

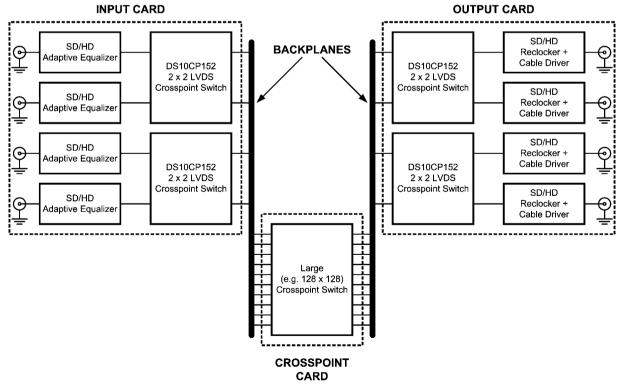
DS10CP152

1.5 Gbps 2X2 LVDS Crosspoint Switch

General Description

The DS10CP152 is a 1.5 Gbps 2x2 LVDS crosspoint switch optimized for high-speed signal routing and switching over lossy FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity. The non-blocking architecture allows connections of any input to any output or outputs.

Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower device return losses, reduce component count and further minimize board space.

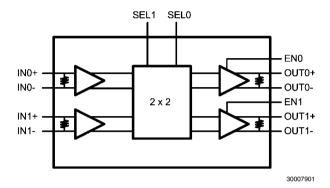

Features

- DC 1.5 Gbps low jitter, low skew, low power operation
- Pin configurable, fully differential, non-blocking architecture
- Wide Input Common Mode Voltage Range allows DCcoupled interface to LVDS, CML and LVPECL drivers
- On-chip 100Ω input and output termination minimizes insertion and return losses, reduces component count and minimizes board space
- 7 kV ESD on LVDS I/O pins protects adjoining components
- Small SOIC-16 space saving package

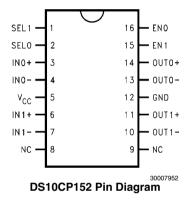
Applications

- High-speed channel select applications
- Clock and data buffering and muxing
- SD/HD SDI Routers

Typical Application



30007903


Ordering Code

NSID	Function
DS10CP152TMA	2x2 Crosspoint Switch

Block Diagram

Connection Diagram

Pin Descriptions

Pin Name	Pin Number	I/O, Type	Pin Description
IN0+, IN0- , IN1+, IN1-	3, 4, 6, 7	I, LVDS	Inverting and non-inverting high speed LVDS input pins.
OUT0+, OUT0-, OUT1+, OUT1-	14, 13, 11, 10	O, LVDS	Inverting and non-inverting high speed LVDS output pins.
SEL0, SEL1	1, 2	I, LVCMOS	Switch configuration pins.
EN0, EN1	16, 15	I, LVCMOS	Output enable pins.
NC	8, 9	NC	"NO CONNECT" pins.
VDD	5	Power	Power supply pin.
GND	12	Power	Ground pin.

M16A Package

Derate M16A Package

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-0.3V to +4V Supply Voltage LVCMOS Input Voltage -0.3V to $(V_{CC} + 0.3V)$ LVDS Input Voltage -0.3V to +4VLVDS Differential Input Voltage 0V to 1V LVDS Output Voltage -0.3V to $(V_{CC} + 0.3V)$ LVDS Differential Output Voltage 0V to 1V LVDS Output Short Circuit Current 5 ms Duration +150°C Junction Temperature Storage Temperature Range -65°C to +150°C Lead Temperature Range +260°C Soldering (4 sec.) Maximum Package Power Dissipation at 25°C

Package Thermal Resistance	
θ_{JA}	+72.7°C/W
$\theta_{ m JC}$	+41.2°C/W
ESD Susceptibility	
HBM (Note 1)	≥7 kV
MM (Note 2)	≥250V
CDM (Note 3)	≥1250V

Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

Doolsons Thomas Doolstones

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Receiver Differential Input Voltage (V _{ID})	0		1	V
Operating Free Air Temperature (T _A)	-40	+25	+85	°C

