

CY7C1049GN

4-Mbit (512K words × 8 bit) Static RAM

Features

- High speed
- ⊡ t_{AA} = 10 ns
- Low active and standby currents
 Active current: I_{CC} = 38 mA typical
 Standby current: I_{SB2} = 6 mA typical
- Operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- 1.0-V data retention
- TTL-compatible inputs and outputs
- Pb-free 36-pin SOJ and 44-pin TSOP II packages

Functional Description

CY7C1049GN is a high-performance CMOS fast static RAM device organized as 512K words by 8-bits.

Data writes are performed by asserting the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW, while providing the data on I/O₀ through I/O₇ and address on A₀ through A₁₈ pins.

Data reads are performed by asserting the Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) inputs LOW and providing the required address on the address lines. Read data is accessible on the I/O lines (I/O₀ through I/O₇).

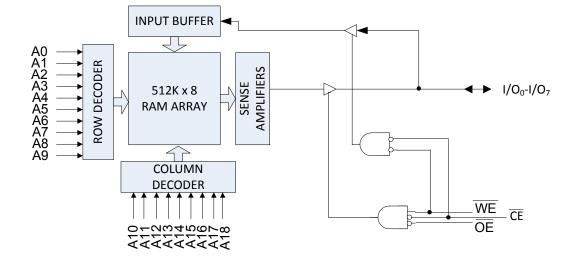
All I/Os (I/O $_0$ through I/O $_7$) are placed in a high-impedance state during the following events:

- The device is deselected (CE HIGH)
- The control signal OE is de-asserted

The logic block diagram is on page 2.

Product	Range	V _{CC} Range (V)	Speed (ns) 10/15	Power Dissipation				
				Operating I _{CC} , (mA)		Standby, I _{SB2} (mA)		
				f = f _{max}				
				Typ ^[1]	Мах	Typ ^[1]	Max	
CY7C1049GN18		1.65 V–2.2 V	15	-	40			
CY7C1049GN30	Industrial	2.2 V–3.6 V	10	38	45	6	8	
CY7C1049GN		4.5 V–5.5 V	10	38	45			

Product Portfolio


Notes

1. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

٠

Logic Block Diagram – CY7C1049GN

CY7C1049GN

Contents

Pin Configurations	4
Maximum Ratings	6
Operating Range	6
DC Electrical Characteristics	6
Capacitance	7
Thermal Resistance	7
AC Test Loads and Waveforms	7
Data Retention Characteristics	8
Data Retention Waveform	8
AC Switching Characteristics	9
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	15
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	

Pin Configurations

Figure 1. 36-pin SOJ pinout ^[2]

1	-	/		1
A0 🗖	•1	\bigcirc	36	NC NC
A1 🗖	2		35	A 18
A2 🗖	3		34	A 17
Аз 🗖	4		33	A 16
A4 🗖	5		32	A 15
CE 🗖	6		31	O E
I/O0 🗖	7		30	I /O7
I/O1 🗖	8		29	I/O 6
Vcc 🗖	9		28	🗖 GND
GND 🗖	10	SOJ	27	■ Vcc
I/O2 🗖	11		26	= I/O5
I/O3 🗖	12		25	■ I/O4
WE 🗖	13		24	A 14
A5 🗖	14		23	A 13
A6 🗖	15		22	A 12
A7 🗖	16		21	■ A11
A8 🗖	17		20	A 10
A9 🗖	18		19	■ NC

Pin Configurations (continued)

Figure 2. 4	44-pin TSOP II	pinout, Single (Chip Enable ^[3]
-------------	----------------	------------------	----------------------------

1	-			1
NC 🗖	1		44	NC NC
NC 🗖	2		43	NC NC
A0 🗖	3		42	NC NC
A1 🗖	4		41	A 18
A2 🗖	5		40	A 17
A3 🗖	6		39	A 16
A4 🗖	7		38	A 15
/CE 🗖	8		37	I /OE
I/O0 🗖	9	44-pin TSOP	II 36	I/07
I/O1 🗖	10		^{''} 35	I /O6
VCC 🗖	11		34	■ VSS
VSS 🗖	12		33	■ vcc
I/O2 🗖	13		32	I /O5
I/O3 🗖	14		31	I /04
/WE 🗖	15		30	A 14
A5 🗖	16		29	A 13
A6 🗖	17		28	A12
A7 🗖	18		27	A11
A8 🗖	19		26	A 10
A9 🗖	20		25	NC I
NC 🗖	21		24	NC NC
NC 🗖	22		23	■ NC

