PRELIMINARY PRODUCT INFORMATION

mos integrated circuit $\mu PD78P018F$

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The µPD78P018F is an 8-bit single-chip microcomputer which incorporates one-time PROM which can be written to once only, or EPROM to which programs can be written, erased and rewritten.

www.Data As the uPD78P018F is user-programmable, it is suitable for evaluation in system development, and for short-run and multiple device-production, and early start-up.

This document should be read in conjunction with documentation on the mask ROM products.

FEATURES

- Pin compatible with mask ROM products (except VPP pin)
- Internal PROM: 60K bytes*1
- Internal high-speed RAM: 1024 bytes*1
 Internal expansion RAM: 1024 bytes*2
- Buffer RAM: 32 bytes
- Operable over same supply voltage range as mask ROM product (2.0 to 6.0 V)
- * 1. The internal PROM and internal high-speed RAM size can be changed by means of the memory size switching register.
 - 2. The capacity of the internal expansion RAM can be changed by means of the internal expansion RAM switching register.

Differences from mask ROM products are as follows:

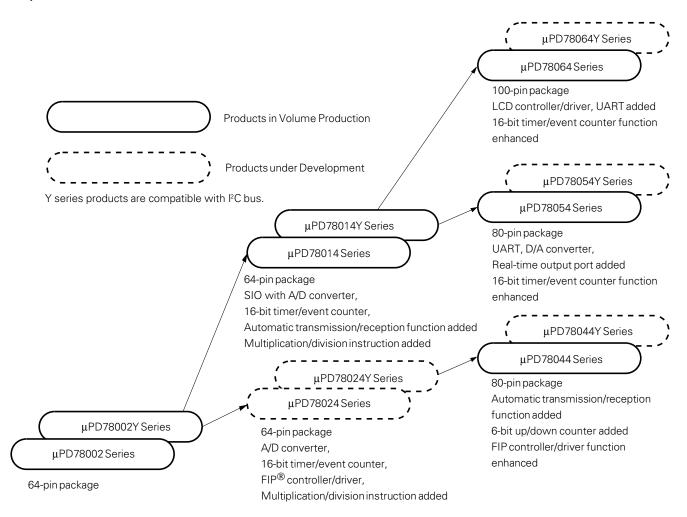
- The same memory mapping as on a mask ROM product is possible by setting the memory size switching register and the internal expansion RAM switching register.
- There is no function for incorporating pull-up resistors by means of a mask option.

In this document, the common parts of the one-time PROM product and EPROM product are represented by PROM.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

ORDERING INFORMATION

Ordering Code	Package	Internal ROM		
μPD78P018FCW	64-pin plastic shrink DIP (750 mil)	One-time PROM		
μPD78P018FDW	64-pin ceramic shrink DIP (with window) (750 mil)	EPROM		
μPD78P018FGC-AB8	64-pin plastic QFP (□14 mm)	One-time PROM		
μPD78P018FGK-8A8	64-pin plastic QFP (<u></u> 12 mm)	One-time PROM		
μPD78P018FKK-S	64-pin ceramic WQFN (14 mm)	EPROM		


QUALITY GRADE

Standard

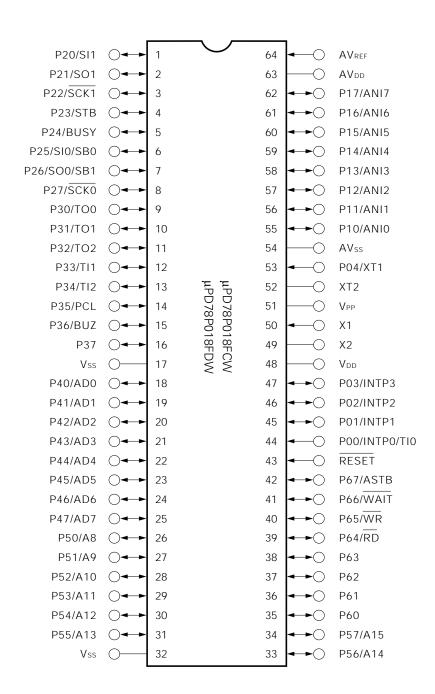
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

www.DataSheet4U.com

78K/0 SERIES DEVELOPMENT

OUTLINE OF FUNCTION

	Item	Function
Interna	l memory	• PROM : 60K bytes*1 • RAM Internal high-speed RAM : 1024 bytes*1 Internal expansion RAM : 1024 bytes*2 Buffer RAM : 32 bytes
Mamaa		
	ryspace	8 hite y 22 registers (8 hite y 8 registers y 4 herels)
	l registers tion cycle	8 bits × 32 registers (8 bits × 8 registers × 4 banks) On-chip instruction execution time cycle modification function
mstruc	Main system clock selected	0.48 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (at 10.0 MHz operation)
/.DataSheet	Subsystem clock 4selected	122 μs (at 32.768 kHz operation)
Instruc	tion set	 16-bit operation Multiplication/division (8 bits × 8 bits,16 bits " 8 bits) Bit manipulation (set, reset, test, boolean operation) BCD correction, etc.
I/O por	ts	Total : 53 • CMOS input : 2 • CMOS I/O : 47 • N-channel open-drain I/O (15 V withstand voltage) : 4
A/D cor	nverter	 8-bit resolution × 8 channels Operable over a wide power supply voltage range: VDD = 2.0 to 6.0 V
Serial i	nterface	• 3-wire/SBI/2-wire mode selectable : 1 channel • 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel
Timer		16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Clock timer : 1 channel Watchdog timer : 1 channel
Timer	output	3 (14-bit PWM output × 1)
Clocko	utput	39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock 10.0 operation 32.768 kHz (at subsystem clock 32.768 kHz operation)
Buzzer	output	2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock 10.0 MHz operation)
Vectore	ed Maskable	Internal: 8, External: 4
interru	pts Non-maskable	Internal: 1
	Software	Internal:1
Test in	put	Internal : 1, External : 1
Operat	ing voltage range	$V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$
Operat range	ing tempreture	-40 to +80 °C
Packag	e	64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) (750 mil) 64-pin plastic QFP (14 mm) 64-pin plastic QFP (12 mm) 64-pin ceramic WQFN (14 mm)

