

Description

The μ PD4361 is a 65,536-word by 1-bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N-channel memory cells with polysilicon resistors make the μ PD4361 a high-speed device that requires very low power and no clock or refreshing.

The device is packaged in a 22-pin plastic DIP and 22-pin ceramic leadless chip carrier and has two types of access times, address and chip select. In addition, the μ PD4361C-L features low-power data retention.

Features

- □ 65, 536 x 1-bit organization
- □ Single +5-volt power supply
- □ Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Separated data input and output
- Three-state outputs
- Data retention current of 50 µA max available from -L versions only
- Standard 22-pin plastic DIP and ceramic LCC
- Standard JEDEC pin configurations

Ordering Information

Part Number	Access Time (max)	Package
μPD4361C-45	45 ns	22-pin plastic DIP
C-55	55 ns	-
C-70	70 ns	-
μPD4361C-45L	45 ns	-
C-55L	55 ns	-
C-70L	70 ns	-
μPD4361K-40	40 ns	22-pin ceramic LCC
K-45	45 ns	-
K-55	55 ns	-

Pin Configurations

22-Pin Plastic DIP

|--|

22-Pin Ceramic LCC

Pin Identification

Symbol	Function					
A ₀ - A ₁₅	Address Inputs					
D _{IN}	Data input					
D _{OUT}	Data output					
হের	Chip select					
WE	Write enable					
GND	Ground					
Vcc	+5-volt power supply					

Absolute Maximum Ratings

Supply voltage, V _{CC}	-0.5 to +7.0 V		
Input voltage, V _{IN} (Note 1)	-0.5 to +7.0		
Operating temperature, T _{OPR} (Note 2)	0 to +70°C		
Storage temperature, T _{STG} (Note 3)	- 55 to +125°C		
Power dissipation, PD	1.0 W		

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	۷
Input voltage, high	ViH	2.2		V _{CC} + 0.5	۷
Input voltage, low	VIL	- 0.5		0.8	۷
Operating temperature	TA	0		70	°C

Notes:

(1) $V_{IL} = -3.0$ V minimum for 20 ns maximum pulse.

Capacitance

TA = 25°C; f = 1 MHz; VIN and VOUT = 0 V (Note 1)

Parameter	Symbol	Min	Тур	Max	Unit
Input capacitance	C _{IN}			5	рF
Output capacitance	CDOUT			7	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

- (1) $V_{IN} = -3.0 V$ minimum for 20 ns maximum pulse.
- (2) T_{OPR} for 4361K = -10 to +85°C.
- (3) T_{STG} for 4361K = -65 to +150°C.

Truth Table

Function	<u>T</u> S	WE	Input/Output	Icc
Not selected	н	х	High-Z	Standby
Read	L	н	D _{OUT}	Active
Write	L	L	High-Z	Active

Block Diagram

DC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	ίμ	-2		2	μA	$V_{IN} = 0 V \text{ to } V_{CC}$
Output leakage current	ILO	-2		2	μA	$V_{OUT} = 0 V$ to V_{CC} ; $\overline{CS} = V_{IH}$
Operating supply current	lcc			120	mA	CS = V _{IL} ; I _{DOUT} = 0 mA
Standby supply current	I _{SB}			20	mA	CS = V _{IH}
	I _{SB1}			2	mA	$\overline{CS} \ge V_{CC} - 0.2 \text{ V}; \text{ V}_{IN} \le 0.2 \text{ V} \text{ or } \ge V_{CC} - 0.2 \text{ V}$
Output voltage, low	VOL			0.4	v	I _{OL} = 8.0 mA
Output voltage, high	V _{OH}	2.4			v	I _{OH} = -4.0 mA

AC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%$

		μPD4	361-40	μPD4	361-45	μPD4	361-55	μPD4	361-70		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Read Operation											
Read cycle time	t _{RC}	40		45		55		70		ns	(Note 2)
Address access time	tAA		40		45		55		70	ns	
Chip select access time	tACS		40		45		55		70	ns	
Output hold from address change	t _{он}	5		5		5		5		ns	
Chip select to output in low-Z	t _{LZ}	5		5		5		5		ns	(Note 3)
Chip deselect to output in high-Z	t _{HZ}	0	22	0	25	0	30	0	30	ns	(Note 4)
Chip select to power-up time	tpu	0		0		0		0		ns	
Chip deselect to power-down time	t _{PD}	0	27	0	30	0	40	0	40	ns	
Write Operation											
Write cycle time	twc	40		45		55		70		ns	(Note 2)
Chip select to end of write	tcw	37		40		50		60		ns	
Address valid to end of write	tAW	37		40		50		60		ns	
Address setup time	tas	0		0		0		0		ns	
Write pulse width	t _{WP}	23		25		30		40		ns	
Write recovery time	twe	0		0		0		0		กร	
Data valid to end of write	tow	23		25		25		30		ns	
Data hold time	tDH	0		0	·	0		0		ns	
Write enable to output in high-Z	t _{wz}	0	22	0	25	0	25	0	30	ns	(Note 4)
Output active from end of write	tow	0		0		0		0		ns	(Note 3)

Notes:

 Input pulse levels = GND to 3.0 V; input pulse rise and fail times = 5 ns; timing reference levels = 1.5 V; see figures 1 and 2 for output load.
All read cycle timings are referenced from the last valid address to

the first transitioning address.

(4) Transition is measured at $V_{OL}\,+\,200$ mV and $V_{OH}\,-\,200$ mV with the loading shown in figure 2.

⁽³⁾ Transition is measured at ±200 mV from steady-state voltage with the loading shown in figure 2.

Low V_{CC} Data Retention Characteristics (for -L Version Only) $T_A = 0.1070^{\circ}C$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Data retention supply voltage	VCCDR	2.0		5.5	v	$\frac{\overline{CS} \ge V_{CC} - 0.2 \text{ V; } V_{IN} \ge V_{CC} - 0.2 \text{ V o}}{0 \text{ V} \le V_{IN} \le 0.2 \text{ V}}$
Data retention supply current	ICCDR		1	50	μA	$V_{CC} = 3.0 \text{ V}; \ \overline{CS} \ge V_{CC} - 0.2 \text{ V};$ $V_{IN} \ge V_{CC} - 0.2 \text{ V} \text{ or } 0 \text{ V} \le V_{IN} \le 0.2 \text{ V}$
Chip deselect to data retention	^t CDR	0			ns	
Operation recovery time	t 4	^t RC			ns	

Data Retention Timing

Figure 1. Output Load

Figure 2. Output Load for t_{HZ} , t_{LZ} , t_{WZ} , and t_{OW}

7

µPD4361

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

µPD4361

Timing Waveforms (cont)

WE-Controlled Write Cycle

7

µPD4361

Timing Waveforms (cont)

___.