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied
Supply voltage on V_{CC} relative to GND $^{[4]}$
DC voltage applied to outputs in HI-Z State $^{[4]}$ –0.5 V to V $_{CC}$ + 0.5 V

DC input voltage ^[4]	–0.5 V to V_{CC} + 0.5 V
Current into outputs (in LOW state)	
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Grade	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

DC Electrical Characteristics

Over the operating range of -40 °C to 85 °C

Deverseter	Daar		Test Conditio		1) ns / 15 r	าร	11
Parameter	Desc	ription	Test Conditio	ons	Min	Typ ^[5]	Max	Unit
V _{OH}	Output HIGH	1.65 V to 2.2 V	V _{CC} = Min, I _{OH} = –0.1 m	ıΑ	1.4	1	_	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = -1.0 m	A	2	I	_	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OH} = -4.0 m	ıΑ	2.2	I	-	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -4.0 m	ıΑ	2.4	-	-	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -0.1m	A	$V_{CC} - 0.5^{[6]}$	1	_	
V _{OL}	Output LOW	1.65 V to 2.2 V	V _{CC} = Min, I _{OL} = 0.1 mA	l	_	1	0.2	V
	voltage	2.2 V to 2.7 V	V_{CC} = Min, I_{OL} = 2 mA		_	I	0.4	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		_	-	0.4	
		4.5 V to 5.5 V	V_{CC} = Min, I_{OL} = 8 mA		_	I	0.4	
V _{IH}	/ _{IH} Input HIGH	1.65 V to 2.2 V	_		1.4	-	$V_{CC} + 0.2^{[4]}$	V
voltage	2.2 V to 2.7 V	-		2	-	$V_{CC} + 0.3^{[4]}$		
		2.7 V to 3.6 V	-		2	-	$V_{CC} + 0.3^{[4]}$	
		4.5 V to 5.5 V	-		2.2	-	$V_{CC} + 0.5^{[4]}$	
V _{IL}	Input LOW	1.65 V to 2.2 V	-		-0.2 ^[4]	-	0.4	V
	voltage	2.2 V to 2.7 V	-		-0.3 ^[4]	-	0.6	
		2.7 V to 3.6 V	-		-0.3 ^[4]	-	0.8	
		4.5 V to 5.5 V	-		-0.5 ^[4]	-	0.8	
I _{IX}	Input leakage c	urrent	$GND \leq V_{IN} \leq V_{CC}$		-1	-	+1	μA
I _{OZ}	Output leakage	current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , Out	tput disabled	-1	1	+1	μA
I _{CC}	Operating supp	ly current	Max V _{CC} , I _{OUT} = 0 mA,	f = 100 MHz	_	38	45	mA
				f = 66.7 MHz	-	-	40	
I _{SB1}	Automatic CE power-down current – TTL inputs		$\begin{array}{l} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH}, \\ V_{IN} \geq V_{IH} \ \text{or} \ V_{IN} \leq V_{IL}, \ f \end{array}$	= f _{MAX}	-	_	15	mA
I _{SB2}	Automatic CE p current – CMO		$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0 \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \end{array}$.2 V, <u>I ≤</u> 0.2 V, f = 0	-	6	8	mA

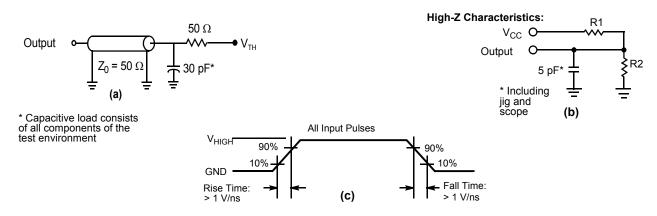
Notes

4. $V_{IL(min)}$ = -2.0 V and $V_{IH(max)}$ = V_{CC} + 2 V for pulse durations of less than 2 ns.