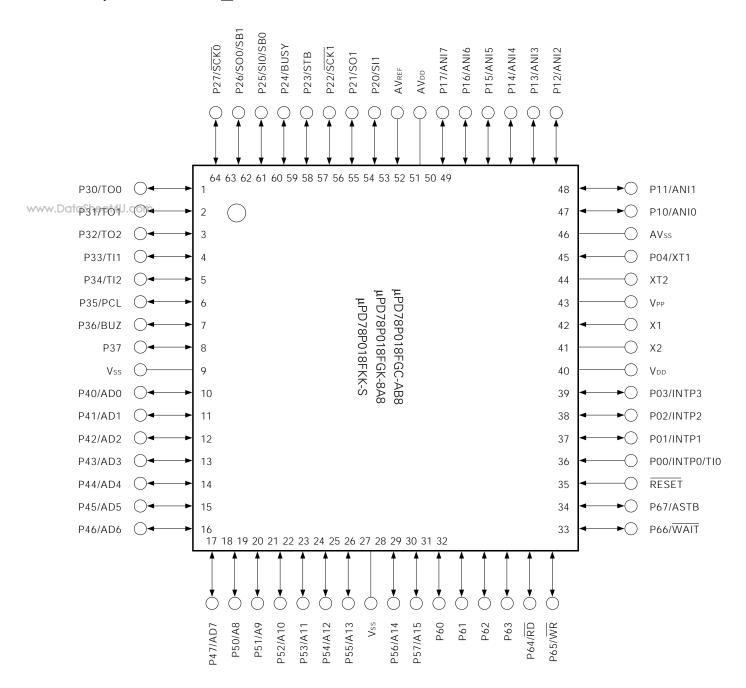

- * 1. The capacity of the internal PROM and internal high-speed RAM can be changed by means of the memory size switching register.
 - 2. The capacity of the internal expansion RAM can be changed by means of the internal expansion RAM switching register.

PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode

64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) (750 mil)

www.DataSheet4U.com



Note

- 1. VPP pin should be connected to Vss.
- 2. AVDD pin should be connected to VDD.
- 3. AVss pin should be connected to Vss.

64-pin plastic QFP (☐14 mm) 64-pin plastic QFP (☐12 mm) 64-pin ceramic WQFN (☐14 mm)

Note 1. VPP pin should be connected to Vss.

- 2. AVDD pin should be connected to VDD.
- 3. AVss pin should be connected to Vss.

NEC μ**PD78P018F**

P00 to P04 : Port 0 P10 to P17 : Port 1 P20 to P27 : Port 2 : Port 3 P30 to P37 P40 to P47 : Port 4 P50 to P57 : Port 5 P60 to P67 : Port 6

INTP0 to INTP3: Interrupt From Peripherals

TI0 to TI2 : Timer Input TO0 to TO2 : Timer Output SB0, SB1 : Serial Bus SI0, SI1 : Serial Input S00, S01 : Serial Output SCK0, SCK1 : Serial Clock

www.Data**pe**pt4U.com : Programmable Clock

> BUZ : Buzzer Clock : Strobe STB **BUSY** : Busy

AD0 to AD7 : Address/Data Bus A8 to A15 : Address Bus RD : Read Strobe WR : Write Strobe WAIT : Wait

: Address Strobe **ASTB**

: Crystal (Main System Clock) X1, X2 XT1, XT2 : Crystal (Subsystem Clock)

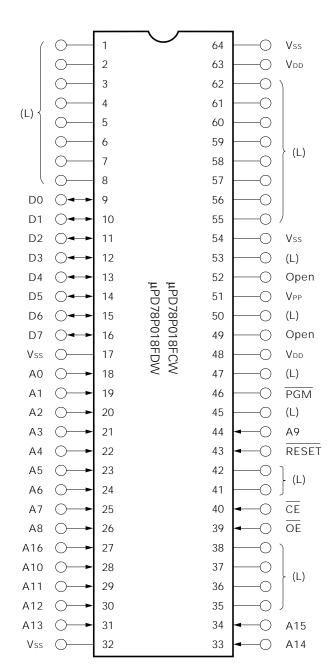
RESET : Reset

ANI0 to ANI7 : Analog Input

 AV_{DD} : Analog Power Supply

AVss : Analog Ground

 AV_{REF} : Analog Reference Voltage


 $V_{\text{DD}} \\$: Power Supply

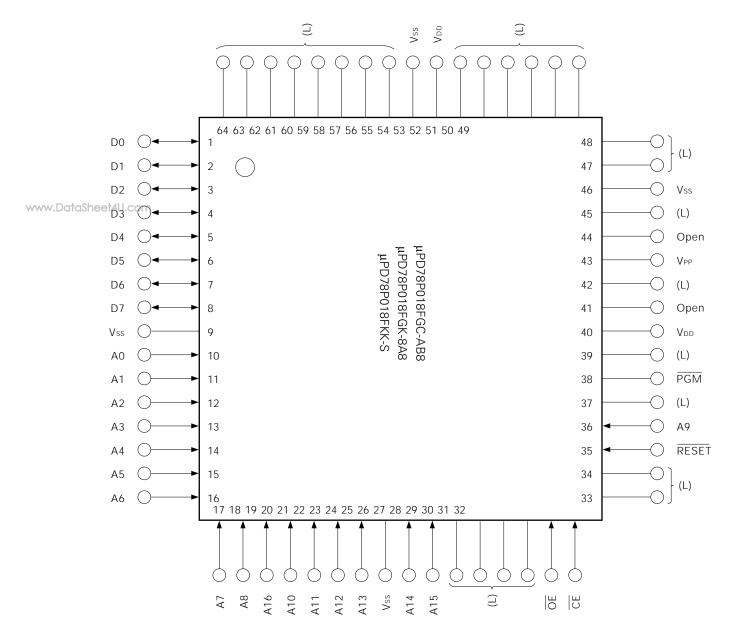
 V_{PP} : Programming Power Supply

Vss : Ground

(2) PROM programming mode

64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) (750 mil)

www.DataSheet4U.com


Note 1. (L) : Connect to Vss individually with a pull-down resistor.

