# agere

# D372-Type Digital Uncooled DFB Laser Module for 2.5 Gbits/s Applications



The low-profile D372-Type Laser Module is ideally suited for OC-48 SONET and other high-speed digital applications.

### Features

- 8-pin package suitable for SONET applications
- Narrow linewidth, distributed feedback, multiquantum-well (DFB-MQW) 1.3 µm laser with singlemode fiber pigtail
- Choice of wide operating temperature ranges: -40 °C to +85 °C or 0 °C to +85 °C
- No TEC required
- High output power: typical 2.0 mW peak power coupled into single-mode fiber
- Hermetically sealed active components
- Internal back-facet monitor
- Built-in thermistor and bias T
- 25 Ω input impedance
- Internal isolator
- Qualification program: Telcordia Technologies\* TA-983

#### Applications

- SONET OC-48/STM-16 systems
- Telecommunications
- Secure digital data systems

#### Benefits

- Easily board mounted
- Gull wing leads
- No additional heat sinks required
- Low-cost alternative to industry-standard, 14-pin isolated laser module (ILM)
- Highly efficient DFB-MQW laser structure allows for lower threshold and drive currents, and reduced power consumption

# Description

The D372-type uncooled laser module consists of a laser diode coupled to a single-mode fiber pigtail. The device is available in a standard, 8-pin configuration (see Figure 1 and/or Table 1) and is ideal for long-reach (SONET) and other high-speed digital applications.

The module includes a narrow linewidth (<1 nm), DFB-MQW single-mode laser and an InGaAs PIN photodiode back-facet monitor in a hermetically sealed package.

This package is optimized for a 25  $\Omega$  input impedance and allows for dc biasing through an internal bias T. A thermistor has been included for feedback to board-level bias circuitry, if needed.

<sup>\*</sup> Telcordia Technologies is a registered trademark of Telcordia Technologies, Inc.

#### Description (continued)

The device characteristics listed in this document are met at 2.0 mW output power. Higher- or lower-power operation is possible. Under conditions of a fixed photodiode current, the change in optical output is typically  $\pm 0.5$  dB over an operating temperature range of -40 °C to +85 °C.

This device incorporates the new laser 2000 manufacturing process from the Optoelectronic Products unit of Agere Systems Inc.. Laser 2000 is a low-cost platform that targets high-volume manufacturing and tighter product distributions on all optical subassemblies. This platform incorporates an advanced optical design that is produced on one of the highly automated production lines at the Opotelectronic manufacturing facility. The laser 2000 platform is qualified for the central office and uncontrolled environments, and can be used for applications requiring high performance and low cost.

#### **Table 1. Pin Descriptions**

| Pin Number | Connection                             |
|------------|----------------------------------------|
| 1          | Thermistor                             |
| 2          | Thermistor, package GND                |
| 3          | Laser dc bias cathode (-) choke        |
| 4          | Photodiode cathode                     |
| 5          | Photodiode anode                       |
| 6          | Laser diode anode (+)                  |
| 7          | Laser RF input cathode (–) 25 $\Omega$ |
| 8          | Laser diode anode (+)                  |



1-900.b

#### Figure 1. D372-Type Digital Uncooled DFB Mini 8-Pin Laser Module Schematic, Top View

#### **Absolute Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

| Parameter                           | Symbol | Min | Max    | Unit |
|-------------------------------------|--------|-----|--------|------|
| Maximum Peak Laser Drive Current or | ЮР     |     | 150    | mA   |
| Maximum Fiber Power*                | Рмах   | —   | 10     | mW   |
| Peak Reverse Laser Voltage:         |        |     |        |      |
| Laser                               | Vrl    | —   | 2      | V    |
| Monitor                             | Vrd    | _   | 20     | V    |
| Monitor Forward Current             | lfd    |     | 2      | mA   |
| Operating Case Temperature Range    | Tc     | -40 | 85     | °C   |
| Storage Case Temperature Range      | Tstg   | -40 | 85     | °C   |
| Lead Soldering Temperature/Time     | —      | _   | 260/10 | °C/s |
| Relative Humidity (noncondensing)   | RH     | _   | 85     | %    |

\* Rating varies with temperature.