DC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 5, 6, 7)

13.75 mW/°C above +25°C

1.72W

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
LVCMOS DC SPECIFICATIONS							
V _{IH}	High Level Input Voltage		2.0		V _{DD}	V	
V _{IL}	Low Level Input Voltage		GND		0.8	V	
I _{IH}	High Level Input Current	$V_{IN} = 3.6V$ $V_{CC} = 3.6V$	40	175	250	μA	
I _{IL}	Low Level Input Current	$V_{IN} = GND$ $V_{CC} = 3.6V$		±1	±10	μA	
$\overline{V_{CL}}$	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}, V_{CC} = 0V$		-0.9	-1.5	V	
LVDS IN	IPUT DC SPECIFICATIONS	•	•		•	•	
V _{ID}	Input Differential Voltage		0		1	V	
V_{TH}	Differential Input High Threshold	$V_{CM} = +0.05V \text{ or } V_{CC} -0.05V$		0	+100	mV	
$\overline{V_{TL}}$	Differential Input Low Threshold		-100	0		mV	
V _{CMR}	Common Mode Voltage Range	V _{ID} = 100 mV	0.05		V _{CC} - 0.05	V	
I _{IN}	Input Current	$V_{IN} = 3.6V \text{ or } 0V$ $V_{CC} = 3.6V \text{ or } 0V$		±1	±10	μA	
C _{IN}	Input Capacitance	Any LVDS Input Pin to GND		1.7		pF	
R _{IN}	Input Termination Resistor	Between IN+ and IN-		100		Ω	

Ols al	Danier aten	O disi	N#:	T		11
Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVDS O	JTPUT DC SPECIFICATIONS					
V _{OD}	Differential Output Voltage		250	350	450	mV
ΔV _{OD}	Change in Magnitude of V _{OD} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV
V _{os}	Offset Voltage		1.05	1.2	1.375	V
ΔV _{OS}	Change in Magnitude of V _{OS} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV
I _{os}	Output Short Circuit Current (Note 8)	OUT to GND		-23	-55	mA
		OUT to V _{CC}		8	55	mA
C _{OUT}	Output Capacitance	Any LVDS Output Pin to GND		1.2		pF
R _{OUT}	Output Termination Resistor	Between OUT+ and OUT-		100		Ω
SUPPLY CURRENT						
I _{cc}	Supply Current	EN0 = EN1 = H		58	70	mA
I _{CCZ}	Outputs Powered Down Supply Current	EN0 = EN1 = L		25	30	mA

Note 4: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 5: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and ΔV_{OD} .

Note 7: Typical values represent most likely parametric norms for $V_{CC} = +3.3 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 8: Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 9, 10)

Symbol	Parameter	Cond	litions	Min	Тур	Max	Units
LVDS OUTPU	T AC SPECIFICATIONS	•		•	•		
t _{PLHD}	Differential Propagation Delay Low to				440	650	ps
	High (Note 11)	$R_{\rm c} = 100\Omega$	$R_L = 100\Omega$		ļ		
t _{PHLD}	Differential Propagation Delay High to Low (Note 11)				400	650	ps
t _{SKD1}	Pulse Skew t _{PLHD} - t _{PHLD} (Notes 11, 12)				40	120	ps
t _{SKD2}	Channel to Channel Skew (Notes 11, 13)				25	60	ps
t _{SKD3}	Part to Part Skew (Notes 11, 14)				45	190	ps
t _{LHT}	Rise Time (Note 11)	D = 4000	D 4000		170	350	ps
t _{HLT}	Fall Time (Note 11)	$R_L = 100\Omega$			170	350	ps
t _{ON}	Output Enable Time				5	20	μs
t _{OFF}	Output Disable Time				3	12	ns
t _{SEL}	Select Time				3	12	ns
JITTER PERF	ORMANCE (Note 11)			· ·			
t _{RJ1}		$V_{ID} = 350 \text{ mV}$ $V_{CM} = 1.2 \text{V}$	135 MHz		0.5	1.2	ps
t _{RJ2}	Random Jitter (RMS Value)		311 MHz		0.5	1.2	ps
t _{RJ3}	Trandom sitter (Tivis Value)	Clock (RZ)	503 MHz		0.5	1.2	ps
t _{RJ4}			750 MHz		0.5	1.2	ps
t _{DJ1}		$V_{ID} = 350 \text{ mV}$	270 Mbps		9	38	ps
t _{DJ2}	Deterministic Jitter	$V_{CM} = 1.2V$	622 Mbps		7	36	ps
t _{DJ3}	(Peak-to-Peak Value)	Clock (RZ)	1.06 Gbps		7	34	ps
t _{DJ4}			1.5 Gbps		9	35	ps
t _{TJ1}		$V_{ID} = 350 \text{ mV}$	270 Mbps		0.01	0.03	UI _{P-P}
t _{TJ2}	Total Jitter (Peak to Peak Value)	$V_{CM} = 1.2V$	622 Mbps		0.01	0.04	UI _{P-P}
t _{TJ3}	Total officer (Fear to Fear Value)	PRBS-23 (NRZ)	1.06 Gbps		0.01	0.05	UI _{P-P}
t _{TJ4}			1.5 Gbps		0.01	0.07	UI _{P-P}