Vss : Connect to ground.
 RESET: Set to low level.

4. Open : Do not make any connection.

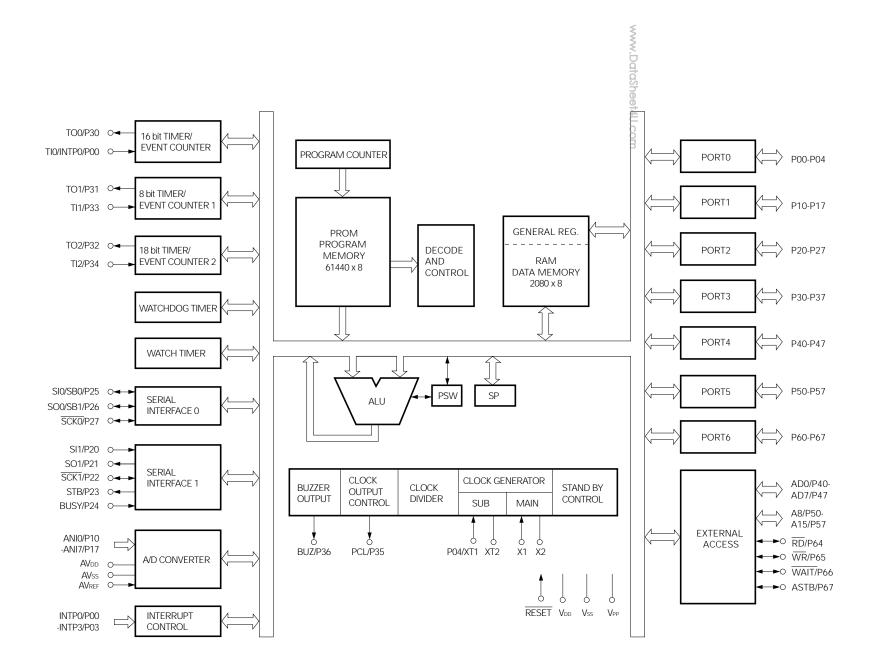
64-pin plastic QFP (☐14 mm) 64-pin plastic QFP (☐12 mm) 64-pin ceramic WQFN (☐14 mm)

Note 1. (L) : Connect to Vss individually with a pull-down resistor.

Vss : Connect to ground.
 RESET: Set to low level.

4. Open : Do not make any connection.

A0 to A16 : Address RESET : Reset


D0 to D7 : Data Bus V_{DD} : Power Supply

CE : Chip Enable VPP : Programming Power Supply

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN μPD78P018F AND MASK ROM PRODUCT	11
	2.	PIN FUNCTIONS	12
		2.1 NORMAL OPERATING MODE PINS	
		2.2 PROM PROGRAMMING MODE PINS	
		2.3 PIN INPUT/OUTPUT CIRCUITS AND CONNECTION OF UNUSED PINS	16
	3.	MEMORY SIZE SWITCHING REGISTER (IMS)	18
	4.	INTERNAL EXPANSION RAM SWITCHING REGISTER (IXS)	19
		PROM PROGRAMMING	
www.E	DataS	h5914U.OPERATING MODES	
		5.2 PROM WRITING PROCEDURE	
		5.3 PROM READING PROCEDURE	26
	6.	ERASURE PROCEDURE (μPD78P018FDW/78P018FKK-S)	27
	7.	ERASURE WINDOW SEAL (μPD78P018FDW/78P018FKK-S)	27
	8.	ONE-TIME PROM PORODUCT SCREENING	27
	9.	PACKAGE INFORMATION	28
	AP	PENDIX A. DEVELOPMENT TOOLS	33
	ΑP	PENDIX B. RELATED DOCUMENTS	36

1. DIFFERENCES BETWEEN μPD78P018F AND MASK ROM PRODUCT

The μ PD78P018F incorporates one-time PROM which can be written to once only, or EPROM to which programs can be written, erased and rewritten.

By setting the memory size switching register and internal expansion RAM switching register it is possible to make the functions of this device, except for the PROM specification and mask option for pins P60 to P63, identical to those of a mask ROM product.

The differences between the µPD78P018F and mask ROM products are shown in Table 1-1.

Table 1-1 Differences Between µPD78P018F and Mask ROM Product

www.Dc	ltem	μPD78P018F	Mask ROM Product	
WWW.DC	IC pin	No	Yes	
	V _{PP} pin	Yes	No	
	Mask option for pins P60 to P63	No mask option for incorporation of pull- up resistor	Pull-up resistor incorporation possible by means of mask option	

Note 1. In the μ PD78P018F, the capacity of the internal PROM and internal high-speed RAM can be changed by means of the memory size switching register.

After RESET input, the internal PROM capacity is 60K bytes, and the internal high-speed RAM capacity is 1K bytes.

2. In the μ PD78P018F, the capacity of the internal expansion RAM can be changed by means of the internal expansion RAM switching register.

The internal expansion RAM is set to 1K bytes by means of RESET input.

