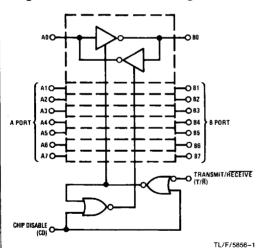
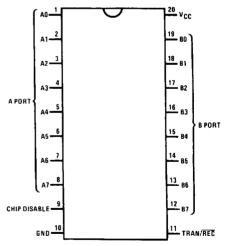
DP8303A 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting)

General Description


This family of high speed Schottky 8-bit TRI-STATE bidirectional transceivers are designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (VOH) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous alitches on the system bus in power up or down.

DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/R) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 are featured with Transmit (T) and Receive (R) control inputs.


Features

- 8-bit directional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high voltage interfaces with TTL, MOS, and
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Transmit/Receive and chip disable simplify control logic
- Compact 20-pin dual-in-line package
- Bus port alitch free power up/down

Logic and Connection Diagrams

Dual-In-Line Package

TL/F/5856-2

Top View Order Number DP8303AN See NS Package Number N20A

Logic Table

inputs		Resulting Conditions			
Chip Disable	Transmit/Receive	A Port	B Port		
0	0	OUT	IN		
0	1	IN	OUT		
1	х	TRI-STATE	TRI-STATE		

X = Don't care

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 5.5V Output Voltage 5.5V

Maximum Power Dissipation* at 25°C

Cavity Package 1667 mW Molded Package 1832 mW

*Derate cavity package 11.1 mW/°C above 25°C; derate molded package 14.7 mW/°C.

Storage Temperature -65°C to +150°C Lead Temperature (soldering, 4 seconds) 260°C

Recommended Operating Conditions

Conditions			
	Min	Max	Units
Supply Voltage (V _{CC})			
DP8303A	4.75	5.25	٧
Temperature (T _A)			
DP8303A	0	70	°C

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
A PORT	(A0-A7)						
V _{IH}	Logical "1" Input Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$		2.0			V
VIL	Logical "0" Input Voltage	$CD = V_{ L }, T/\overline{R} = 2.0V$				0.7	V
VOH	Logical "1" Output Voltage	CD = T/R = VIL	$I_{OH} = -0.4 \text{ mA}$	V _{CC} - 1.15	V _{CC} - 0.7		V
		V _{IL} = 0.5V	$I_{OH} = -3 \text{ mA}$	2.7	3.95		٧
V_{OL}	Logical "0" Output Voltage	$CD = T/\widetilde{R} = V_{iL}$	I _{OL} = 16 mA		0.35	0.5	V
		V _{IL} = 0.5V	I _{OL} = 8 mA		0.3	0.4	V
los	Output Short Circuit Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_{CC}$ $V_{CC} = Max, (Note 4)$) = 0V,	10	-38	-75	mA
I _{IH}	Logical "1" Input Current	$CD = V_{IL}, T/\overline{R} = 2.0V, V$	/ _{IH} = 2.7V		0.1	80	μΑ
4	Input Current at Maximum Input Voltage	CD = 2.0V, V _{CC} = Max, V _{IH} = 5.25V				1	mA
I _{IL}	Logical "0" Input Current	$CD = V_{IL}, T/\overline{R} = 2.0V, V_{IN} = 0.4V$			-70	-200	μΑ
VCLAMP	Input Clamp Voltage	$CD = 2.0V, I_{IN} = -12 \text{ mA}$			-0.7	-1.5	V
lop	Output/Input	CD = 2.0V	V _{IN} = 0.4V			-200	μА
	TRI-STATE Current		V _{IN} = 4.0V			80	μΑ
B PORT	B0-B7)						•
V _{IH}	Logical "1" Input Voltage	$CD = V_{IL}, T/\overline{R} = V_{IL}$		2.0			V
V _{IL}	Logical "0" Input Voltage	$CD = V_{IL}, T/\overline{R} = V_{IL}$,		0.7	٧
VOH	Logical "1" Output Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$ $V_{IL} = 0.5V$	$I_{OH} = -0.4 \text{mA}$	V _{CC} - 1.15	V _{CC} -0.8		٧
			$I_{OH} = -5 \text{ mA}$	2.7	3.9		٧
			$I_{OH} = -10 \text{ mA}$	2.4	3.6		٧
V _{OL}	Logical "0" Output Voltage	$CD = V_{IL}, T/\overline{R} = 2.0V$	I _{OL} = 20 mA		0.3	0.4	٧
			I _{OL.} = 48 mA		0.4	0.5	٧
los	Output Short Circuit Current	$CD = V_{IL}$, $T/\overline{R} = 2.0V$, $V_O = 0V$, $V_{CC} = Max$, (Note 4)		-25	-50	-150	mA
I _{IH}	Logical "1" Input Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IH} = 2.7V$			0.1	80	μΑ
l _l	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC} = Max, V_{IH} = 5.25V$				1	mA
l _{IL}	Logical "0" Input Current	$CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IN} = 0.4V$			-70	-200	μΑ
VCLAMP	Input Clamp Voltage	$CD = 2.0V, I_{ N} = -12 \text{ m}$			-0.7	-1.5	v
lod	Output/input	CD = 2.0V	V _{IN} = 0.4V			-200	μА
	TRI-STATE Current		$V_{IN} = 0.4V$			+200	μΑ