Note 9: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 10: Typical values represent most likely parametric norms for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 11: Specification is guaranteed by characterization and is not tested in production.

Note 12: t_{SKD1}, lt_{PLHD} – t_{PHLD}|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

Note 13: t_{SKD2^+} Channel to Channel Skew, is the difference in propagation delay $(t_{PLHD} \text{ or } t_{PHLD})$ among all output channels in Broadcast mode (any one input to all outputs).

Note 14: t_{SKD3}, Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.

Note 15: Measured on a clock edge with a histogram and an acummulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically.

Note 16: Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically.

Note 17: Measured on an eye diagram with a histogram and an acummulation of 3500 histogram hits. Input stimulus jitter is subtracted.

DC Test Circuits

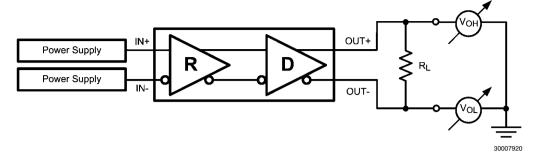


FIGURE 1. Differential Driver DC Test Circuit

AC Test Circuits and Timing Diagrams

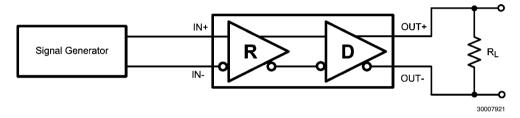


FIGURE 2. Differential Driver AC Test Circuit

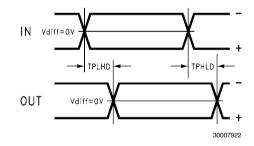
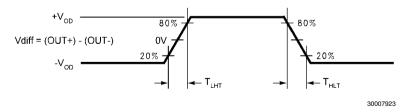



FIGURE 3. Propagation Delay Timing Diagram

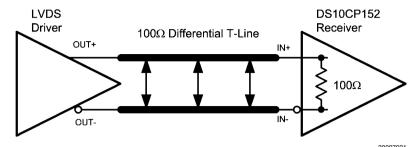
FIGURE 4. LVDS Output Transition Times

Functional Description
The DS10CP152 is a 1.5 Gbps 2x2 LVDS digital crosspoint switch optimized for high-speed signal routing and switching

over lossy FR-4 printed circuit board backplanes and balanced cables.

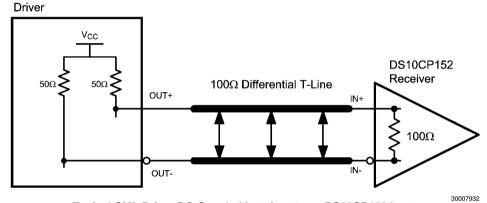
TABLE 1. Switch Configuration Truth Table

SEL1	SEL0	OUT1	OUT0
0	0	IN0	IN0
0	1	IN0	IN1
1	0	IN1	IN0
1	1	IN1	IN1


TABLE 2. Output Enable Truth Table

EN1	EN0	OUT1	OUT0
0	0	Disabled	Disabled
0	1	Disabled	Enabled
1	0	Enabled	Disabled
1	1	Enabled	Enabled

INPUT INTERFACING


The DS10CP152 accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS10CP152 can be DC-coupled with all common differential

drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS10CP152 inputs are internally terminated with a 100Ω resistor.

