

4-Mbit (512 K × 8) Static RAM

Features

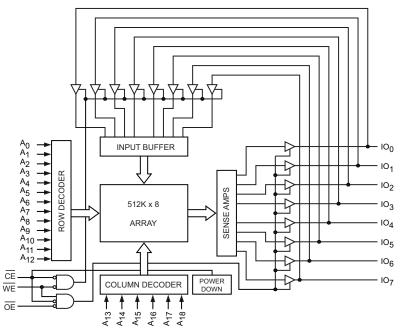
- Temperature ranges

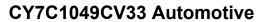
 □ Automotive -A: -40 °C to 85 °C

 □ Automotive-E: -40 °C to 125 °C
- High speed

 □ t_{AA} = 10 ns
- Low active power ☐ 360 mW (max)
- 2.0 V data retention
- Automatic power down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

Functional Description


The CY7C1049CV33 Automotive is a high performance CMOS Static RAM organized as 524,288 words by eight bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A_0 through A_{18}).


Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1049CV33 Automotive is available in standard 400-mil-wide 36-pin SOJ package and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Contents

Selection Guide	3
Pin Configuration	3
Pin Definitions	
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	5
AC Switching Characteristics	6
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

11
13
13
13
14
15
15
15
15
15
15

Selection Guide

Description	-10	-12	-15	Unit	
Maximum Access Time		10	12	15	ns
Maximum Operating Current	Automotive-A	100	95	_	mA
	Automotive-E	_	_	95	mA
Maximum CMOS Standby Current	Automotive-A	10	10	_	mA
	Automotive-E	-	-	15	mA

Pin Configuration

Figure 1. 36-pin SOJ pinout (Top View)

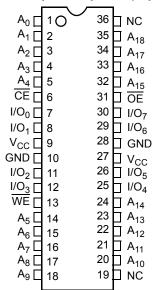
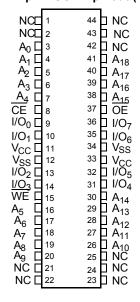



Figure 2. 44-pin TSOP II pinout (Top View)

Pin Definitions

Pin Name	36-pin SOJ Pin Number	44-pin TSOP II Pin Number	I/O Type	Description
A ₀ -A ₁₈	1–5, 14–18, 20–24, 32–35	3–7, 16–20, 26–30, 38–41	Input	Address inputs used to select one of the address locations.
I/O ₀ –I/O ₇	7, 8, 11, 12, 25, 26, 29, 30	9, 10, 13, 14, 31, 32, 35, 36	Input/Output	Bidirectional data I/O lines . Used as input or output lines depending on operation.
NC ^[1]	19, 36	1, 2, 21, 22, 23, 24, 25, 42, 43, 44	No Connect	No connects. This pin is not connected to the die.
WE	13	15	Input/Control	Write Enable input, active LOW . When selected LOW, a WRITE is conducted.
CE	6	8	Input/Control	Chip Enable input, active LOW . When LOW, selects the chip. When HIGH, deselects the chip.
ŌĒ	31	37	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-state, and act as input data pins.
V _{SS} , GND	10, 28	12, 34	Ground	Ground for the device . Should be connected to ground of the system.
V _{CC}	9, 27	11, 33	Power Supply	Power supply inputs to the device.

Note

^{1.} NC pins are not connected on the die.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Power Applied55 °C to +125 °C

Voltage Applied to Outputs in High Z State $^{[2]}$ -0.5 V to V $_{\rm CC}$ + 0.5 V

Input Voltage [2]	–0.5 V to V _{CC} + 0.5 V
Current into Outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Automotive-A	–40 °C to +85 °C	$3.3~\textrm{V}\pm0.3~\textrm{V}$
Automotive-E	–40 °C to +125 °C	

Electrical Characteristics

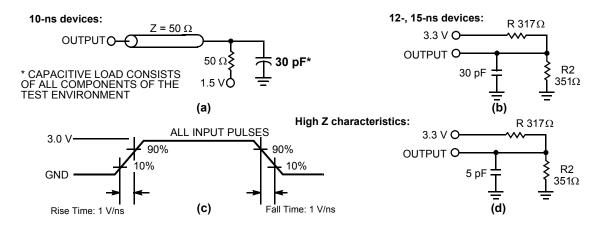
Over the Operating Range

Dawamatan	Description	Took Conditions		-10		-12		-15		11:!4
Parameter Description		Test Conditions		Min	Max	Min	Max	Min	Max	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min; I_{OH} = -4.0 r	mA	2.4	_	2.4	_	2.4	_	V
V_{OL}	Output LOW Voltage	V _{CC} = Min; I _{OL} = 8.0 m.	A	_	0.4	_	0.4	-	0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]				0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	Auto-A	-1	+1	– 1	+1	_	_	μΑ
			Auto-E	_	_	_	_	-20	+20	
I _{CC}	V _{CC} Operating	V _{CC} = Max,	Auto-A	_	100	_	95	_	_	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Auto-E	_	_	_	_	_	95	
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$;	Auto-A	_	40	_	40	-	_	mA
	Power Down Current – TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	Auto-E	_	_	_	_	_	45	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Auto-A	_	10	_	10	-	-	mA
Power Down C	Power Down Current – CMOS Inputs	$CE \ge V_{CC} - 0.3 \text{ V},$ $V_{IN} \ge V_{CC} - 0.3 \text{ V}, \text{ or}$ $V_{IN} \le 0.3 \text{ V}, \text{ f} = 0$	Auto-E	_	_	_	_	_	15	mA

Document Number: 001-67511 Rev. *C

^{2.} $V_{IL(min)}$ = -2.0 V and $V_{IH(max)}$ = V_{CC} + 0.5 V for pulse durations of less than 20 ns.

