# Low Voltage, Dual SPDT Analog Switch with Charge Pump

#### DESCRIPTION

The DG2616, DG2617, DG2618 are monolithic CMOS analog switching products designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2616, DG2617, DG2618 are ideal for portable and battery powered applications.

The DG2616, DG2617, DG2618 have built-in charge-pump circuitry which lowers the minimum supply voltage to + 1.5 V while maintaining low on-resistance. The Control circuitry allows the DG2616, DG2617, DG2618 to operate in different configurations.

Built on Vishay Siliconix's low voltage process, the DG2616, DG2617, DG2618 has an epitaxial layer that prevents latch-up. Break-before-make is guaranteed.

The DG2616, DG2617, DG2618 are manufactured in space saving DFN-10 ( $3.0 \times 3.0 \text{ mm}$ ). And as a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations and is 100 % RoHS compliant.

#### **FEATURES**

- Low voltage operation (1.5 V to 3.6 V)
- Low on-resistance R<sub>ON</sub>: 4.2 Ω typ. at 2.7 V
  - Fast switching: t<sub>ON</sub> = 39 ns
    - t<sub>OFF</sub> = 8 ns
- DFN-10 package

#### BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- TTL/1.8 V logic compatible
- High bandwidth

#### **APPLICATIONS**

- Cellular phones
- Audio and video signal routing
- PCMCIA cards
- · Battery operated systems

#### FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

| TRUTH TABLE DG2616 |        |        |  |  |  |
|--------------------|--------|--------|--|--|--|
| Logic              | NC1, 2 | NO1, 2 |  |  |  |
| 0                  | ON     | OFF    |  |  |  |
| 1                  | OFF    | ON     |  |  |  |

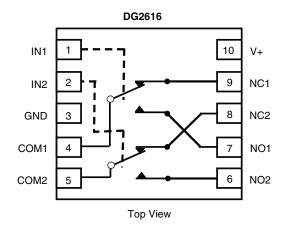
| TRUTH TABLE DG2617 |          |        |        |             |  |  |  |
|--------------------|----------|--------|--------|-------------|--|--|--|
| SHDN/EN Logic      | IN Logic | NC1, 2 | NO1, 2 | Charge Pump |  |  |  |
| 0                  | 0        | ON     | OFF    | ON          |  |  |  |
| 0                  | 1        | OFF    | ON     | ON          |  |  |  |
| 1                  | 0        | ON     | OFF    | OFF         |  |  |  |
| 1                  | 1        | OFF    | ON     | OFF         |  |  |  |

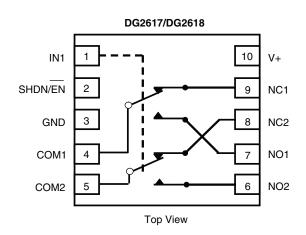
| TRUTH TABLE DG2618 |          |        |        |             |  |  |  |
|--------------------|----------|--------|--------|-------------|--|--|--|
| SHDN/EN Logic      | IN Logic | NC1, 2 | NO1, 2 | Charge Pump |  |  |  |
| 0                  | 0        | ON     | OFF    | ON          |  |  |  |
| 0                  | 1        | OFF    | ON     | ON          |  |  |  |
| 1                  | х        | OFF    | OFF    | OFF         |  |  |  |

| ORDERING INFORMATION |         |                                                    |  |  |  |
|----------------------|---------|----------------------------------------------------|--|--|--|
| Temp. Range          | Package | Part Number                                        |  |  |  |
| - 40 °C to 85 °C     | DFN-10  | DG2616DN-T1-E4<br>DG2617DN-T1-E4<br>DG2618DN-T1-E4 |  |  |  |