2. PIN FUNCTIONS

2.1 NORMAL OPERATING MODE PINS

(1) Port pins (1/2)

Pin Name	I/O		Function	After Reset	Dual- Function Pin
P00 P01 P02	Input	Port 0	Input only	Input	INTP0/TI0
	Input/	5-bit I/O port	Input/output can be specified in 1-bit unit.	Input	INTP1
	output		When used as an input port, pull-up resistor can		INTP2
P03			be used by software.		INTP3
P04* 1	Input		Input only	Input	XT1
www.Dat ₽†®&፟ቝ፞፞ ‡	output		t port. be specified in 1-bit unit. input port, pull-up resistor can be used by	Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/output	•		SO1
P22	P22 Input/output can be specified in 1-bit unit. When used as an input port, pull-up resistor can be used by software. P24 P25	·		SCK1	
P23		imput port, pull up resistor curr so used sy		STB	
P24			BUSY		
P25			SI0/SB0		
P26					SO0/SB1
P27	-				SCK0
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output	t port. be specified in 1-bit unit.		TO1
P32			input port, pull-up resistor can be used by		TO2
P33	_	software.			TI1
P34	_				TI2
P35	_				PCL
P36	_				BUZ
P37					_
P40 to P47	Input/ output	When used as an software.	t port. be specified in 8-bit unit. input port, pull-up resistor can be used by s set to 1 by falling edge detection.	Input	AD0 to AD7

- * 1. When using the P04/XT1 pins as an input port, set 1 in bit 6 (FRC) of the processor clock control register and do not use the internal feedback resistor of the subsystem clock oscillator.
 - 2. When pins P10/ANI0 to P17/ANI7 are used as analog inputs of the A/D converter, the use of the pull-up resistor is automatically disabled.

(1) Port Pins (2/2)

	Pin Name	I/O	Function	After Reset	Dual- Function Pin	
	P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified in 1-bit unit. When used as an input port, pull-up resisto software.	Input	A8 to A15	
www.Dc	P60 P61 P62	Input/ output	Port 6 8-bit input/output port. Input/output can be specified in 1-bit unit.	N-ch open-drain input/ output port. LED can be driven directly.	Input	_
	P64 P65 P66			When used as an input port, pull-up resistor can be used by software.		RD WR WAIT
	P67					ASTB

(2) Non port pins (1/2)

	Pin Name	I/O	Function	After Reset	Dual- Function Pin
	INTP0	Input	External interrupt input with specifiable valid edge (rising edge, falling	Input	P00/TI0
	INTP1		edge, or both rising edge and falling edges).		P01
	INTP2				P02
	INTP3		Falling edge detection external interrupt input.	Input	P03
	SI0	Input	Serial interface serial data input.	Input	P25/SB0
	SI1				P20
	SO0	Output	Serial interface serial data output.	Input	P26/SB1
	SO1				P21
www.Do	SB0	Input/	Serial interface serial data input/output.	Input	P25/SI0
	SB1	output			P26/SO0
	SCK0	Input/	Serial interface serial clock input/output	Input	P27
	SCK1	output			P22
	STB	Output	Serial interface automatic transmission/reception strobe output.	Input	P23
	BUSY	Input			P24
	TI0	Input			P00/INTP0
	TI1				P33
	TI2		Input of external count clock to 8-bit timer (TM2).		P34
	TO0	Output	16-bit timer output (dual-function with 14-bit PWM output)	Input	P30
	TO1		8-bit timer output		P31
	TO2				P32
	PCL	Output	Clock output (for main system clock subsystem clock trimming).	Input	P35
	BUZ	Output	Buzzer output.	Input	P36
	AD0 to AD7	Input/ output	Low address/data bus when memory is expanded externally.	Input	P40 to P47
	A8 to A15	Output			P50 to P57
	RD	Output			P64
	WR				P65
	WAIT	Input	Wait insertion at external memory access.	Input	P66
	ASTB	Output	Output of strobe which externally latches address information to be output to port 4 when accessing external memory.	Input	P67

(2) Non port pins (2/2)

	Pin Name	I/O Function		After Reset	Dual- Function Pin
	ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
	AVREF	Input	A/D converter reference voltage input.	_	_
	AVDD	_	A/D converter analog power supply. Connected to VDD.	_	_
	AVss	_	A/D converter ground potential. Connected to Vss.	_	_
	RESET	Input	System reset input.	_	_
	X1	Input	Main system clock oscillation crystal connection.		_
	X2	_		_	_
	XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
www.Do	XT2	_		_	_
	VDD	_	Positive power supply.		_
	VPP	_	High voltage application for program write/verify. Connected Vss in normal operating mode.		_
	Vss	_	Ground potential	_	_

2.2 PROM PROGRAMMING MODE PINS

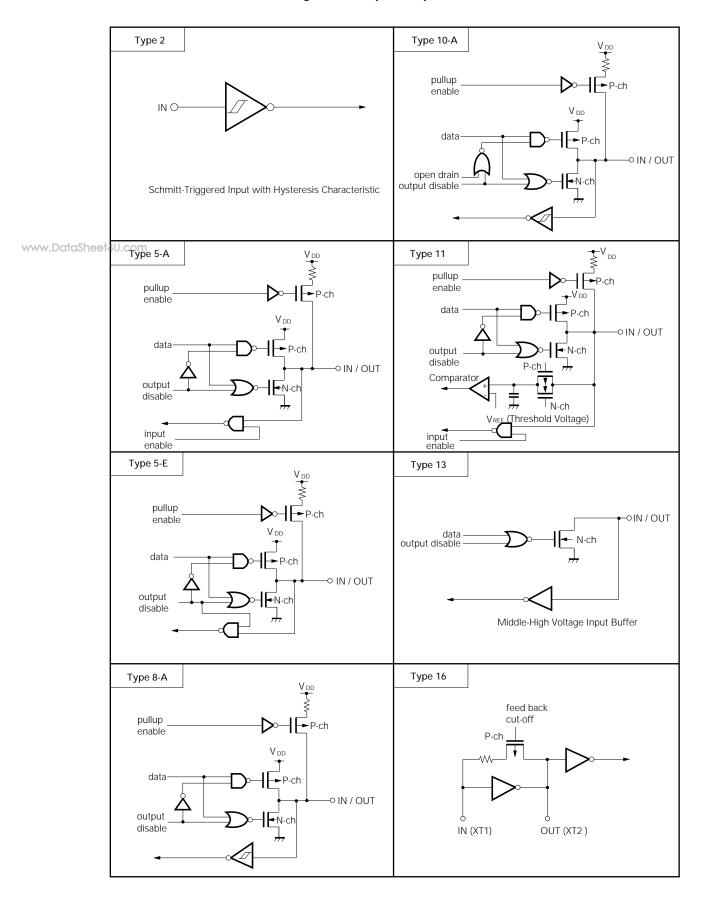
Pin Name	I/O	Function
RESET	Input	PROM programming mode setting. When +5 V or +12.5 V is applied to the VPP pin and a low-level signal to the RESET pin, the PROM programming mode is set.
VPP	Input	PROM programming mode setting and high voltage application for program write/verify.
A0 to A16	Input	Address bus.
D0 to D7	Input/ output	Data bus.
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	PROM read strobe input.
PGM	Input	PROM programming mode program/program inhibit input.
VDD	_	Positive power supply.
Vss	_	Ground potential.