#### **Handling Precautions**

Caution: This device is susceptible to damage as a result of electrostatic discharge (ESD). Take proper precautions during both handling and testing. Follow guidelines such as JEDEC Publication No. 108-A (Dec. 1988).

Although protection circuitry is designed into the device, take proper precautions to avoid exposure to ESD.

#### **Electrical/Optical Characteristics**

| Table 2. D372-20 Electrical/Optical Characteristics | (over operating temperature range unless otherwise noted) |
|-----------------------------------------------------|-----------------------------------------------------------|
|-----------------------------------------------------|-----------------------------------------------------------|

| Parameter                               | Symbol | Test Conditions                        | Min  | Тур   | Max   | Unit  |
|-----------------------------------------|--------|----------------------------------------|------|-------|-------|-------|
| Operating Temperature<br>Range          | Т      | _                                      | -40  | _     | 85    | °C    |
| Optical Output Power                    | PF     | CW, peak                               | _    | 2     | _     | mW    |
| Threshold Current                       | Ітн    | T = 25 °C                              | 5    | 11    | 15    | mA    |
|                                         |        | T = full range                         | 2    | —     | 50    | mA    |
| Modulation Current                      | Імор   | CW, PF = 2.0 mW, T = 25 °C             | 13   | 20    | 33    | mA    |
|                                         |        | CW, Імом = const.,T = full range       | 7.5  | —     | 55    |       |
| Slope Efficiency*                       | SE     | CW, PF = 2.0 mW, T = 25 °C             | 61   | —     | 154   | μW/mA |
| Center Wavelength                       | λς     | PF = 2.0 mW, CW                        | 1280 |       | 1335  | nm    |
| Spectral Width (-20 dB)                 | Δλ     | PF = 2.0 mW                            | _    |       | 1     | nm    |
| Side-mode Suppression<br>Ratio          | SMSR   | CW, PF = 2.0 mW                        | 30   | 40    |       | dB    |
| Tracking Error                          | TE     | IMON = constant, CW                    | _    | 0.5   | 1.25  | dB    |
| Spontaneous Emission                    | Ртн    | I = (0.9) Ітн                          |      |       | 50    | μW    |
| Rise/Fall Times                         | tr, tr | 10%—90% pulse <sup>†</sup> , T = 25 °C | _    | 0.125 | 0.150 | ns    |
| Dispersion Penalty                      | DP     | <60 km, 256 ps/nm                      | _    | _     | 1.0   | dB    |
| Optical Return Loss                     | ORL    | CW                                     | 18   | _     | _     | dB    |
| Forward Voltage                         | VF     | At bias coil                           | _    | 1.1   | 1.6   | V     |
| Input Impedance                         | R      | —                                      | _    | 25    |       | Ω     |
| Monitor Current                         | Imon   | $V_R^{\ddagger} = 5 V$                 | 100  |       | 1000  | μΑ    |
| Monitor Dark Current                    | lD     | $VR^{\ddagger} = 5 V$                  |      | 10    | 200   | nA    |
| Wavelength Tempera-<br>ture Coefficient | _      | —                                      | —    | 0.09  | 0.1   | nm/°C |

\* The slope efficiency is used to calculate the modulation current for a desired output power. This modulation current plus the threshold current comprise the total operating current for the device.

† Corrected for electrical pulse fall time.

‡ VR = reverse voltage.