DC Electrical Characteristics (Notes 2 and 3) (Continued)

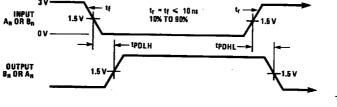
Symbol	Parameter	Conditions		Min	Тур	Max	Units
CONTRO	L INPUTS CD, T/R						
V _{IH}	Logical "1" Input Voltage			2.0			>
V _{IL}	Logical "0" Input Voltage					0.7	>
J _{IH}	Logical "1" Input Current	V _{IH} = 2.7V			0.5	20	μΑ
l _l	Maximum Input Current	V _{CC} = Max, V _{IH} = 5.25V				1.0	mA
IIL	Logical "0" Input Current	V _{IL} = 0.4V	T/R		-0.1	-0.25	mA
			CD		-0.25	-0.5	mA
VCLAMP	Input Clamp Voltage	$I_{IN} = -12 \text{mA}$			-0.8	-1.5	V
POWER S	SUPPLY CURRENT						
ICC Power Supply Current		$CD = 2.0V, V_{IN}, V_{CC}$	= Max		70	100	mA
		$CD = 0.4V$, $V_{INA} = T/\overline{R} = 2V$, $V_{CC} = Max$			100	150	mA

AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
A PORT D	DATA/MODE SPECIFICATIONS					
[†] PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\vec{R} = 0.4V (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		8	12	пŝ
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		11	16	ns
^t PLZA	Propagation Delay from a Logical "0" to TRI-STATE from CD to A Port	B0 to B7 = 2.4V, T/\overline{R} = 0.4V (Figure C) S3 = 1, R5 = 1k, C4 = 15 pF		10	15	ns
t _{PHZA}	Propagation Delay from a Logical "1" to TRI-STATE from CD to A Port	B0 to B7 = 0.4V, T/\overline{R} = 0.4V (Figure C) S3 = 0, R5 = 1k, C4 = 15 pF		8	15	пѕ
tpZLA	Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port	B0 to B7 = 2.4V, T/\overline{R} = 0.4V (Figure C) S3 = 1, R5 = 1k, C4 = 30 pF		20	30	ns
tPZHA	Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port	B0 to B7 = 0.4V, T/\overline{R} = 0.4V (Figure C) S3 = 0, R5 = 5k, C4 = 30 pF		19	30	ns
B PORT	DATA/MODE SPECIFICATIONS					
[†] PDHLB	Propagation Delay to a Logical "0" from A Port to B Port	CD = 0.4V, T/ \overline{R} = 2.4V (Figure A) R1 = 100 Ω , R2 = 1k, C1 = 300 pF R1 = 667 Ω , R2 = 5k, C1 = 45 pF		12 7	18 12	ns ns
[†] PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, T/ \vec{R} = 2.4V (Figure A) R1 = 100 Ω , R2 = 1k, C1 = 300 pF R1 = 667 Ω , R2 = 5k, C1 = 45 pF		15 9	20 14	ns ns
t _{PLZB}	Propagation Delay from a Logical "0" to TRI-STATE from CD to B Port	A0 to A7 = 2.4V, T/\overline{R} = 2.4V (Figure C) S3 = 1, R5 = 1k, C4 = 15 pF		13	18	ns