RoHS


COMPLIANT




# DG2616, DG2617, DG2618

# Vishay Siliconix







| <b>ABSOLUTE MAXIMUM RATINGS</b> $T_A = 25 ^{\circ}C$ , unless otherwise noted |                              |                     |      |  |  |
|-------------------------------------------------------------------------------|------------------------------|---------------------|------|--|--|
| Parameter                                                                     |                              | Limit               | Unit |  |  |
| Reference to GND                                                              | V+                           | - 0.3 to 6.0        | V    |  |  |
| Reference to GIND                                                             | IN, COM, NC, NO <sup>a</sup> | - 0.3 to (V+ + 0.3) | V    |  |  |
| Current (Any terminal except NO, NC or COM)                                   |                              | 30                  |      |  |  |
| Continuous Current (NO, NC, or COM)                                           |                              | ± 150               | mA   |  |  |
| Peak Current (Pulsed at 1 ms, 10 % Duty Cycle)                                |                              | ± 300               |      |  |  |
| Storage Temperature (D-Suffix)                                                |                              | - 65 to 150         |      |  |  |
| Package Solder Reflow Conditions <sup>d</sup>                                 |                              |                     | - °C |  |  |
| Power Dissipation (Packages) <sup>b</sup>                                     | DFN-10 <sup>c</sup>          | 1191                | mW   |  |  |

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC board.

c. Derate 14.9 mW/°C above 70  $^\circ\text{C}$ 

d. Manual soldering with iron is not recommended for leadless components. The DFN-10 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.



