

General Description

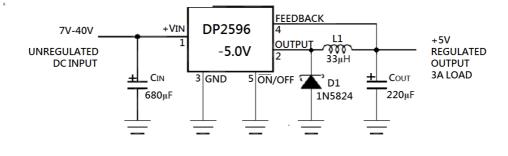
The DP2596 regulator is monolithic integrated circuit that provide all the active function for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulator. These devices are available in fixed output voltage of 3.3V, 5V, 12V, 15V, and adjustable output version.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed frequency oscillator.

The DP2596 offer a high efficiency replacement for popular three terminal linear regulators. It substantiality reduces the size of the heat sink, and in some cases no heat sink is required.

A standard series of inductors optimized for use with the DP2596 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.

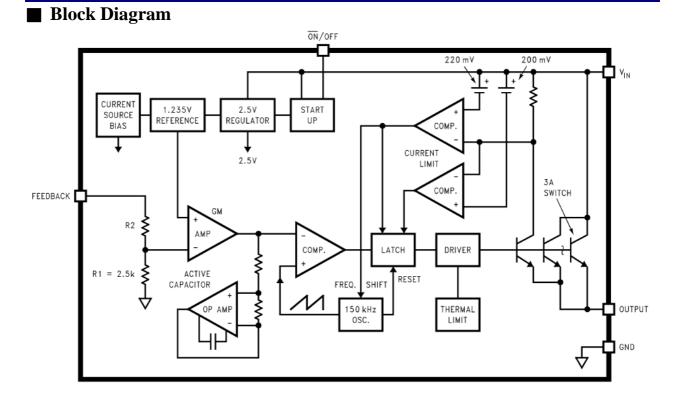
Other features include a guaranteed $\pm 4\%$ tolerance on output voltage within specified input voltages and output load conditions, and 10% on the oscillator frequency. External shutdown is included, featuring 80uA (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.


Features

- 3.3V, 5V, 12V, 15V, and adjustable output versions
- Adjustable version output voltage range, 1.23V to 37V ±4% max over line and load conditions
- Guaranteed 3A output current
- Wide input voltage range, 7V to 40V
- Requires only 4 external components
- 150KHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Application

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulator
- Positive to negative converter (Buck-Boost)
- Power Supply for Battery Chargers
- Negative Step-Up Converters


Typical Application (Fixed Output Voltage Versions)

DP2596

3A 150KHz Step-Down Voltage Regulator

Pin Descriptions

Symbol	Pin No.	Description
		This pin is the positive input supply for the DP2596 Step-down switching regulator. In
V _{IN}	1	order to minimize voltage transients and to supply the switching current needed by the
		regulator, a suitable input bypass capacitor must be present.
		This is the emitter of the internal switch. The saturation voltage V_{SAT} of this output
Output	2	switch is typically 1.5V. It should be kept in mind that the PCB area connected to this
		pin should be kept to a minimum in order to minimize coupling to sensitive circuitry.
Ground	3	Circuit ground pin. See the information about the PCB layout.
		This pin senses regulated output voltage to complete the feedback loop. The signal is
		divided by the internal resistor divider network R2, R1 and applied to the
Feedback	4	non-inverting input of the internal error amplifier. In the Adjustable version of the
reeuback		DP2596 switching regulator this pin is the direct input of the error amplifier and the
		resistor network R2, R1 is connected externally to allow programming of the output
		voltage.
		It allows the switching regulator circuit to be shut down using logic level signals, this
ON/OFF	5	dropping the total input supply current to approximately 80mA. The threshold voltage
		is typically 1.4V. Applying a voltage above this value(up to $+V_{IN}$) shuts the regulator

DP2596

3A 150KHz Step-Down Voltage Regulator

off. If the voltage applied to this pin lower than 1.4V or if this pin is left open, the
regulator will be in the "ON" condition.

■ Pin Configuration and Marking Information

TO-220	TO-220V	TO-263	Pin Define :
			$1-V_{\rm IN}$
			2 – Output
			3 – Ground
Atr.	- Aller	Alter .	4 – Feedback
1			5 - ON/OFF
W ₅	5	5	
Marking information :	D2596 : Product Number		
D2596P	P : Package type (M : TO-22	20, N:TO-220V, O:	: TO-263)
-VVV	VVV : Output Voltage (ADJ	: Adjustable, 033: 3.3V,	, 050: 5.0V, 120: 12V,
XXYWW	150:	15V)	
	XX : Internal Code		
	Y : Year (keep Last digital at	t Year)	
	WW : Week (01~52)		