5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V – 2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2V – 3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V – 5.5 V), T_A = 25 °C.

This parameter is guaranteed by design and not tested.

Capacitance


Parameter ^[7]	Description	Test Conditions	36-pin SOJ	44-pin TSOP II	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	10	10	pF
C _{OUT}	I/O capacitance	$V_{CC} = V_{CC(typ)}$	10	10	pF

Thermal Resistance

Parameter [7]	Description	Test Conditions	36-pin SOJ	44-pin TSOP II	Unit
JA		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.52	68.85	°C/W
- 30	Thermal resistance (junction to case)		31.48	15.97	°C/W

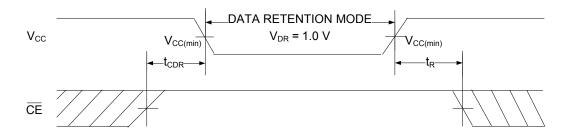
AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms ^[8]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	0.9	1.5	1.5	V
V _{HIGH}	1.8	3	3	V

Notes

- 7. Tested initially and after any design or process changes that may affect these parameters.
- 8. Full-device AC operation assumes a 100- μ s ramp time from 0 to V_{CC(min)} and a 100- μ s wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V_{CC} for data retention		1	-	V
I _{CCDR}	Data retention current	$V_{CC} = 1.2 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}^{[9]}, V_{IN} \ge V_{CC} - 0.2 \text{ V}, \text{ or } V_{IN} \le 0.2 \text{ V}$	-	8	mA
t _{CDR} ^[10]	Chip deselect to data retention time		0	-	ns
t _R ^[9, 10]	Operation recovery time	V _{CC} ≥ 2.2 V	10	-	ns
		V _{CC} < 2.2 V	15	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform ^[9]

Notes

9. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \ge 100 µs or stable at V_{CC (min)} \ge 100 µs.

