

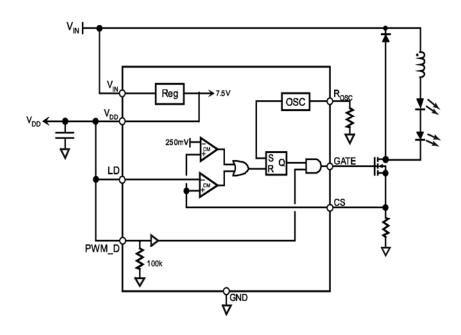
Features

- >90% Efficiency
- 8V to 450V input range
- Constant-current LED driver
- Applications from a few mA to more than 1A Output
- LED string from one to hundreds of diodes
- PWM Low-Frequency Dimming via Enable pin
- Input Voltage Surge ratings up to 450V

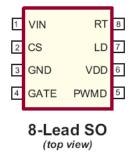
Description

The DP9910 is a PWM high-efficiency LED driver control IC. It allows efficient operation of High Brightness (HB) LEDs from voltage sources ranging from 8VDC up to 450VDC. The DP9910 controls an external MOSFHT at fixed switching frequency up to 300 kHz. The frequency can be programmed using a single resistor. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A.

Specifications ($T_A = 25^{\circ}C$ unless noted otherwise)


Symbol	Description	Min	Tron	Mov	Linita	Conditions
•	•		тур			
V_{INDC}	Input DC supply voltage range	8.0		450	V	DC input voltage
I_{INsd}	Shut-Down mode supply current		0.5	1	mA	Pin PWM_D to GND, V _{IN} = 8V
$ m V_{DD}$	Internally regulated voltage	7.0	7.5	8.0	V	V_{IN} = 8-450V, $I_{DD(ext)}$ = 0, pin Gate open
V_{DDmax}	Maximal pin V_{DD} voltage			13.5	V	When an external voltage applied to pin V _{DD}
т	V _{DD} current available for external circuitry ¹			1.0	mA	$V_{\rm IN} = 8\text{-}100\text{V}$
UVLO	$ m V_{DD}$ undervoltage lockout threshold	6.45	6.7	6.95	V	$ m V_{IN}$ rising
ΔUVLO	V _{DD} undervoltage lockout hysteresis		500		mV	$ m V_{IN}$ falling
$V_{\text{EN(lo)}}$	Pin PWM_D input low voltage			1.0	V	$V_{IN} = 8-450V$
	Pin PWM_D input high voltage	2.4			V	$V_{IN} = 8-450V$
	Pin PWM_D pull-down resistance	50	100	150	kΩ	$V_{EN} = 5V$
$V_{\text{CS(hi)}}$	Current sense pull-in threshold voltage	225	250	275	mV	$@TA = -40^{\circ}C \text{ to } +85^{\circ}C$
$V_{\text{GATE(hi)}}$	GATE high output voltage	V_{DD} -0.3		V_{DD}	V	$I_{OUT} = -10 \text{ mA}$
$V_{GATE(lo)}$	GATE low output voltage	0		0.3	V	$I_{OUT} = 10 \text{ mA}$
fosc	Oscillator frequency	20	25	30	kHz	$Rosc = 1.00 M\Omega$
		80	100	120	kHz	$Rosc = 223 \text{ k}\Omega$
$\mathrm{D}_{\mathrm{MAXht}}$	Maximum Oscillator PWM Duty Cycle			100	%	$F_{PWMhf} = 25kHz$, at GATE, CS to GND
$ m V_{LD}$	Linear Dimming pin voltage range	0		250	mV	$@TA = <85^{\circ}C, V_{IN} = 12V$
T_{BLANK}	Current sense blanking interval	150	215	280	ns	$V_{CS} = 0.55 V_{LD}, V_{LD} = V_{DD}$
t _{DELAY}	Delay from CS trip to GATE lo			300	ns	$V_{IN} = 12V$, $V_{LD} = 0.15$, $V_{CS} = 0$ to 0.22V after T_{BLANK}
t _{RISE}	GATE output rise time ²		30	50	ns	C_{GATE} = 500pF, 10% to 90% V_{GATE}
t_{FALL}	GATE output fall time ²		30	50	ns	C_{GATE} = 500pF, 90% to 10% V_{GATE}

note¹ Also limited by package power dissipation limit, whichever is lower


www.depuw.com Rev.1.0 AUG 2010

Block Diagram & Typical Application

Pin Description

www.depuw.com Rev.1.0 AUG 2010