

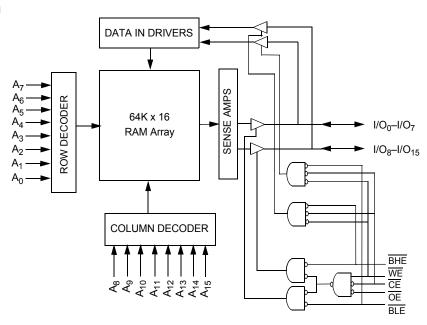
1-Mbit (64 K × 16) Static RAM

Features

- Temperature ranges
 □ Automotive-E: -40 °C to 125 °C
- Pin and function compatible with CY7C10212CV33
- High speed□ t_{AA} = 12 ns (Automotive-E)
- CMOS for optimum speed and power
- Low active power: 325 mW (max)
- Automatic power down when deselected
- Independent control of upper and lower bits
- Available in Pb-free 48-ball FBGA package

Functional Description

The CY7C10212CV33 is a high performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected.


Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through $I/O_7)$, is written into the location specified on the address pins $(A_0$ through $A_{15})$. If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{15})$.

Reading from the device is accomplished by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins appear on I/O $_0$ to I/O $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory appears on I/O $_8$ to I/O $_{15}$. For more information, see the Truth Table on page 9 for a complete description of Read and Write modes.

The input and output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

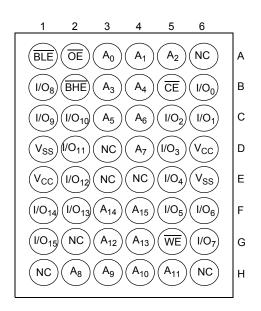
For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Selection Guide	3
Pin Configuration	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Switching Characteristics	
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC® Solutions	14
Cypress Developer Community	14
Technical Support	14



Selection Guide

Description	-12	Unit
Maximum Access Time	12	ns
Maximum Operating Current	90	mA
Maximum CMOS Standby Current	10	mA

Pin Configuration

Figure 1. 48-ball FBGA pinout [1]

Note

^{1.} NC pins are not connected on the die.

Maximum Ratings

DC Input Voltage [2]	–0.3 V to V _{CC} + 0.3 V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch Up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{CC}
Automotive-E	–40 °C to +125 °C	$3.3~V\pm10\%$

Electrical Characteristics

Over the Operating Range

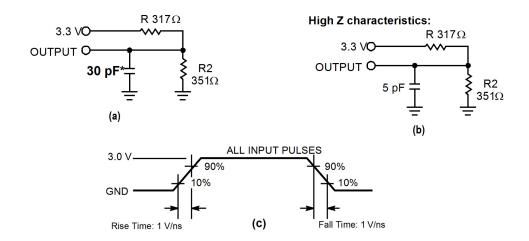
Doromotor	Description	Took Conditions	-	-12		
Parameter	Description	Test Conditions	Min	Max	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	_	V	
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V	
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage [2]		-0.3	0.8	V	
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$	-12	+12	μΑ	
I/O _Z	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output disabled	-12	+12	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max$, $I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$	-	90	mA	
I _{SB1}	Automatic CE Power Down Current — TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f = f}_{\text{MAX}} \end{aligned}$	-	20	mA	
I _{SB2}	Automatic CE Power Down Current — CMOS Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \text{ or V}_{\text{IN}} \leq 0.3 \text{ V}, \text{ f} = 0 \end{aligned}$	_	10	mA	

Note

Document Number: 001-82303 Rev. *B

^{2.} $V_{IL(min)}$ = -2.0 V and $V_{IH(max)}$ = V_{CC} + 0.5 V for pulse durations of less than 20 ns.

Capacitance


Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	8	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance

Parameter [3]	Description	Test Conditions	48-ball FBGA	Unit
Θ_{JA}	,	Test conditions follow standard test methods and procedures for measuring thermal impedance, per	95.32	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	EIA/JESD51	10.68	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms [4]

Notes

- Tested initially and after any design or process changes that may affect these parameters.
 Speed is tested using the Thevenin load shown in Figure 2 (a). High Z characteristics are tested using the test load shown in Figure 2 (b).