#### Electrical/Optical Characteristics (continued)

| Parameter                               | Symbol | Test Conditions                                           | Min  | Тур   | Max   | Unit  |
|-----------------------------------------|--------|-----------------------------------------------------------|------|-------|-------|-------|
| Operating Temperature<br>Range          | Т      | _                                                         | 0    | _     | 85    | °C    |
| Optical Output Power                    | PF     | CW, peak                                                  | _    | 2     | —     | mW    |
| Threshold Current                       | Ітн    | T = 25 °C                                                 | 5    | 11    | 15    | mA    |
|                                         |        | T = full range                                            | 2    |       | 50    | mA    |
| Modulation Current                      | Імор   | CW, PF = 2.0 mW, T = 25 °C                                | 13   | 20    | 33    | mA    |
|                                         |        | CW, IMON = const.,T = full range                          | 7.5  |       | 55    |       |
| Slope Efficiency*                       | SE     | CW, PF = 2.0 mW, T = 25 °C                                | 61   | _     | 154   | μW/mA |
| Center Wavelength                       | λc     | PF = 2.0 mW, CW                                           | 1280 | _     | 1335  | nm    |
| Spectral Width (-20 dB)                 | Δλ     | PF = 2.0 mW                                               | _    | _     | 1     | nm    |
| Side-mode Suppression<br>Ratio          | SMSR   | CW, PF = 2.0 mW<br>(See Reliability Information, below)   | 30   |       |       | dB    |
| Tracking Error                          | TE     | Iмон = constant, CW                                       | _    | 0.5   | 1.25  | dB    |
| Spontaneous Emission                    | Ртн    | I = (0.9) Ітн                                             | _    | _     | 50    | μW    |
| Rise/Fall Times                         | tr, tr | 10%—90% pulse <sup>†</sup> , T = 25 °C                    | _    | 0.125 | 0.150 | ns    |
| Dispersion Penalty                      | Dp     | <60 km, 256 ps/nm<br>(See Reliability Information, below) |      |       | 1.0   | dB    |
| Optical Return Loss                     | ORL    | CW                                                        | 18   |       |       | dB    |
| Forward Voltage                         | Vf     | At bias coil                                              | _    | 1.1   | 1.6   | V     |
| Input Impedance                         | R      |                                                           |      | 25    |       | Ω     |
| Monitor Current                         | IMON   | $V_R^{\ddagger} = 5 V$                                    | 100  |       | 1000  | μΑ    |
| Monitor Dark Current                    | D      | $V_R^{\ddagger} = 5 V$                                    | —    | 10    | 200   | nA    |
| Wavelength Tempera-<br>ture Coefficient |        | _                                                         |      | 0.09  | 0.1   | nm/°C |

#### Table 3. D372-21 Electrical/Optical Characteristics (over operating temperature range unless otherwise noted)

\* The slope efficiency is used to calculate the modulation current for a desired output power. This modulation current plus the threshold current comprise the total operating current for the device.

† Corrected for electrical pulse fall time.

 $\ddagger$  VR = reverse voltage.

#### **Reliability Information**

Note, the D372-21 product does not undergo any routine dynamic testing.

A 2000-piece sample was tested at 2.5 Gbits/s for SMSR at 0 °C. In that sample, 99.5% of the devices had SMSR values greater than 30 dB. Within the failures, 90% were for inability to achieve an extinction ration of 10 dB or more.

Surveillance samples are tested to verify that the failure rate has not changed,

# **Qualification Information**

The D372-type laser module is scheduled to complete the following qualification tests and meets the intent of *Tel-cordia Technologies* TR-NWT-000468 for interoffice environments and TA-TSY-000983 for outside plant environments.