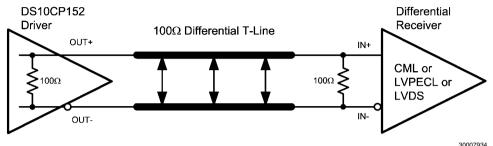
Typical LVDS Driver DC-Coupled Interface to an DS10CP152 Input

CML3.3V or CML2.5V

Typical CML Driver DC-Coupled Interface to an DS10CP152 Input

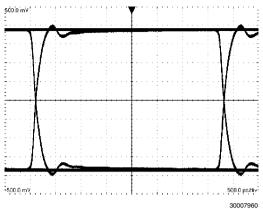
LVPECL Driver 100Ω Differential T-Line 100Ω Differential T-Line 100Ω Differential T-Line 100Ω

Typical LVPECL Driver DC-Coupled Interface to an DS10CP152 Input

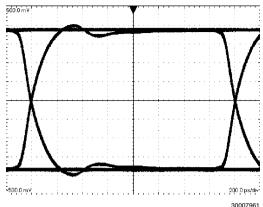

www.national.com 8

30007933

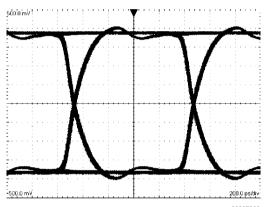
OUTPUT INTERFACING


The DS10CP152 outputs signals compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and

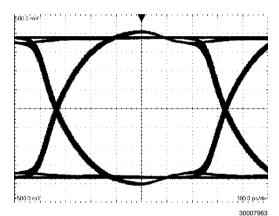
assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation.



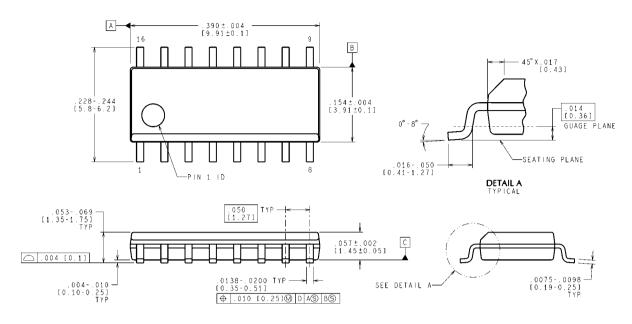
Typical DS10CP152 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver


Typical Performance Characteristics

A 270 Mbps NRZ PRBS-7 After 2"
Differential FR-4 Stripline
V:100 mV / DIV, H:500 ps / DIV



A 622 Mbps NRZ PRBS-7 After 2" Differential FR-4 Stripline V:100 mV / DIV, H:200 ps / DIV


A 1.06 Gbps NRZ PRBS-7 After 2"

Differential FR-4 Stripline
V:100 mV / DIV, H:200 ps / DIV

A 1.5 Gbps NRZ PRBS-7 After 2" Differential FR-4 Stripline V:100 mV / DIV, H:100 ps / DIV

Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

M16A (Rev J)

Order Number DS10CP152TMA NS Package Number M16A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		De	sign Support
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench
Audio	www.national.com/audio	Analog University	www.national.com/AU
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns
Power Management	www.national.com/power	Feedback	www.national.com/feedback
Switching Regulators	www.national.com/switchers		
LDOs	www.national.com/ldo		
LED Lighting	www.national.com/led		
PowerWise	www.national.com/powerwise		
Serial Digital Interface (SDI)	www.national.com/sdi		
Temperature Sensors	www.national.com/tempsensors		
Wireless (PLL/VCO)	www.national.com/wireless		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560