2.3 PIN INPUT/OUTPUT CIRCUITS AND CONNECTION OF UNUSED PINS

The input/output circuit type of each pin and the recommended connection of unused pins are shown in Table 2-1.

The configuration of each type of input/output circuit is shown in Fig. 2-1.

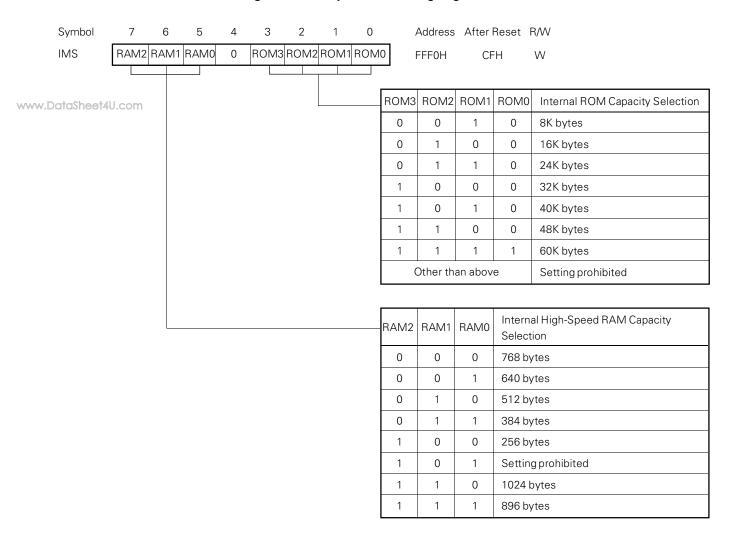
Table 2-1 Input/Output Circuit Type of Each Pin


Pin Name	Input/Output Circuit Type	I/O	Recommended Connection when not Use		
P00/INTP0/TI0	2	Input	Connected to Vss.		
P01/INTP1	8-A	Input/output	Input : Connected to Vss .		
P02/INTP2			Output : Leave open.		
P03/INTP3					
P04/XT1	16	Input	Connected to Vss.		
P10/ANI0 to P17/ANI7	11	Input/output	Input : Connected to VDD or Vss . Output : Leave open.		
P20/SI1	8-A	Input/output	Input : Connected to VDD or Vss .		
P21/SO1	5-A		Output : Leave open.		
P22/SCK1	8-A				
P23/STB	5-A				
P24/BUSY	8-A				
P25/SI0/SB0	10-A				
P26/S00/SB1					
P27/SCK0					
P30/TO0	5-A	Input/output	Input : Connected to VDD or Vss .		
P31/TO1			Output : Leave open.		
P32/TO2					
P33/TI1	8-A				
P34/TI2					
P35/PCL	5-A				
P36/BUZ					
P37					
P40/AD0 to P47/AD7	5-E	Input/output	Input : Connected to Vss . Output : Leave open.		
P50/A8 to P57/A15	5-A	Input/output	Input : Connected to VDD or Vss .		
P60 to P63	13		Output : Leave open.		
P64/RD	5-A				
P65/WR					
P66/WAIT					
P67/ASTB					
RESET	2	Input	_		
XT2	16	_	Leave open.		
AVREF	_		Connected to Vss.		
AVDD			Connected to VDD.		
AVss			Connected to Vss.		
VPP					

www.DataSheet4U

μ**PD78P018F**

Fig. 2-1 Pin Input/Output Circuits


3. MEMORY SIZE SWITCHING REGISTER (IMS)

This register is used to prevent part of the internal memory from being used by software. Setting the memory size switching register (IMS) enables memory mapping identical to that of a mask ROM product with different internal memory (ROM and RAM) to be used.

IMS is set by an 8-bit memory manipulation instruction.

RESET input sets this register to CFH.

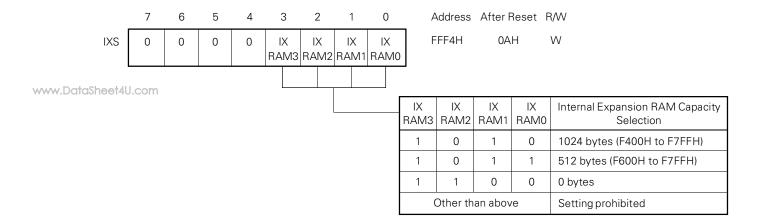
Fig. 3-1 Memory Size Switching Register Format

The IMS set values to make the memory map identical to various mask ROM products are shown in Table 3-1.

Table 3-1 Examples of Memory Size Switching Register Settings

Relevant Mask ROM Product	IMS Set Value
μPD78013F*	C6H
μPD78014F*	C8H
μPD78016F*	ССН

* Under development



4. INTERNAL EXPANSION RAM SWITCHING REGISTER (IXS)

This register is used to prevent part of the internal expansion RAM from being used by software. Setting the internal expansion RAM switching register enables memory mapping identical to that of a mask ROM product with different internal expansion RAM to be used.

