 80 °C/W.

www.din-tek.jp

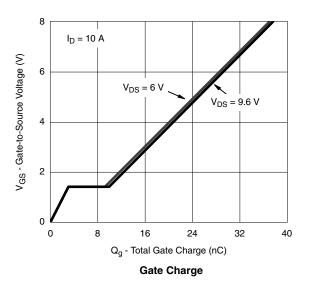
HALOGEN FREE

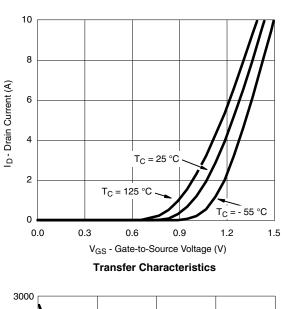
d. See solder profile The DFN2X2 is a leadless package. The end of the lead terminal is exposed copper

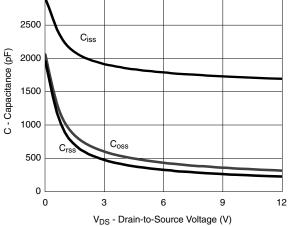
⁽not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

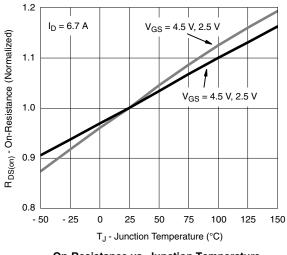

$\begin{array}{ c c c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. Max. Unit \\ \hline Static \\ \hline Static & V_{DS} = OV, I_{D} = -250 \ \mu A & -20 & V_{DS} \\ \hline V_{DS} = Temperature Coefficient & AV_{DS}/T_{J} & I_{D} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline V_{DS} = Temperature Coefficient & AV_{DS}/T_{J} & V_{DS} = V_{SD} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = 0, V_{DS} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline Cate-Source Intreshold Voltage & V_{DS} & V_{DS} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = -250 \ \mu A & -0.4 & -11 & V_{DS} \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -10 \ V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -10 \ V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -10 \ V_{DS} = -12 \ V_{DS} = 0 \ V, V_{DS} = -10 \ V_{DS} = -12 \ V_{DS} = -10 $	SPECIFICATIONS (T _J = 25 °C	, unless otł	nerwise noted)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_{D} = -250 \mu A$	- 20			V	
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$	la – - 250 µA		- 11		mV/°C	
	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	η - 200 μπ		2.7		mv/ C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	- 0.4		- 1	V	
	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = \pm 8 V$			± 100	nA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zara Cata Valtaga Drain Current	I _{DSS}				- 1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gale voltage Drain Current					- 10	μΑ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-State Drain Current ^a	I _{D(on)}	$V_{DS}{\leq}$ - 5 V, V_{GS} = - 4.5 V	- 10			А	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{GS} = - 4.5 V, I _D = - 6.7 A		0.028	0.031	1	
$ \begin{array}{ c c c c c } \hline V_{GS} = \cdot 1.5 \ V, \ I_D = \cdot 2.3 \ A \\ \hline V_{GS} = \cdot 1.5 \ V, \ I_D = \cdot 1.4 \\ \hline V_{GS} = \cdot 1.5 \ V, \ I_D = \cdot 1.4 \\ \hline 0.100 \\ \hline 0.110 \\ $		Р	V _{GS} = - 2.5 V, I _D = - 6.2 A		0.038	0.042	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	DS(on)	V _{GS} = - 1.8 V, I _D = - 2.3 A		0.044	0.047		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = - 1.5 V, I _D = - 1 A		0.100	0.110		
$ \begin{array}{ c c c c c c c } \hline Input Capacitance & C_{iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{rss} \\ \hline Output Cap$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 6.7 A		30		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b	<u> </u>			1	<u> </u>	I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			1700		pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		430			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				350			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Total Cata Charge	0	$V_{DS} = -6 V, V_{GS} = -8 V, I_D = -10 A$		38	57		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qg			23	35		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	$V_{DS} = -6 V$, $V_{GS} = -4.5 V$, $I_{D} = -10 A$	3		nC		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}			6.5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg	f = 1 MHz		7		Ω	
$\begin{tabular}{ c c c c c } \hline Turn-Off Delay Time & t_d(off) & I_D \cong -8 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 65 & 100 & 40 & 60 & 10 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 15 & 100 & 100 & 15 & 100 &$	Turn-On Delay Time	t _{d(on)}			20	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r	V_{DD} = - 6 V, R_L = 0.75 Ω		40	60]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_{D} \cong$ - 8 A, V_{GEN} = - 4.5 V, R_{g} = 1 Ω		65	100]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			40	60		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			10	15	115	
Fall Time t_f 4060Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ -10 Pulse Diode Forward Current I_S $T_C = 25 \text{ °C}$ 30 Pulse Diode Forward Current I_{SM} 30 30 Body Diode Voltage V_{SD} $I_S = -8 \text{ A}, V_{GS} = 0 \text{ V}$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} 40 60 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = -8 \text{ A}, di/dt = 100 \text{ A/µs}, T_J = 25 \text{ °C}$ 14 ns	Rise Time	t _r	V_{DD} = - 6 V, R_L = 0.75 Ω		12	20		
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $T_C = 25 \ ^{\circ}C$ -10 APulse Diode Forward Current I_{SM} 30 30 ABody Diode Voltage V_{SD} $I_S = -8 \ A, V_{GS} = 0 \ V$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} 40 60 nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -8 \ A, di/dt = 100 \ A/\mu s, T_J = 25 \ ^{\circ}C$ 14 ns	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ - 8 A, V_GEN = - 8 V, R_g = 1 Ω		70	105	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			40	60		
Pulse Diode Forward CurrentI SMI SABody Diode VoltageV SDI S = - 8 A, V GS = 0 V- 0.8- 1.2VBody Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a I F = - 8 A, di/dt = 100 A/µs, T J = 25 °C2030nC	Drain-Source Body Diode Characterist	cs					•	
Pulse Diode Forward Current I_{SM} 30Body Diode Voltage V_{SD} $I_S = -8 \text{ A}, V_{GS} = 0 \text{ V}$ -0.8 -1.2 VBody Diode Reverse Recovery Time t_{rr} 40 60 nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -8 \text{ A}, di/dt = 100 \text{ A/}\mus, T_J = 25 \text{ °C}$ 20 30 nCReverse Recovery Fall Time t_a 14 ns	Continuous Source-Drain Diode Current	۱ _S	$T_{C} = 25 \ ^{\circ}C$			- 10	Δ	
Body Diode Reverse Recovery Time t_{rr} 4060nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Pulse Diode Forward Current	I _{SM}				30		
Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a IF = - 8 A, di/dt = 100 A/µs, TJ = 25 °C2014ns	Body Diode Voltage	V _{SD}	$I_{\rm S} = -8$ A, $V_{\rm GS} = 0$ V		- 0.8	- 1.2	V	
Reverse Recovery Fall Time t_a $I_F = -8 \text{ A}, dl/dt = 100 \text{ A}/\mu \text{s}, I_J = 25 \text{ °C}$ 14	Body Diode Reverse Recovery Time	t _{rr}			40	60	ns	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}	In = - 8 A di/dt = 100 A/us Ty - 25 °C		20	30	nC	
Reverse Recovery Rise Time t _b 26	Reverse Recovery Fall Time	t _a	$h_{\rm F} = 0.01$, $a_0 a_0 = 100 P_0 \mu_0$, $r_{\rm J} = 20 0$		14		ne	
	Reverse Recovery Rise Time	t _b			26		115	