# DG2616, DG2617, DG2618 Vishay Siliconix

| Parameter     Symbol $V + = 3 V, \pm 10 %, V_{IN} = 0.5 \text{ or } 1.4 V^{\circ}$ Temp. <sup>4</sup> Min. <sup>b</sup> Typ. <sup>c</sup> Max. <sup>b</sup> Analog Switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                                                    |                        | Test Conditions<br>Otherwise Unless Specified                                   |                    | Limits<br>- 40 °C to 85 °C |      |     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|--------------------|----------------------------|------|-----|------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | Symbol                 | -                                                                               | Temp. <sup>a</sup> |                            | 1    | 1 . | Uni  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analog Switch                                                | -                      |                                                                                 |                    |                            |      |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analog Signal Range <sup>d</sup>                             |                        |                                                                                 | Full               | 0                          |      | V+  | V    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                        | V+ = 1.5 V, V <sub>COM</sub> = 1.5 V, I <sub>NO</sub> , I <sub>NC</sub> = 10 mA |                    |                            | 5.3  |     |      |
| $ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                        |                                                                                 | Room               |                            |      | 7.0 |      |
| $\begin{tabular}{ c c c c c c } \hline $V_{+} = 3.6 & V_{V_{COM}} = 3.6 & V_{I_{NO}, I_{NO}} = 10 & mA & $Poom_{Full}$ & $P_{OII}$ & $S.5$ & $7.0$ & $8.0$ \\ \hline $P_{OII}$ & $P_{Iull}$ & $V_{+} = 3.6 & V_{V_{COM}} = 1.5 & V_{2.7} & $V_{I_{NO}, I_{NC}} = 10 & mA & $Poom_{Full}$ & $0.6$ & $2.0$ \\ \hline $P_{OI}$ & $AP_{ON}$ & $V_{+} = 3.6 & V_{V_{COM}} = 1.7 & V_{I_{NO}, I_{NC}} = 10 & mA & $Poom_{Full}$ & $0.6$ & $2.0$ \\ \hline $P_{OII}$ & $V_{+} = 3.6 & V_{V_{COM}} = 1.7 & V_{I_{NO}, I_{NC}} = 10 & mA & $Poom_{Full}$ & $1.5$ & $2.7$ & $V_{Iul}$ & $V_{+} = 3.6 & V_{V_{OO}} & $V_{10C} = 1.0 & $M_{10}$ & $V_{11}$ & $V$                                                                                                                                                                                                                                                                                                                                | On-Resistance                                                | RON                    | $V = 2.7 V, V_{COM} = 2.7 V, I_{NO}, I_{NC} = 10 MA$                            | Full               |                            | 4.7  | 8.0 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                        | V+ = 3.6 V, V <sub>COM</sub> = 3.6 V, I <sub>NO</sub> , I <sub>NC</sub> = 10 mA | Room               |                            | 5.5  | 7.0 | Ω    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R <sub>ON</sub> Flatness <sup>d</sup>                        | _                      | V+ = 2.7 V, V <sub>COM</sub> = 1.5 V, 2.7 V,                                    |                    |                            | 0.6  |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R <sub>ON</sub> Match <sup>d</sup>                           |                        | $I_{NO}$ , $I_{NC}$ = 10 mA                                                     | Room               |                            | 0.1  |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On Resistance (Shutdown)                                     | R <sub>SHDN</sub>      | V+ = 3.6 V, V <sub>COM</sub> = 1.7 V, I <sub>NO</sub> , I <sub>NC</sub> = 10 mA |                    |                            | 15   | -   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | I <sub>NO(off)</sub> , |                                                                                 |                    | - 2                        |      |     | nA   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Switch Off Leakage Current                                   | I <sub>NC(off)</sub>   |                                                                                 | Full               |                            |      | 10  |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                            | I <sub>COM(off)</sub>  | V <sub>COM</sub> = 3.3 V/0.3 V                                                  |                    |                            |      |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                            | I <sub>COM(on)</sub>   | V+ = 3.6 V, V <sub>NO</sub> , V <sub>NC</sub> = V <sub>COM</sub> = 0.3 V/3.3 V  | Room               | - 2                        |      | 2   |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | I                      |                                                                                 |                    |                            |      | -   |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input High Voltage                                           | Vinili                 |                                                                                 |                    | 1.0                        |      |     |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | input ngir tonago                                            |                        |                                                                                 | Full               | 1.4                        |      |     | v    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input Low Voltage                                            | V <sub>INL</sub>       |                                                                                 | _                  |                            |      |     | ł    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input Capacitance                                            | C <sub>in</sub>        |                                                                                 | Full               |                            | 3.2  | 0.0 | pF   |
| Dynamic CharacteristicsTurn-On Time $t_{ON}$ $t_{OFF}$ $V_{+} = 2.7 \text{ or } 3.6 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$<br>$R_{L} = 50 \Omega, C_{L} = 35 \text{ pF}$ $\begin{array}{c c c c c c c c c } Room & 39 & 69 & 76 & 76 & 76 & 76 & 76 & 76 & 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                        | V <sub>IN</sub> = 0 or V+                                                       | Full               | - 1                        |      | 1   | μA   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dynamic Characteristics                                      |                        |                                                                                 |                    |                            | •    |     |      |
| Turn-Off Time $t_{OFF}$ $V_{+} = 2.7 \text{ or } 3.6 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$<br>$R_{L} = 50 \Omega, C_{L} = 35 \text{ pF}$ $R_{OOM}$ 939Break-Before-Make Time $t_{d}$ $R_{L} = 50 \Omega, C_{L} = 35 \text{ pF}$ $Room$ 939Charge Injection <sup>d</sup> $Q_{INJ}$ $C_{L} = 1 \text{ nF}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega$ $Room$ 7Off-Isolation <sup>d</sup> $OIRR$ $R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}$ $Room$ 7Off-Isolation <sup>d</sup> $OIRR$ $R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 100 \text{ MHz}$ $Room$ -77 $Crosstalk^{d, f}$ $X_{TALK}$ $R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 100 \text{ MHz}$ $Room$ -32No No Off Capacitance <sup>d</sup> $C_{NO(off)}$ $R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 100 \text{ MHz}$ $Room$ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turn-On Time                                                 | t <sub>ON</sub>        |                                                                                 |                    |                            | 39   |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                        | V+ = 2.7 or 3.6 V, V <sub>NO</sub> or V <sub>NC</sub> = 1.5 V,                  |                    |                            | 0    |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turn-Off Time                                                | t <sub>OFF</sub>       | $R_L = 50 \Omega$ , $C_L = 35 pF$                                               |                    |                            | 9    |     | ns   |
| $\begin{array}{c c} R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz \\ \hline OIRR & R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline Crosstalk^{d, \ f} & X_{TALK} & R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 100 \ MHz \\ \hline R_L = 50 \ R_L =$ | Break-Before-Make Time                                       | t <sub>d</sub>         |                                                                                 | Full               | 1                          |      |     |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Charge Injection <sup>d</sup>                                | Q <sub>INJ</sub>       |                                                                                 | Room               |                            | 7    |     | pC   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orre en d                                                    | 0155                   |                                                                                 |                    |                            | - 77 |     | - dB |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ott-Isolation <sup>4</sup>                                   | OIKK                   |                                                                                 | Room               |                            | - 32 |     |      |
| No. No. Off Capacitance <sup>d</sup> C <sub>NO(off)</sub> Room 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Crosstalk <sup>d, f</sup>                                    | XTALK                  |                                                                                 | -                  |                            |      |     |      |
| No No Off Canacitance <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UIUSSIAIK 7                                                  |                        | $H_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 100 MHz$                                | Desire             |                            |      |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N <sub>O</sub> , N <sub>C</sub> Off Capacitance <sup>d</sup> |                        |                                                                                 |                    |                            |      |     |      |
| f = 1  MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | C <sub>NC(off)</sub>   | f = 1 MHz                                                                       | Room               |                            |      |     | pF   |
| Channel-On Capacitance <sup>d</sup> C <sub>NO(on)</sub> Room 21   Room 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Channel-On Capacitance <sup>d</sup>                          |                        | +                                                                               |                    |                            |      |     | -    |