Capacitance


Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	8	pF
C _{OUT}	Output capacitance		8	pF

Thermal Resistance

Parameter [3]	Description	Test Conditions	36-pin SOJ	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance,	46.51	41.66	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	per EIA / JESD51.	18.8	10.56	°C/W

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms [4]

Notes

Tested initially and after any design or process changes that may affect these parameters.
 AC characteristics (except High Z) for 10 ns parts are tested using the load conditions shown in Figure 3 (a). All other speeds are tested using the Thevenin load shown in Figure 3 (b). High Z characteristics are tested for all speeds using the test load shown in Figure 3 (d).

AC Switching Characteristics

Over the Operating Range

Parameter [5]	Description	-	10	-'	-12		-15	
Parameter [9]	Description	Min	Max	Min	Max	Min	Max	Unit
Read Cycle		•	•	•	•	•	•	•
t _{power} ^[6]	V _{CC} (typical) to the first access	100	_	100	_	100	_	μS
t _{RC}	Read Cycle Time	10	-	12	_	15	_	ns
t _{AA}	Address to Data Valid	_	10	-	12	_	15	ns
t _{OHA}	Data Hold from Address Change	3	-	3	_	_	3	ns
t _{ACE}	CE LOW to Data Valid	_	10	-	12	_	15	ns
t _{DOE}	OE LOW to Data Valid	_	5	-	6	_	7	ns
t _{LZOE}	OE LOW to Low Z [7]	0	-	0	_	0	_	ns
t _{HZOE}	OE HIGH to High Z [7, 8]	_	5	-	6	_	7	ns
t _{LZCE}	CE LOW to Low Z [7]	3	_	3	_	3	_	ns
t _{HZCE}	CE HIGH to High Z [7, 8]	_	5	-	6	_	7	ns
t _{PU}	CE LOW to Power Up	0	-	0	_	0	_	ns
t _{PD}	CE HIGH to Power Down	_	10	_	12	_	15	ns
Write Cycle [9,	10]						-	•
t _{WC}	Write Cycle Time	10	-	12	_	15	_	ns
t _{SCE}	CE LOW to Write End	7	_	8	_	10	_	ns
t _{AW}	Address Setup to Write End	7	-	8	_	10	_	ns
t _{HA}	Address Hold from Write End	0	_	0	_	0	_	ns
t _{SA}	Address Setup to Write Start	0	-	0	_	0	_	ns
t _{PWE}	WE Pulse Width	7	-	8	_	10	_	ns
t _{SD}	Data Setup to Write End	5	-	6	_	7	_	ns
t _{HD}	Data Hold from Write End	0	_	0	_	0	_	ns
t _{LZWE}	WE HIGH to Low Z [7]	3	_	3	_	3	_	ns
t _{HZWE}	WE LOW to High Z [7, 8]	_	5	_	6	_	7	ns

Notes

- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V.

 6. t_{POWER} gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.

 7. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} for any device.

 8. t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 <u>pF</u> as in part (<u>d</u>) of Figure 3 on page 5. Transition is measured ±500 mV from steady-state voltage.

 9. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data setup and hold timing should be referenced to the leading edge of the signal that terminates the Write.

 10. The minimum Write cycle time for Write Cycle No. 2 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

DATA VALID

Switching Waveforms

PREVIOUS DATA VALID

ADDRESS

DATA OUT

Figure 4. Read Cycle No. 1 (Address Transition Controlled) [11, 12] -trc t_{OHA}

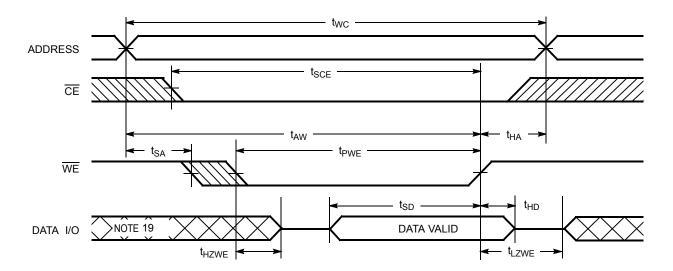
Figure 5. Read Cycle No. 2 (OE Controlled) [12, 13] **ADDRESS** t_{RC} CE t_{ACE} OE t_{HZOE} t_{DOE} t_{HZCE} t_{LZOE} HIGH HIGH IMPEDANCE **IMPEDANCE** DATA VALID DATA OUT t_{LZCE} t_{PD} V_{CC} SUPPLY t_{PU} I_{CC} 50% 50% CURRENT I_{SB}

Figure 6. Write Cycle No. 1 (WE Controlled, OE HIGH During Write) [14, 15] $t_{\text{WC}} \\$ **ADDRESS** t_{SCE} CE t_{HA} t_{PWE} WE t_{HD} NOTE 16 DATA VALID DATA I/O

Notes

- 11. <u>Dev</u>ice is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}.