Ordering Information

DP2596XXX	D	P	2	5	9	6	Х	Х	Х
-----------	---	---	---	---	---	---	---	---	---

II T	- Shipping Pack (A: Tape&Reel, B: Tube)
	Output Voltage (A: Adjustable, B: 3.3V, C: 5.0V, D: E: 12V, F: 15V)
	- Package type (M : TO-220, N : TO-220V, O : TO-263)

Part Number	Marking	Package Type	Shipping Pack	
	D2596M			
DP2596MVB	-VVV	TO-220	TO-220 50Units/	50Units/Tube
	XXYWW			
	D2596N			
DP2596NVB	-VVV	TO-220V	TO-220V	50Units/Tube
	XXYWW			
DP2596OVA	D2596O		800Units/Tape/Reel	
	-VVV	TO-263		
DP2596OVB	XXYWW		50Units/Tube	

Absolute Maximum Ratings

(About Maximum Ratings indicate limits beyond which damage to the device may occur.)

Parameter	Symbol	Value	Unit
Maximum Input Supply Voltage	V _{IN}	45	V
ON/OFF Pin Input Voltage		$-0.3V \le V \le +25$	V
Output Voltage to Ground	Vo	-1.0	V
Storage Temperature Range	T _{SGT}	-65 to +150	°C
Minimum ESD Rating (Human Body Model; C=100pF, R=1.5K)		2.5	KV
Lead Temperature (Soldering, 10 Seconds)		260	°C
Maximum Junction Temperature	T_J	150	°C

■ Recommended Operating Conditions (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed

specifications and test conditions, see the Electrical Characteristics.)

Parameter	Symbol	Value	Unit
Operating junction Temperature Range	Tj	-40 to 125	°C
Supply Voltage	V_{IN}	40	V

■ Thermal Information

Parameter	Symbol	Package	Maximum	Unit	
Thermal Desistance, Junction to		TO-220	65		
Thermal Resistance, Junction to Ambient	$P_{\theta JA}$	TO-220V	65	°C/W	
Ambient		TO-263	70		
		TO-220	70		
Thermal Resistance, Junction to	$P_{\theta JC}$	TO-220V	70	°C/W	
Case		TO-263	5.0		

Electrical Characteristics ([Note 1] Test Circuit Figure 2) (Unless otherwise specified, $V_{IN} = 12V$ for the 3,3V, 5.0V, and Adjustable version, $V_{IN} = 25V$ for the 12V version, and $V_{IN} = 30V$ for the 15V version. $I_{LOAD} = 500$ mA. For typical values $T_J = 25^{\circ}$ C, for min/max values T_J is the operating junction temperature range that applies [Not2 2], Unless otherwise noted.)

Symbol	Characteristics	Min	Тур	Max	Unit
V _{OUT}	Output Voltage (V_{IN} =12V, I_{LOAD} =0.5A, T_J =25°C)	3.2	3.3	3.4	V
	Output Voltage ($6V \le V_{IN} \le 40V, 0.5A \le I_{LOAD} \le =3A$)				
	$T_J = 25^{\circ}C$	3.168	3.3	3.432	V
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	3.135		3.465	
η	Efficiency ($V_{IN} = 12V$, $I_{LOAD} = 3A$)		73		%

DP2576 3.3V Output

DP2576 5V Output

Symbol	Characteristics	Min	Тур	Max	Unit
	Output Voltage (V_{IN} =12V, I_{LOAD} =0.5A, T_J =25°C)	4.85	5	5.15	V
V _{out}	Output Voltage ($8V \leq V_{IN} \leq 40V$, $0.5A \leq I_{LOAD} \leq =3A$)				
	$T_J = 25^{\circ}C$	4.8	5	5.2	V
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	4.75		5.25	
η	Efficiency ($V_{IN} = 12V$, $I_{LOAD} = 3A$)		80		%

DP2576 12V Output

Symbol	Characteristics	Min	Тур	Max	Unit
	Output Voltage (V_{IN} =15V, I_{LOAD} =0.5A, T_J =25°C)	11.64	12	12.36	V
VOUT	Output Voltage (15V \leq V _{IN} \leq 40V, 0.5A \leq I _{LOAD} \leq =3A)				
	$T_J = 25^{\circ}C$	11.52	12	12.48	V
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	12.4		12.6	
η	Efficiency ($V_{IN} = 15V$, $I_{LOAD} = 3A$)		90		%

DP2576 15V Output

Symbol	Characteristics	Min	Тур	Max	Unit
	Output Voltage (V_{IN} =30V, I_{LOAD} =0.5A, T_J =25°C)	14.7	15	15.3	V
X 7	Output Voltage (18V \leq V _{IN} \leq 40V, 0.5A \leq I _{LOAD} \leq =3A)				
V _{OUT}	$T_J = 25^{\circ}C$	14.4	15	15.6	V
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	14.25		15.75	
η	Efficiency ($V_{IN} = 18V, I_{LOAD} = 3A$)		98		%