| Qualification Test         | Conditions                  | Sample Size | Reference                                          |
|----------------------------|-----------------------------|-------------|----------------------------------------------------|
| Mechanical Shock           | 500 G                       | 11          | MIL-STD-883<br>Method 2002                         |
| Vibration                  | 20 g, 20 Hz—2,000 Hz        | 11          | MIL-STD-883<br>Method 2007                         |
| Solderability              |                             | 11          | MIL-STD-883<br>Method 2007                         |
| Thermal Shock              | Delta T = 100 °C            | 11          | MIL-STD-883<br>Method 2003                         |
| Fiber Pull                 | 1 kg; 3 times               | 11          | Telcordia Technologies<br>983                      |
| Accelerated (Biased) Aging | 85 °C, 5,000 hrs.           | 25          | <i>Telcordia Technologies</i><br>983, Section 5.18 |
| High-temperature Storage   | 85 °C, 2,000 hrs.           | 11          | Telcordia Technologies<br>983                      |
| Temperature Cycling        | 500 cycles                  | 11          | <i>Telcordia Technologies</i><br>983, Section 5.20 |
| Cyclic Moisture Resistance | 10 cycles                   | 11          | <i>Telcordia Technologies</i><br>983, Section 5.23 |
| Damp Heat                  | 40 °C, 95% RH,<br>1344 hrs. | 11          | MIL-STD-202<br>Method 103                          |
| Internal Moisture          | <5,000 ppm water vapor      | 11          | MIL-STD-883<br>Method 1018                         |
| Flammability               | _                           | -           | TR357<br>Section 4.4.2.5                           |
| ESD Threshold              | _                           | 6           | <i>Telcordia Technologies</i><br>983, Section 5.22 |

## **Outline Diagram**

Dimensions are in inches and (millimeters).Laser Safety Information





1.925.e

#### **Class IIIb Laser Product**

FDA/CDRH Class IIIb laser product. All versions are Class IIIb laser products per CDRH, 21 CFR 1040 Laser Safety requirements. All versions are Class 3B laser products per *IEC*\* 60825-1:1993. The device has been classified with the FDA under accession number 8720010.

This product complies with 21 CFR 1040.10 and 1040.11. 8.3  $\mu$ m single-mode pigtail or connector Wavelength = 1.3  $\mu$ m Maximum power = 10 mW

Because of size constraints, labeling is not affixed to the module but attached to the outside of the shipping carton. Product is not shipped with power supply.

# Caution: Use of controls, adjustments, and procedures other than those specified herein may result in hazardous laser radiation exposure.



\* IEC is a registered trademark of The International Electrotechnical Commission.

#### **Ordering Information**

#### Table 5. D372-20 Ordering Information

| Device Code* | Comcode   | Pfiber | Connector |
|--------------|-----------|--------|-----------|
| D372-20AS    | 108088048 | 2.0 mW | SC-PC     |
| D372-20BS    | 108224973 | 2.0 mW | SC-APC    |
| D372-20FS    | 108130469 | 2.0 mW | FC-PC     |
| D372-20GS    | 108332032 | 2.0 mW | FC-APC    |

\* Trailing S in code indicates that the module contains an isolator.

#### Table 6. D372-21 Type Ordering Information

| Device Code* | Comcode   | Pfiber | Connector |
|--------------|-----------|--------|-----------|
| D372-21AS    | 108898073 | 2.0 mW | SC-PC     |
| D372-21BS    | 108898081 | 2.0 mW | SC-APC    |
| D372-21FS    | 108898099 | 2.0 mW | FC-PC     |
| D372-21GS    | 108898107 | 2.0 mW | FC-APC    |
| D372-21SS    | 108898114 | 2.0 mW | FC-APC    |

 $^{\ast}$  Trailing S in code indicates that the module contains an isolator.

| For additional | information, contact your Agere Systems Account Manager or the following:                                |
|----------------|----------------------------------------------------------------------------------------------------------|
| INTERNET:      | http://www.agere.com                                                                                     |
| E-MAIL:        | docmaster@micro.lucent.com                                                                               |
| N. AMERICA:    | Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286                       |
|                | 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)                           |
| ASIA PACIFIC   | : Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256         |
|                | Tel. (65) 778 8833, FAX (65) 777 7495                                                                    |
| CHINA:         | Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC |
|                | Tel. (86) 21 50471212, FAX (86) 21 50472266                                                              |
| JAPAN:         | Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan                  |
|                | Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700                                                              |
| EUROPE:        | Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148                                   |
|                | Technical Inquiries: OPTOELECTRONICS MARKETING: (44) 1344 865 900 (Ascot UK)                             |
|                |                                                                                                          |

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.

Copyright © 2001 Agere Systems Inc. All Rights Reserved