IXS is set by an 8-bit memory manipulation instruction.

RESET input sets this register to 0AH.

5. PROM PROGRAMMING

The μ PD78P018F incorporates a 60K-byte PROM as program memory. When programming the μ PD78P018F, the PROM programming mode is set by means of the V_{PP} and RESET pins. For the connection of unused pins, see "Pin Configuration, (2) PROM programming mode".

5.1 OPERATING MODES

When +5 V or +12.5 V is applied to the V_{PP} pin and a low-level signal is applied to the RESET pin, the μ PD78P014 enters the programming mode. This is one of the operating modes shown in Table 5-1 below according to the setting of the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins.

Also, the PROM contents can be read by setting the read mode.

Table 5-1 PROM Programming Operating Modes

Pin Operating Mode	s RESET	Vpp	VDD	CE	ŌĒ	PGM	D0 to D7
Page data latch				Н	L	Н	Data input
Page write				Н	Н	L	High impedance
Byte write		+12.5 V	0.5.1	L	Н	H L	Data input
Program verify	L	+12.5 V	<u> </u>	Data output			
Program inhibit				High impedance			
					L	L	
Read				L	L	Н	Data output
Output disable		+5 V	+5 V	L	Н	х	High impedance
Standby				Н	х	х	High impedance

Remarks x:L or H.

(1) Read mode

Read mode is set by setting $\overline{CE} = L$ or $\overline{OE} = L$.

(2) Output disable mode

Setting \overline{OE} = H makes the data output high impedance, and sets the output disable mode.

Therefore, when more than one μ PD78P018F is connected to the data bus, data can be read from any of the devices by controlling the \overline{OE} pin.

(3) Standby mode

Standby mode is set by setting $\overline{CE} = H$.

In this mode, the data output becomes high impedance regardless of the OE conditions.

(4) Page data latch mode

Page data latch mode is set by setting $\overline{CE} = H$, $\overline{PGM} = H$ and $\overline{OE} = L$ at the beginning of the page write mode. www.DataInthis mode, data of 4 bytes per page is latched in the internal address/data latch circuit.

(5) Page write mode

After address and data of 4 bytes per page have been latched in the page data latch mode, page write is performed by applying a 0.1 ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Program verify can then be performed by setting $\overline{CE} = L$, $\overline{OE} = L$.

If programming cannot be performed with one program pulse, write and verify should be repeated X times (X - 10).

(6) Byte write mode

A byte write is performed by applying a 0.1 ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = L$, $\overrightarrow{OE} = H$. A program verify can then be performed by setting $\overrightarrow{OE} = L$.

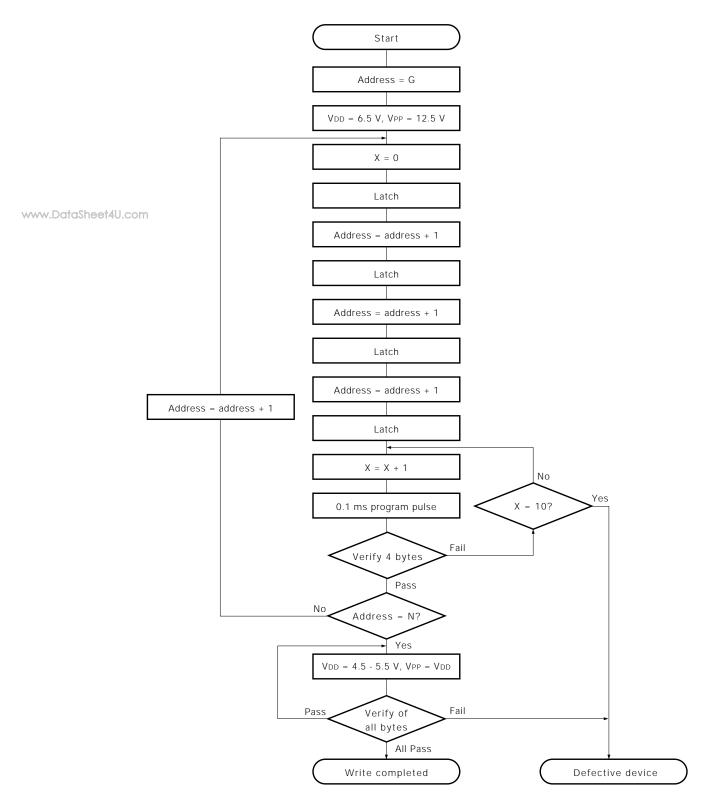
If programming cannot be performed with one program pulse, write and verify should be repeated X times (X - 10).

(7) Program verify mode

Program verify mode is set by setting $\overline{CE} = L$, $\overline{PGM} = H$ and $\overline{OE} = L$.

After a write has been executed, verification should be performed to ensure a correct write is achieved in this mode.

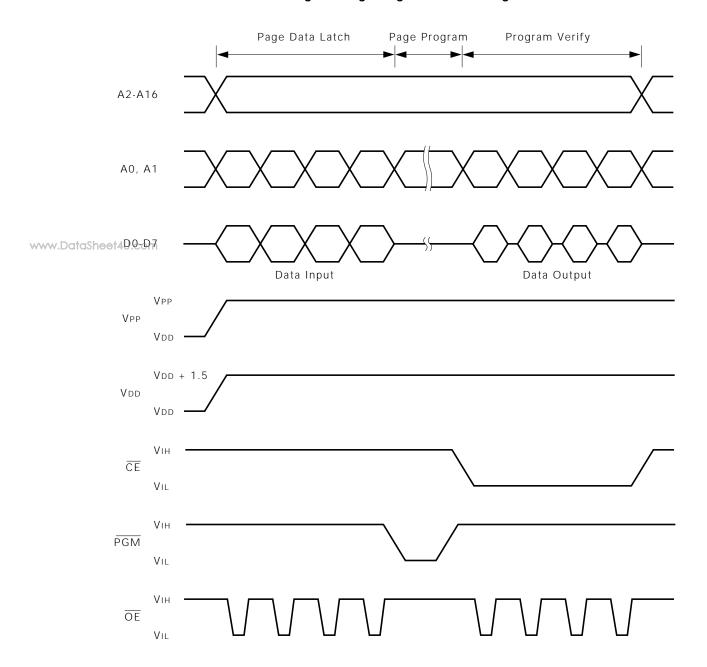
(8) Program inhibit mode


When the OE pin, VPP pin and D0 to D7 pins are connected in parallel in more than one μPD78P018F, program inhibit mode is used in the case where a writing is performed to one of these devices.