DP2576 ADJ Output							
Symbol	Characteristics	Min	Тур	Max	Unit		
	Feedback Voltage (V_{IN} =12V, I_{LOAD} =0.5A, T_J =25°C)	1.217	1.23	1.243	V		
	Feedback Voltage (8V \leq V _{IN} \leq 40V, 0.5A \leq I _{LOAD} \leq =3A,						
V _{OUT}	$V_{OUT}=5V)$ $T_{J}=25^{\circ}C$				v		
	$T_J = 25^{\circ}C$	1.193	1.23	1.267	v		
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	1.18		1.28			
η	Efficiency ($V_{IN} = 12V$, $I_{LOAD} = 3A$, $V_{OUT} = 5V$)		73		%		

All Output Voltage Versions

Symbol	Characteristics	Min	Тур	Max	Unit
	Feedback Bias Current, V _{OUT} =5V (Adjustable Version				
Ŧ	only)				
I _b	$T_J = 25^{\circ}C$	-	10	50	nA
	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	-	-	100	
	Oscillator Frequency ($I_{OUT} = 3.0A$ [Note 4])				
f _{osc}	$T_J = 25^{\circ}C$	127	150	173	KHz
	$T_{J} = 0^{\circ}C \text{ to } +125^{\circ}C$	110	-	173	
V_{SAT}	Saturation Voltage ($I_{OUT} = 3.0A$ [Note 4])	-	1.16	1.4	V
		-	-	1.5	
DC	Max Duty Cycle (ON [Note 5])	-	100	-	%
	Current Limit (Peak Current [Note 3&4])				
I _{CL}	$T_J = 25^{\circ}C$	3.6	4.5	6.9	А
	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	3.4	-	7.5	
	Output Leakage Current [Note 6&7], T _J =25°C				
I_L	Output = 0V	-	-	50	mA
	Output = -1.0V	-	2	30	
	Quiescent Current [Note 6]				
I _Q	$T_J = 25^{\circ}C$	-	5	-	mA
	$T_J = -40^{\circ}C$ to $+125^{\circ}C$	-	-	10	
	Standby Quiescent Current, ON/OFF Pin = 5V (OFF)				
I_{STBY}	$T_J = 25^{\circ}C$	-	80	200	μΑ
	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	-	-	250	

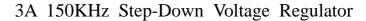
ON/OFF CONTROL						
	ON/OFF Pin Logic Input Level, $V_{OUT} = 0V$					
V _{IH}	$T_J = 25^{\circ}C$			0.6	V	
	$T_{\rm J} = 0^{\circ} \rm C \ to \ +125^{\circ} \rm C$		-	0.6		
V_{IL}	ON/OFF Pin Logic Input Level, V_{OUT} = Nominal Output					
	Voltage				V	
	$T_J = 25^{\circ}C$	2.0	1.3	-	v	
	$T_J = 0^{\circ}C$ to $+125^{\circ}C$	2.0	-	-		
I_{IH}	ON/OFF Pin Input Current, $V_{IH} = 2.5V$ (OFF)	-	5	15	A	
I _{IL}	ON/OFF Pin Input Current, $V_{IL} = 0.5 V$ (ON)		0.02	5	μA	

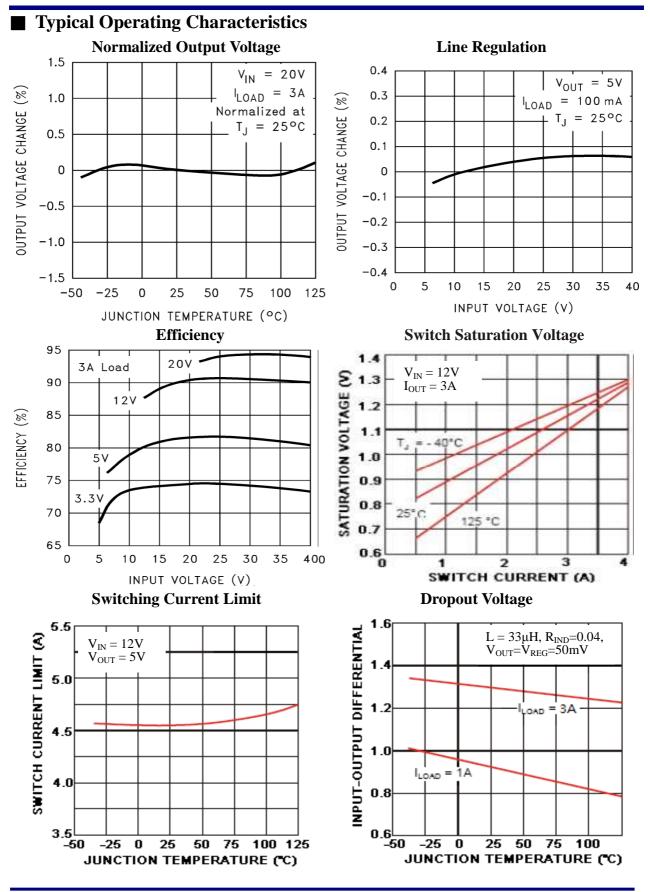
Note 1 : External components such as the catch diode, inductor, input and output capacitors can affect switching