10. These parameters are guaranteed by design.

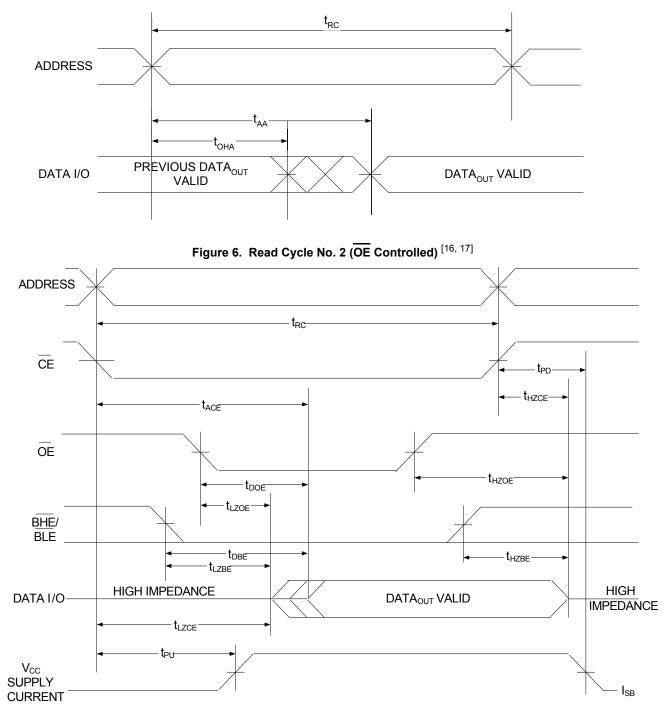
AC Switching Characteristics

Over the operating range of -40 °C to 85 °C

Parameter [11]	Description	10	10 ns		15 ns	
Parameter [11]	Description	Min	Max	Min	Мах	Unit
Read Cycle					•	
t _{RC}	Read cycle time	10	-	15	_	ns
t _{AA}	Address to data	-	10	-	15	ns
t _{OHA}	Data / ERR hold from address change	3	-	3	-	ns
t _{ACE}	CE LOW to data	-	10	-	15	ns
t _{DOE}	OE LOW to data	-	4.5	-	8	ns
t _{LZOE}	OE LOW to low impedance ^[12]	0	_	0	-	ns
t _{HZOE}	OE HIGH to HI-Z ^[12]	-	5	-	8	ns
t _{LZCE}	CE LOW to low impedance ^[12]	3	_	3	-	ns
t _{HZCE}	CE HIGH to HI-Z ^[12]	-	5	-	8	ns
t _{PU}	CE LOW to power-up ^[13, 14]	0	_	0	-	ns
t _{PD}	CE HIGH to power-down ^[13, 14]	-	10	-	15	ns
Write Cycle [14	4, 15]	·				
t _{WC}	Write cycle time	10	-	15	-	ns
t _{SCE}	CE LOW to write end	7	-	12	-	ns
t _{AW}	Address setup to write end	7	-	12	-	ns
t _{HA}	Address hold from write end	0	_	0	-	ns
t _{SA}	Address setup to write start	0	_	0	-	ns
t _{PWE}	WE pulse width	7	_	12	-	ns
t _{SD}	Data setup to write end	5	_	8	-	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE HIGH to low impedance ^[12]	3	_	3	_	ns
t _{HZWE}	WE LOW to HI-Z ^[12]	_	5	_	8	ns

Notes

- 11. Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3 V). Test conditions for the read cycle use output loading, as shown in part (a) of Figure 3 on page 7, unless specified otherwise.
- 12. t_{HZOE}, t_{HZCE}, t_{HZCE}, t_{LZCE}, voltage.


13. These parameters are guaranteed by design and are not tested.

14. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write. 15. The minimum write cycle pulse width in Write Cycle No. 2 (\overline{WE} Controlled, \overline{OE} LOW) should be equal to sum of t_{DS} and t_{HZWE}.

Switching Waveforms

Notes 16. WE is HIGH for the read cycle.

17. Address valid prior to or coincident with CE LOW transition.

Switching Waveforms (continued)

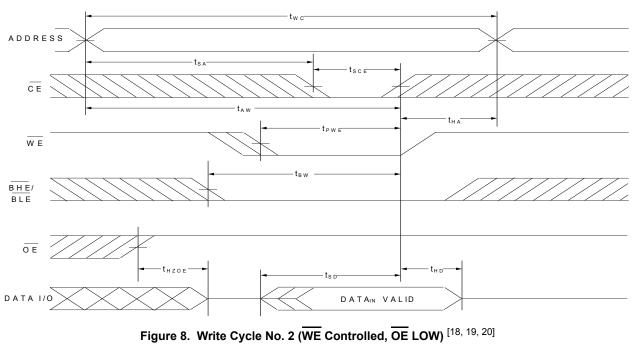
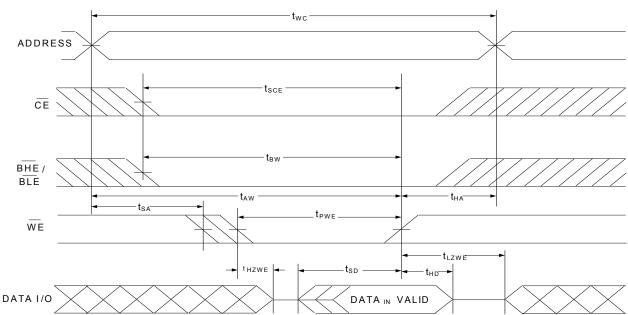
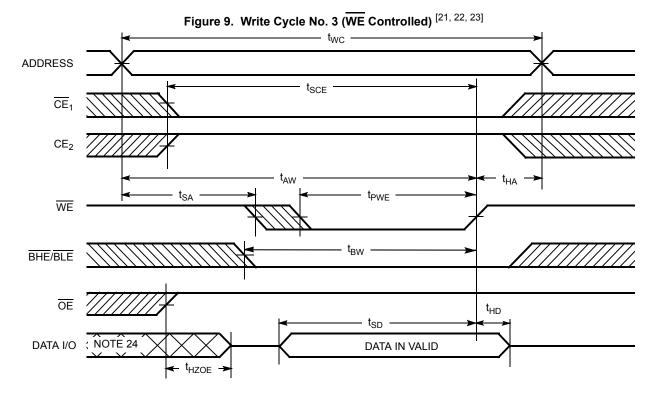



Figure 7. Write Cycle No. 1 (CE Controlled) ^[18, 19]



Notes

- 18. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE} = V_{|L}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 19. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$.
- 20. The minimum write cycle pulse width should be equal to sum of t_{SD} and $t_{\text{HZWE}}.$

Switching Waveforms (continued)

Notes

21. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write. 22. Data I/O is in HI-Z state if $\overline{CE} = V_{H}$, or $\overline{OE} = V_{H}$.