The write mode or byte write mode above is used for writing. Writing is not performed to a device whose PGM pin has been driven high.

5.2 PROM WRITE PROCEDURE

Fig. 5-1 Page Program Mode Flowchart


Remarks 1. G indicates start address.

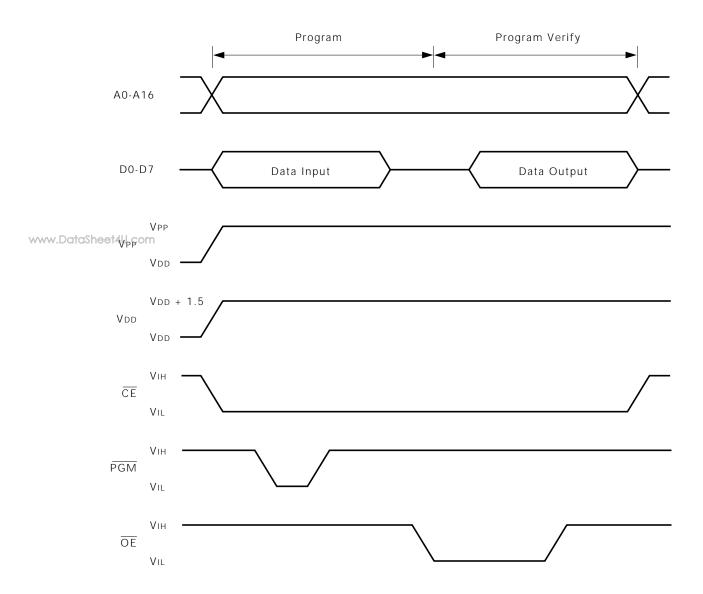
2. N indicates program final address.

μ**PD78P018F**

Fig. 5-2 Page Program Mode Timing

Start Address = G $V_{DD} = 6.5 \text{ V}, V_{PP} = 12.5 \text{ V}$ X = 0X = X + 1No www.DataSheet4U.com Yes X = 10?0.1 ms program pulse Address = address + 1Fail Verify Pass No Address = N?Yes VDD = 4.5 - 5.5 V, VPP = VDDPass Fail Verify of all bytes All Pass Write completed Defective device

Fig 5-3 Byte Program Mode Flowchart


Remarks 1. G indicates start address.

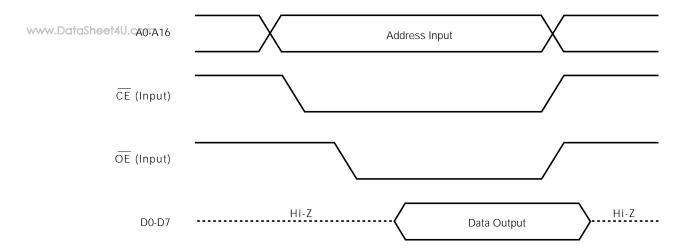
2. N indicates program final address.

μ**PD78P018F**

Fig 5-4 Byte Program Mode Timing

Note

- 1. VDD should be applied before VPP and disconnected after VPP.
- 2. VPP including overshoot should not exceed +13.5 V.
- 3. Removal and reinsertion while +12.5 V is applied to VPP may have an adversary effect on reliability.


5.3 PROM READING PROCEDURE

PROM contents can be read onto the external data bus (D0 to D7) using the following procedure.

- (1) Fix the $\overline{\text{RESET}}$ pin low. Supply +5 V to the VPP pin. Unused pins are handled as shown in "PIN CONFIGURATION, (2) PROM programming mode".
- (2) Supply +5 V to the V_{DD} and V_{PP} pins.
- (3) Input address of data to be read to pins A0 to A14.
- (4) Read mode.
- (5) Output data to pins D0 to D7.

Timing for steps (2) to (5) above is shown in Fig. 5-5.

Fig. 5-5 PROM Read Timing

NEC μPD78P018F

6. ERASURE PROCEDURE (μPD78P018FDW/78P018FKK-S)

With the μ PD78P018FDW/78P018FKK-S, it is possible to erase (set to FFH) data written to the program memory, and rewrite the memory.

The data can be erased by irradiating the window with light with a wavelength of approximately 400 nm or less. Usually, irradiation is performed with ultraviolet light with a wavelength of 254 nm. The amount of radiation required for complete erasure is shown below.

- UV intensity x erasure time: 15 W·s/cm² or more
- Erasure time: 15 to 20 minutes (using a 12,000 μW/cm² ultraviolet lamp. A longer erasure time may be required in case of deterioration of the ultraviolet lamp or dirt on the package window).

Erasure should be carried out with the ultraviolet lamp placed at a distance of 2.5 cm or less from the window. If the ultraviolet lamp is fitted with a filter, this should be removed before performing irradiation.

www.DataSheet4U.com

7. ERASURE WINDOW SEAL (μPD78P018FDW/78P018FKK-S)

A protective seal should be applied to the erasure window except when erasing the EPROM contents, in order to prevent the EPROM contents from being erroneously erased by light other than from the erasure lamp, and the internal circuits other than EPROM from misoperation due to light.