t _{PHZB}	Propagation Delay from a Logical "1" to TRI-STATE from CD to B Port	A0 to A7 = 0.4V, T/\overline{R} = 2.4V (Figure C) S3 = 0, R5 = 1k, C4 = 15 pF		8	15	ns
^t PLZB	Propagation Delay from TRI-STATE to a Logical "0" from CD to B Port	A0 to A7 = 2.4V, T/\overline{R} = 2.4V (Figure C) S3 = 1, R5 = 100 Ω , C4 = 300 pF S3 = 1, R5 = 667 Ω , C4 = 45 pF		25 16	35 25	ns ns
t _{РZНВ}	Propagation Delay from TRI-STATE to a Logical "1" from CD to B Port	A0 to A7 = 0.4V, T/\overline{R} = 2.4V (Figure C) S3 = 0, R5 = 1k, C4 = 300 pF S3 = 0, R5 = 5k Ω , C4 = 45 pF		22 14	35 25	ns ns

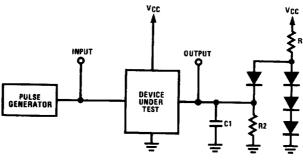
AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$ (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TRANSM	IT/RECEIVE MODE SPECIFICATIONS	-		1 = -	·	
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure B) S1 = 1, R4 = 100Ω , C3 = 5 pF S2 = 1, R3 = 1k, C2 = 30 pF		23	35	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure B) S1 = 0, R4 = 100Ω, C3 = 5 pF S2 = 0, R3 = 5k, C2 = 30 pF		23	35	ns
^t RTL	Propagation Delay from Receive Mode to Transmit a Logical "0", T/Ā to B Port	CD = 0.4V (Figure B) S1 = 1, R4 = 100Ω, C3 = 300 pF S2 = 1, R3 = 300Ω, C2 = 5 pF		23	35	ns
^t RTH	Propagation Delay from Receive Mode to Transmit a Logical "1", T/ਜ to B Port	CD = 0.4V (Figure B) S1 = 0, R4 = 1k, C3 = 300 pF S2 = 0, R3 = 300Ω, C2 = 5 pF		27	35	ns


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

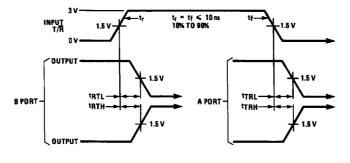
Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

TL/F/5856-3


TL/F/5856-4

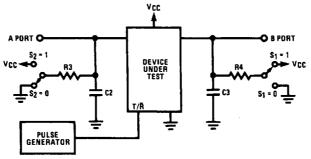
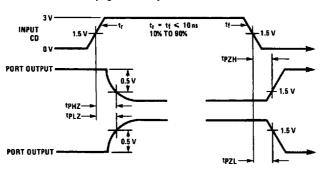

Note: C1 includes test fixture capacitance.

FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (Continued)



TL/F/5856-5

TL/F/5856-6
Note: C2 ad C3 include test fixture capacitance.

FIGURE B. Propagation Delay from T/\overline{R} to A Port or B Port

PORT OUTPUT

DEVICE UNDER TEST

CD S3 = 0

C4 S3 = 0

C4 S3 = 0

TL/F/5856-8

TL/F/5856-7

Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC table.

FIGURE C. Propagation Delay to/from TRI-STATE from CD to A Port or B Port