24. During this period the I/Os are in output state. Do not apply input signals.

^{23.} Data I/O is high impedance if $\overline{\text{OE}}$ = V_{IH}.

Truth Table


CE	OE	WE	1/0 ₀ -1/0 ₇	Mode	Power
Н	X ^[25]	X ^[25]	HI-Z	Power down	Standby (I _{SB})
L	L	Н	Data out	Read all bits	Active (I _{CC})
L	Х	L	Data in	Write all bits	Active (I _{CC})
L	Н	Н	HI-Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
10	2.2 V–3.6 V	CY7C1049GN30-10ZSXI	51-85087	44-pin TSOP II	Industrial
		CY7C1049GN30-10VXI	51-85090	36-pin Molded SOJ	
	4.5 V–5.5 V	CY7C1049GN-10VXI	51-85090	36-pin Molded SOJ	

Ordering Code Definitions

Package Diagrams

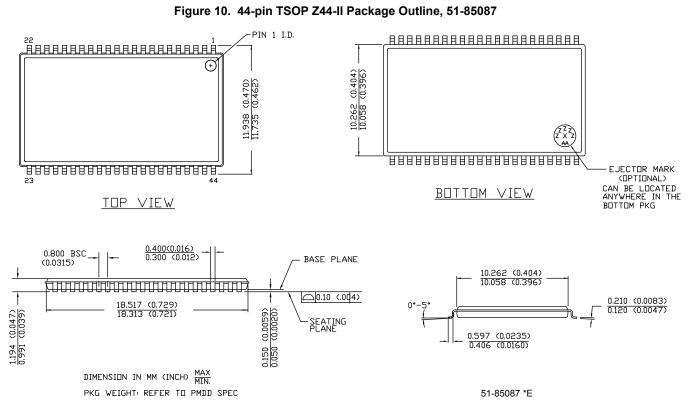
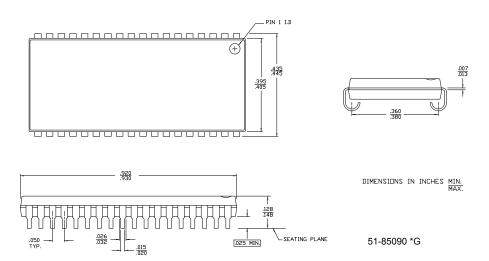



Figure 11. 36L SOJ V36.4 (Molded) Package Outline, 51-85090

36 Lead (400 MIL) Molded SOJ V36

Acronyms

Acronym	Description			
BHE	byte high enable			
BLE	byte low enable			
CE	chip enable			
CMOS	complementary metal oxide semiconductor			
I/O	input/output			
OE	output enable			
SRAM	static random access memory			
TSOP	thin small outline package			
TTL	transistor-transistor logic			
VFBGA	very fine-pitch ball grid array			
WE	write enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	Degrees Celsius
MHz	megahertz
μA	microamperes
μS	microseconds
mA	milliamperes
mm	millimeter
ns	nanoseconds
Ω	ohms
%	percent
pF	picofarads
V	volts
W	watts

Document History Page

Document Title: CY7C1049GN, 4-Mbit (512K words × 8 bit) Static RAM Document Number: 002-10613					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**	5074703	NILE	01/06/2016	New data sheet.	
*A	5082587	NILE	01/12/2016	01/12/2016 Updated Logic Block Diagram – CY7C1049GN. Updated Ordering Information: Updated part numbers.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction of failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 002-10613 Rev. *A

Revised January 12, 2016

All products and company names mentioned in this document may be the trademarks of their respective holders.