8. ONE-TIME PROM PRODUCT SCREENING

One-time PROM products (µPD78P018FCW/78P018FGC-AB8/78P018FGK-8A8) cannot be fully tested and shipped by NEC for reasons related to their structure. It is recommended that after writing the necessary data and storing at high temperature under the following conditions, screening should be conducted to verify the PROM.

Storage Temperature	Duration
125 °C	24 hours

9. PACKAGE INFORMATION

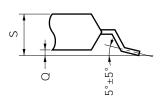
64-Pin Plastic Shrink DIP (750 mil)

www.DataSheet4U.com

NEC μ PD78P018F

64-Pin Ceramics Shrink DIP (750 mil)

64-Pin Plastic QFP (__14)


www.DataSheet4U.com

64-Pin Plastic QFP (☐12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P64GK-65-8A8

ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	0.472+0.009
С	12.0±0.2	0.472+0.009
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
Н	0.30±0.10	0.012+0.004
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.4±0.2	0.055±0.008
L	0.6±0.2	0.024+0.008
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004
N	0.10	0.004
Р	1.4	0.055
Q	0.1±0.1	0.004±0.004
S	1.7 MAX.	0.067 MAX.

64-Pin Ceramic WQFN (☐14)

www.DataSheet4U.com

IN PREPARATION

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the $\mu PD78P018F$.

Language Processing Software

RA78K/0*1,2	78K/0 series common assembler package
CC78K/0*1,2	78K/0 series common C compiler package
CC78K/0-L*1,2	78K/0 series common C compiler library source file

PROM Writing Tools

	PG-1500	PROM programmer
,	PA-78P018CW*3	Programmer adapters connected to PG-1500
www.Data	PA-78P018GC *3	
**************************************	PA-78P018GK *3	
	PA-78P018KK-S* 3	
	PG-1500 controller*1	PG-1500 control program

Debugging Tools

IE-78000-R	78K/0 series common in-circuit emulator
IE-78000-R-BK	78K/0 series common break board
IE-78014-R-EM-A*3	μPD78002/78014 series common evaluation emulation board
EP-78240CW-R EP-78240GC-R EP-78012GK-R	μPD78244 series common emulation probes
EV-9200GC-64 EV-9500GK-64	Sockets to be mounted on a user system board made for 64-pin plastic QFP
SD78K/0*1	IE-78000-R screen debugger
DF78014* 1	μPD78014 series common device file

Real-Time OS

RX78K/0* 1,2	78K/0 series common real-time OS
---------------------	----------------------------------

Fuzzy Inference Development Support System

FE9000*1	Fuzzy knowledge data creation tool
FT9080*1	Translator
FI78K0* 1	Fuzzy inference module
FD78K0* 1,3	Fuzzy inference debugger

- * 1. PC-9800 series (MS-DOS TM) based and IBM PC/AT TM (PC-DOS TM) based
 - 2. HP9000 series 300™ (HP-UX™) based, SPARCstation™ (Sun OS™) based, EWS-4800 series™ (EWS-UX/V™) based
 - 3. Under development

Conversion Socket (EV-9200GC-64) External View and Recommended Board Mounting Pattern

Fig. A-1 EV-9200GC-64 External View (Reference)

www.DataSheet4U.com

NEC μ PD78P018F

Fig. A-2 EV-9200GC-64 Recommended Board Mounting Pattern (Reference)

www.DataSheet4U.com

Note The mount pad dimensions for EV-9200 may be partially different from those (for QFP) of the relevant products.

Refer to "Surface Mount Technology Manual, IEI-1207" for recommended QFP mount pad dimensions.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No. (Japanese)
User's Manual		To be created
Instruction Application Table		To be created
Instruction Set		To be created
Special Function Register Application Table		To be created
Application Note	Introductory Volume I	IEA-715
	Introductory Volume II	IEA-740
	Floating-Point Operation Program Volume	IEA-718

www.Data Development Tool Documents (User's Manuals)

Document Name		Document No. (Japanese)
RA78K Series Assembler Package	Operation Volume	EEU-809
	Language Volume	EEU-815
RA78K Series Structured Assembler Preprocessor		EEU-817
CC78K Series C Compiler	Operation Volume	EEU-656
	Language Volume	EEU-655
CC78K Series Library Source File		EEU-777
PG-1500 PROM Programmer		EEU-651
PG-1500 Controller		EEU-704
IE-78000-R		EEU-810
IE-78000-R-BK		EEU-867
IE-78014-R-EM-A		To be created
SD78K/0 Screen Debugger	Primer	EEU-852
	Reference	EEU-816

Note For design purposes, etc., be sure to use the latest documents.

Built-In Software Documents (User's Manuals)

Document Name		Document No. (Japanese)
78K/0 Series Real-Time OS	Introductory Volume	EEU-912
	Installation Volume	EEU-911
	Debugger Volume	EEU-930
	Technical Volume	EEU-913
Fuzzy Knowledge Data Creation Tools		EEU-829
78/0, 78K/II, 87AD Series		EEU-862
Fuzzy Inference Development Support System Translator		
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-921

www.DataSheet411.com Other Documents

Document Name	Document No. (Japanese)
Package Manual	IEI-635
Surface Mount Technology Manual	IEI-616
Quality Grades on Semiconductor Devices	IEI-620
NEC Semiconductor Device Reliability & Quality Control	IEM-5068
Electrostatic Discharge (ESD) Test	MEM-539
Semiconductor Devices Quality Control Guarantee Guide	MEI-603
Microcomputer Related Products Guide Other Manufacturers Volume	MEI-604

Note For design purposes, etc., be sure to use the latest documents.

NEC μPD78P018F

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written www. Date on sent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime systems, etc.

M4 92.6

FIP is a trademark of NEC Corporation.

EWS-4800 series and EWS-UX/V are trademarks of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 300 and HP-UX are trademarks of Hewlett-Packard Company.

SPARC Station is a trademark of SPARC International, Inc.

Sun OS is a trademark of Sun Microsystems Corporation.