| SPECIFICATIONS $V + = 3 V$ |        |                                                                |                    |                            |                   |                   |      |  |
|----------------------------|--------|----------------------------------------------------------------|--------------------|----------------------------|-------------------|-------------------|------|--|
|                            |        | Test Conditions<br>Otherwise Unless Specified                  |                    | Limits<br>- 40 °C to 85 °C |                   |                   |      |  |
| Parameter                  | Symbol | V+ = 3 V, $\pm$ 10 %, V $_{\rm IN}$ = 0.5 or 1.4 V $^{\rm e}$  | Temp. <sup>a</sup> | Min. <sup>b</sup>          | Typ. <sup>c</sup> | Max. <sup>b</sup> | Unit |  |
| Power Supply               |        |                                                                |                    |                            |                   |                   |      |  |
| Power Supply Range         | V+     |                                                                |                    | 1.5                        |                   | 3.6               | V    |  |
| Power Supply Current       | l+     | $V$ + = 3.6 V, $V_{IN}$ = 0 or V+, SHDN/ $\overline{EN}$ = 0 V | Full               |                            | 104               | 300               | uА   |  |
|                            | 1+     | $V$ + = 3.6 V, $V_{IN}$ = 0 or V+, SHDN/ $\overline{EN}$ = V+  |                    |                            | 0.1               | 2                 | μΑ   |  |

Notes:

a. Room = 25  $^{\circ}$ C, Full = as determined by the operating suffix.

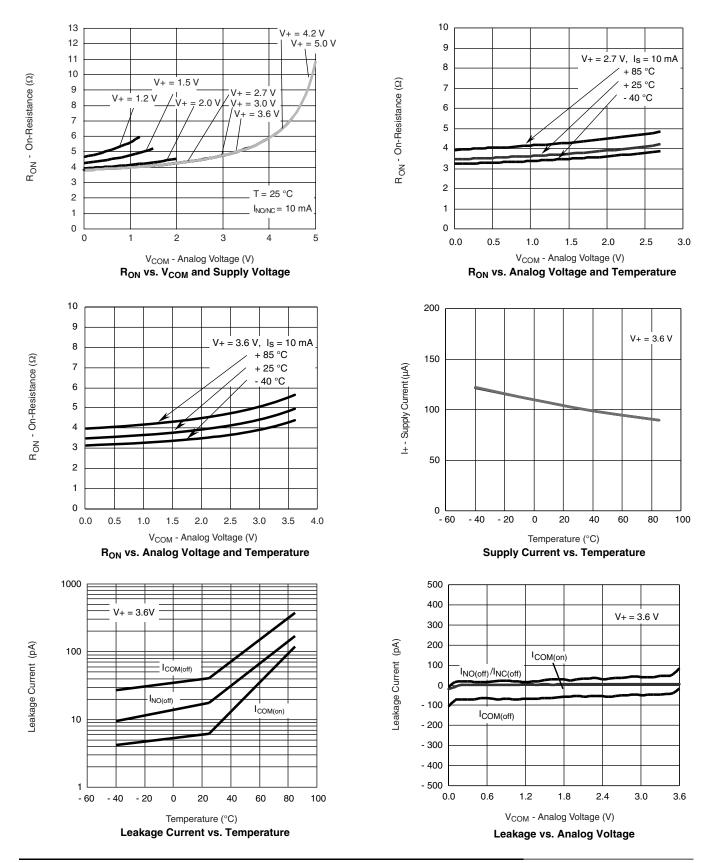
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

c. Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, not subjected to production test.