regulator system performance. When the DP2596 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

Note 2 : Tested junction temperature range for the DP2596 : $T_J = 0^{\circ}C$ to $+125^{\circ}C$

Note 3: The oscillator frequency reduces to approximately 18KHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the 1C by lowering the minimum duty cycle from 5% down to approximately 2%.


Note 4 : Output pin sourcing current. No diode, inductor or capacitor connected to output pin.

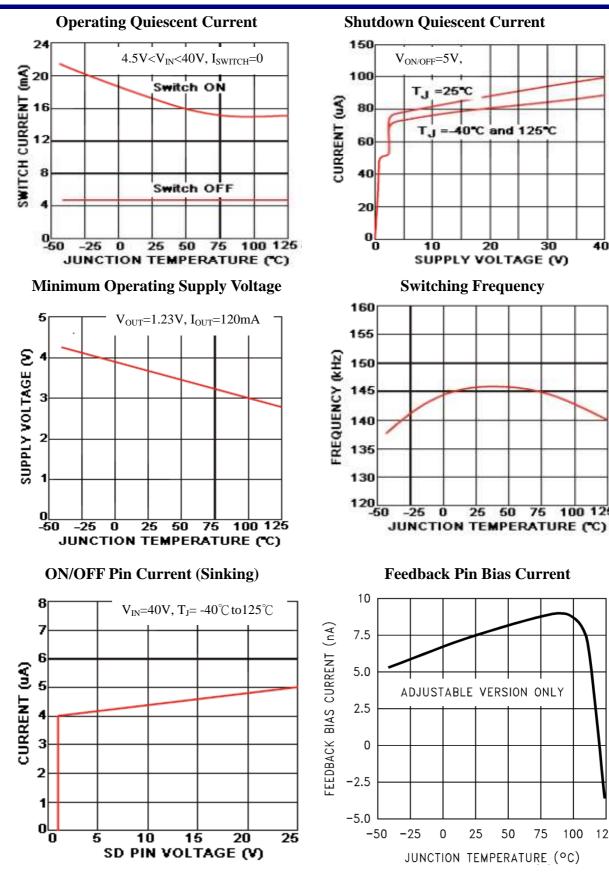

Note 5 : Feedback pin removed from output and connected to 0V.

Note 6 : Feedback pin removed from output and connected to a 12V for Adjustable, 3.3V and 5V versions, and a 25V for Adjustable, 12V and 15V versions, to force the output transistor OFF.

Note 7 : $V_{IN} = 40V$

30

40

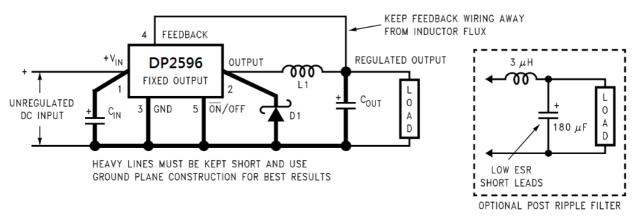

100 125

50

50

75

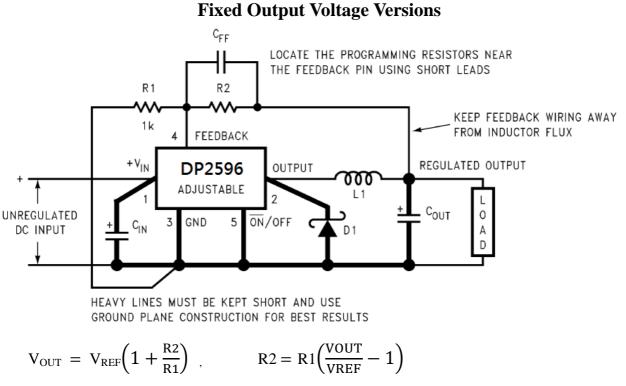
75



3A 150KHz Step-Down Voltage Regulator

100 125

Test Circuit and Layout Guidelines Fixed Output Voltage Versions



 C_{IN} : 470 μ F, 50V Aluminum Electrolytic

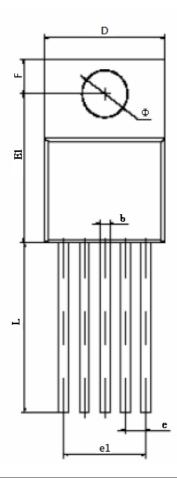
 C_{OUT} : 220 μ F, 25V Aluminum Electrolytic