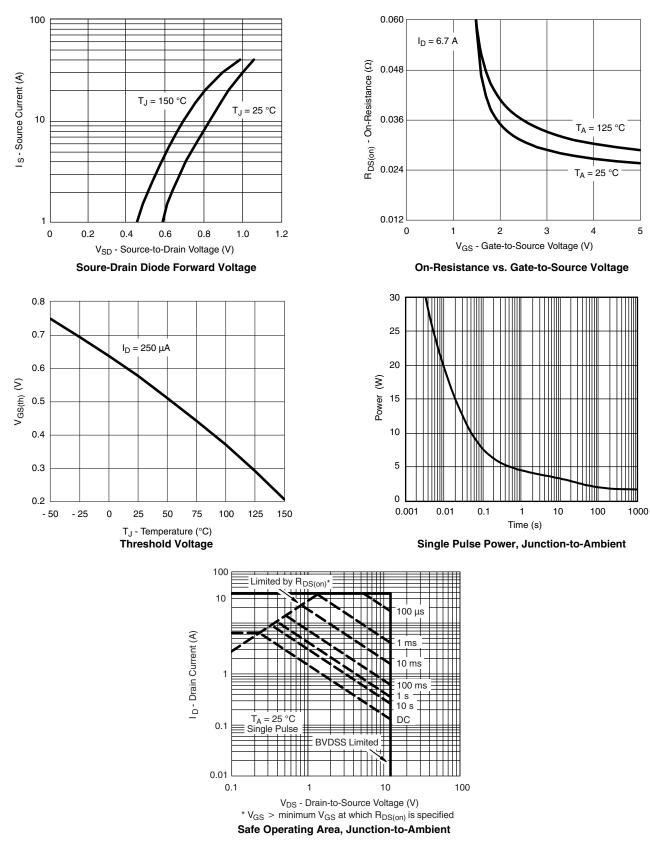
Notes:


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

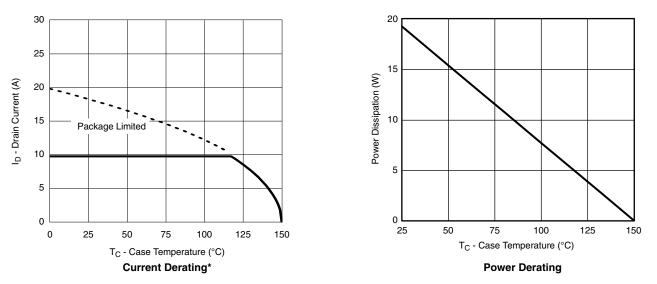

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



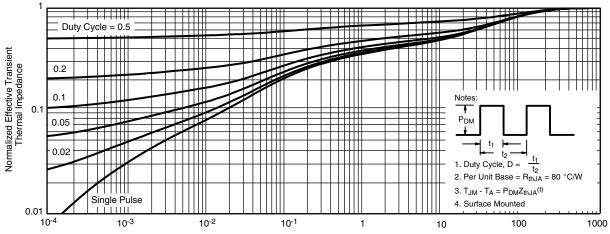

On-Resistance vs. Drain Current and Gate Voltage

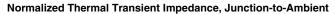


Capacitance

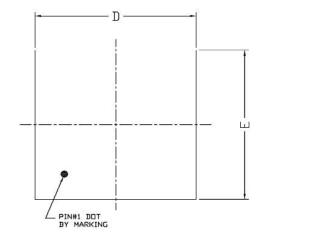


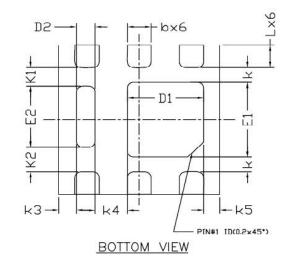
On-Resistance vs. Junction Temperature

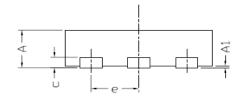


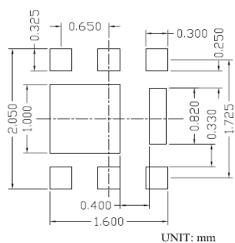



* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


Square Wave Pulse Duration (s)



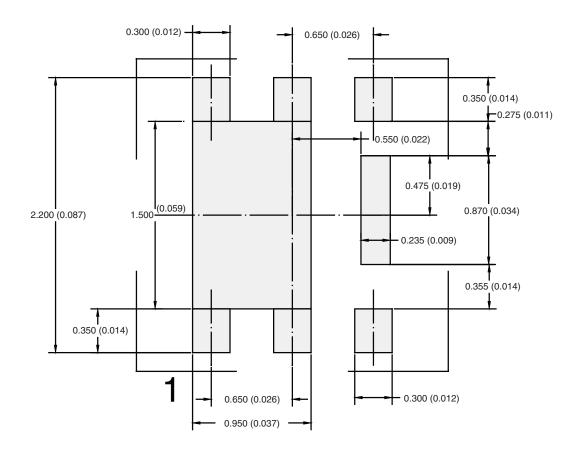

Normalized Thermal Transient Impedance, Junction-to-Case



DFN2x2 _6L_EP1_S PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0.00		0.05	0.000		0.002	
b	0.25	0.30	0.35	0.010	0.012	0.014	
с		0.152 REF		0.006 REF			
D	1.90	2.00	2.10	0.075	0.079	0.083	
D1	0.85	0.95	1.05	0.033	0.037	0.041	
D2	0.13	0.23	0.33	0.005	0.009	0.013	
E	1.90	2.00	2.10	0.075	0.079	0.083	
E1	0.90	1.00	1.10	0.035	0.039	0.043	
E2	0.72	0.82	0.92	0.028	0.032	0.036	
е	0.65 BSC				0.026 BSC		
K	0.20 BSC				0.008 BSC		
K1		0.25 BSC		0.010 BSC			
K2	0.33 BSC			0.013 BSC			
K3	0.22 BSC			0.009 BSC			
K4	0.40 BSC			0.016 BSC			
K5	0.20 BSC			0.008 BSC			
L	0.25	0.30	0.35	0.010	0.012	0.014	


NOTE

1. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

RECOMMENDED PAD LAYOUT FOR DFN2X2

Dimensions in mm/(Inches)

Disclaimer

www.din-tek.jp

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.