 12. <u>WE</u> is HIGH for read cycles.


 13. Address valid before or simila<u>r to</u> <u>CE</u> transition LOW.
- 14. Data I/O is high impedance if \overline{OE} = V_{IH} .

 15. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high impedance state.
- 16. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

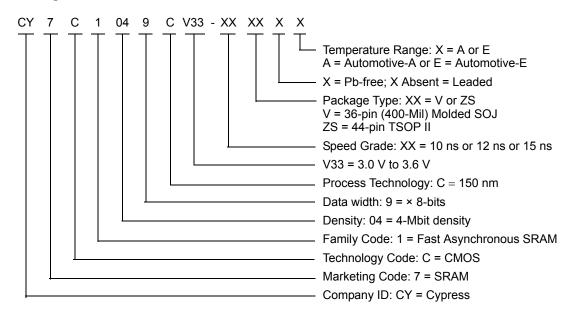
Figure 7. Write Cycle No. 2 (WE Controlled, OE LOW) [17, 18]

^{17.} If CE goes HIGH simultaneously with WE HIGH, the <u>outp</u>ut remains in high impedance state.

18. The minimum Write cycle time for Write Cycle No. 2 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

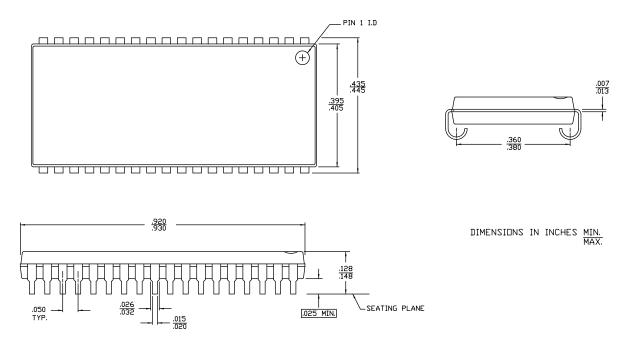
19. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table


CE	ŌE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High Z	Power Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

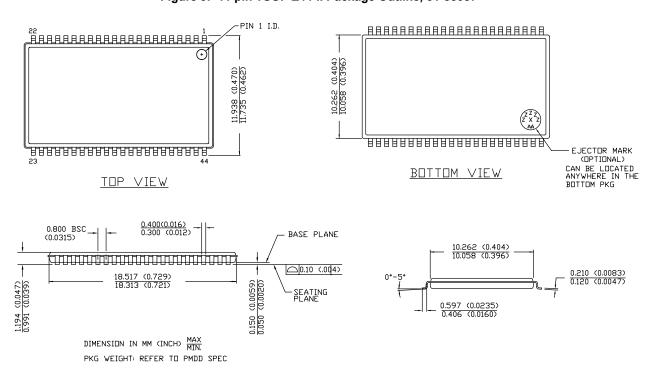
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1049CV33-10VXA	51-85090	36-pin (400-Mil) Molded SOJ (Pb-free)	Automotive-A
12	CY7C1049CV33-12ZSXA	51-85087	44-pin TSOP II (Pb-free)	Automotive-A
15	CY7C1049CV33-15VXE	51-85090	36-pin (400-Mil) Molded SOJ (Pb-free)	Automotive-E
	CY7C1049CV33-15ZSXE	51-85087	44-pin TSOP II (Pb-free)	Automotive-E


Ordering Code Definitions

Package Diagrams

Figure 8. 36-pin SOJ V36.4 (Molded) Package Outline, 51-85090



51-85090 *F

Package Diagrams (continued)

Figure 9. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *E

Acronyms

Acronym	Description			
CE	Chip Enable			
CMOS	Complementary Metal Oxide Semiconductor			
I/O	Input/Output			
OE	Output Enable			
SOJ	Small Outline J-lead			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
TTL	Transistor-Transistor Logic			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
mm	millimeter			
ms	millisecond			
mW	milliwatt			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

3186792 3265070	PRAS PRAS	03/03/2011	Separation of the automotive data sheet from CY7C1049CV33 spec no. 38-05006 Rev. *J. Further rev of 38-05006 would include only industrial / commercial parts.
3265070	PRAS	05/04/0044	
		05/24/2011	Updated Functional Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines."). Updated in new template.
3546915	NILE	03/09/2012	Updated Pin Definitions (Updated description of WE and OE pins). Updated Package Diagrams.
4311615	NILE / VINI	03/21/2014	Updated Maximum Ratings: Added "Static discharge voltage" and "Latch up current" details. Updated AC Switching Characteristics: Updated Note 10. Updated Switching Waveforms: Added Note 18 and referred the same note in Figure 7. Updated Package Diagrams: spec 51-85087 – Changed revision from *D to *E. Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.