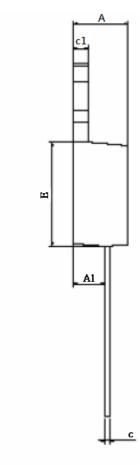
D1: 5A, 40V, Schottky, 1N5825

 $\mathrm{L1}:\mathbf{68}\,\mu\,\mathrm{H}$

Where VREF = 1.23V,

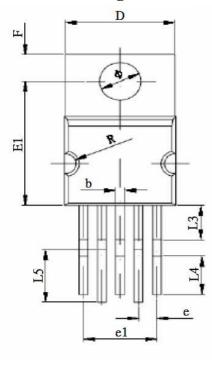
Figure 2. Typical Test Circuit and Layout Guide

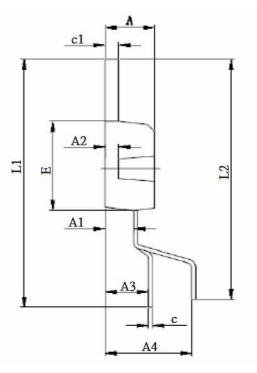



As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

In open core inductors are used, special care must be taken as to the location and positioning of his type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path and C_{OUT} wiring can cause problems. When using the Adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

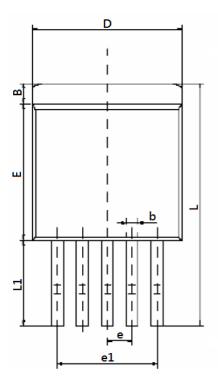
TO-220 Package Dimensions

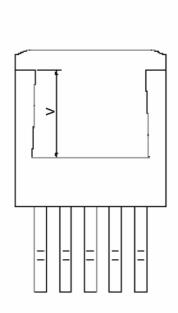




Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	4.470	4.670	0.176	0.184	
A1	2.520	2.280	0.099	0.111	
b	0.710	0.910	0.028	0.036	
с	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	9.850	10.150	0.388	0.400	
E	8.200	8.600	0.323	0.339	
E1	11.760	12.160	0.463	0.479	
е	1.700	TYP	0.067TYP		
e1	6.700	6.900	0.264	0.272	
F	2.590	2.890	0.102	0.114	
L	13.500	13.900	0.531	0.547	
Φ	3.790	3.890	0.149	0.153	

■ TO-220V Package Dimensions




Cumhal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	4.470	4.670	0.176	0.184	
A1	2.520	2.280	0.099	0.111	
A2	1.170	1.370	0.046	0.054	
A3	4.250	4.550	0.167	0.179	
A4	8.250	8.550	0.325	0.337	
b	0.710	0.910	0.028	0.036	
с	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.900	9.300	0.350	0.366	
E1	12.460	12.860	0.491	0.506	
e	1.700TYP		0.22	OTYP	
e1	6.700	6.900	0.264	0.272	
e2	3.300	3.500	0.130	0.138	
F	2.590	2.890	0.102	0.114	
L1	25.100	25.500	0.988	1.004	
L2	24.300	24.700	0.957	0.972	
L3	3.400	3.600	0.134	0.142	
L4	3.800	4.000	0.150	0.157	
L5	5.300	5.500	0.209	0.217	
R	0.950	1.050	0.037	0.041	

TO-263 Package Dimensions

Symbol	Dimensions In Millimeters		Dimension	is in inches
Symbol	Min	Мах	Min	Max
A	4.470	4.670	0.176	0.184
A1	0.000	0.150	0.000	0.006
В	1.560	1.760	0.061	0.069
b	0.710	0.910	0.028	0.036
С	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	9.880	10.180	0.389	0.401
E	8.200	8.600	0.323	0.339
е	1.700	TYP	0.067TYP	
e1	6.700	6.900	0.264	0.272
L	15.140	15.540	0.596	0.612
L1	5.080	5.480	0.200	0.216
L2	2.340	2.740	0.092	0.108
V	5.600	REF	0.220REF	