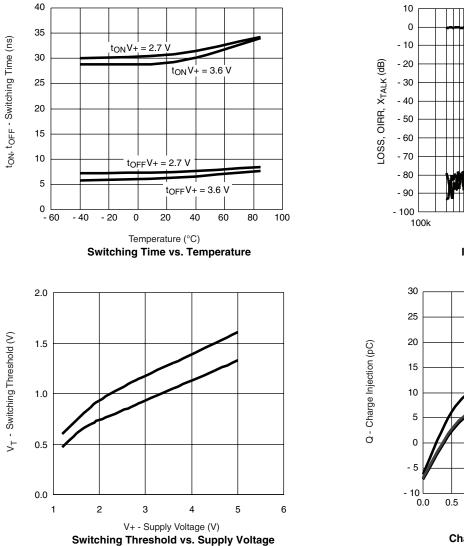
e. V<sub>IN</sub> = input voltage to perform proper function.

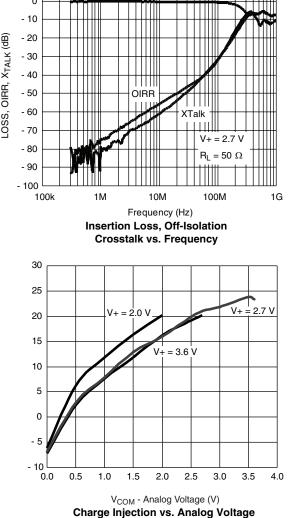
f. Crosstalk measured between channels.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



# DG2616, DG2617, DG2618


Vishay Siliconix


### **TYPICAL CHARACTERISTICS** $T_A = 25$ °C, unless otherwise noted



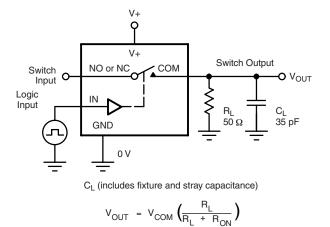
Document Number: 74411 S-82149-Rev. B, 08-Sep-08

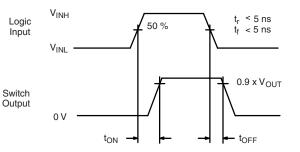
### **TYPICAL CHARACTERISTICS** $T_A = 25$ °C, unless otherwise noted



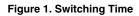


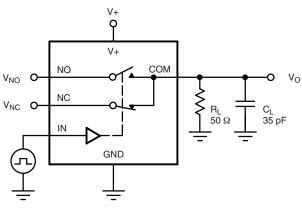
Loss

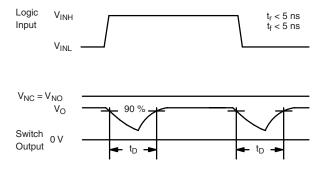

**VISHAY** 




# DG2616, DG2617, DG2618

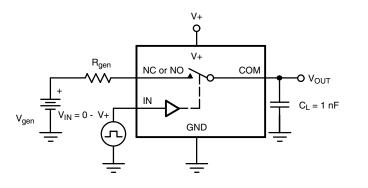

### Vishay Siliconix

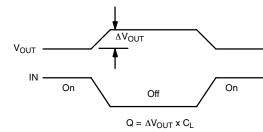

#### **TEST CIRCUITS**





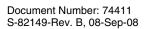

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.



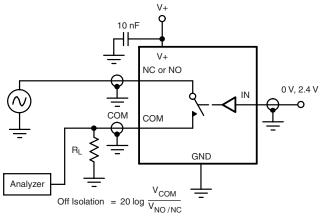






C<sub>L</sub> (includes fixture and stray capacitance)


#### Figure 2. Break-Before-Make Interval






IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection



### **TEST CIRCUITS**



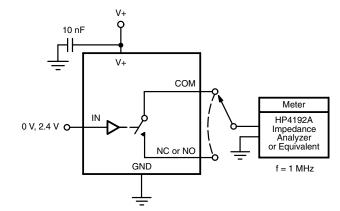



Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74411.





Vishay

# Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.