Switching Characteristics

Over the Operating Range

Parameter [5]	Barantation.	-	12	Unit
Parameter [2]	Description	Min	Max	Unit
Read Cycle			•	_
t _{power} ^[6]	V _{CC} (Typical) to the First Access	100	-	μS
t _{RC}	Read Cycle Time	12	_	ns
t _{AA}	Address to Data Valid	-	12	ns
t _{OHA}	Data Hold from Address Change	3	_	ns
t _{ACE}	CE LOW to Data Valid	-	12	ns
t _{DOE}	OE LOW to Data Valid	-	6	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0	_	ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]	_	6	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3	_	ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]	_	6	ns
t _{PU} ^[9]	CE LOW to Power Up	0	_	ns
t _{PD} ^[9]	CE HIGH to Power Down	_	12	ns
t _{DBE}	Byte Enable to Data Valid	-	6	ns
t _{LZBE}	Byte Enable to Low Z	0	_	ns
t _{HZBE}	Byte Disable to High Z	-	6	ns
Write Cycle ^{[10,}	11]			•
t _{WC}	Write Cycle Time	12	-	ns
t _{SCE}	CE LOW to Write End	9	_	ns
t _{AW}	Address Setup to Write End	9	_	ns
t _{HA}	Address Hold from Write End	0	_	ns
t _{SA}	Address Setup to Write Start	0	_	ns
t _{PWE}	WE Pulse Width	8	_	ns
t _{SD}	Data Setup to Write End	6	-	ns
t _{HD}	Data Hold from Write End	0	-	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3	_	ns
t _{HZWE}	WE LOW to High Z ^[7, 8]	-	6	ns
t _{BW}	Byte Enable to End of Write	8	_	ns

Notes

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V. the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the thickness than the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the thickness than the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage is less than the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage is less than the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage condition, the power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage is performed. The power supply is at typical V_{CC} values until the first memory access is performed. At any temperature and voltage is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC} values until the first memory access is performed. The power supply is at typical V_{CC}
- This parameter is guaranteed by design and is not tested.
 This parameter is guaranteed by design and is not tested.
 The internal write time of the memory is defined by the overlap of CE LOW, WE LOW, and BHE/BLE LOW. CE, WE, and BHE/BLE is LOW to initiate a write. The transition of these signals terminate the write. The input data setup and hold timing is referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle pulse width for write cycle 3 (WE controlled, OE LOW) should be equal to the sum of tsD and thzwe.

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) [12, 13]

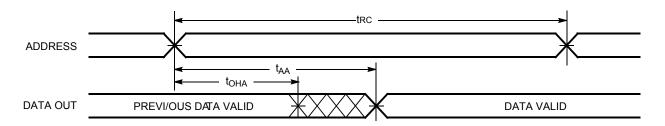
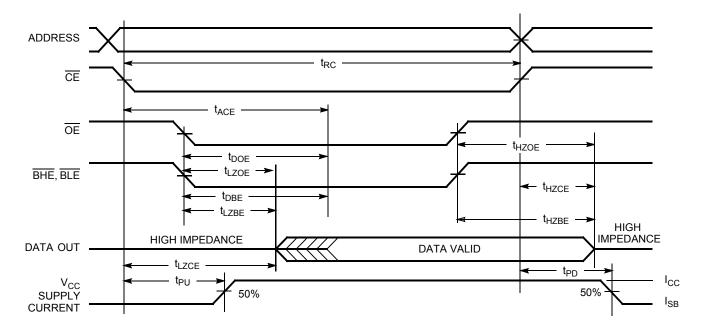



Figure 4. Read Cycle No. 2 (OE Controlled) [13, 14]

Notes

^{12.} Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or \overline{BLE} = V_{IL} .

^{13.} WE is HIGH for read cycle.

^{14.} Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 (CE Controlled) [15, 16]

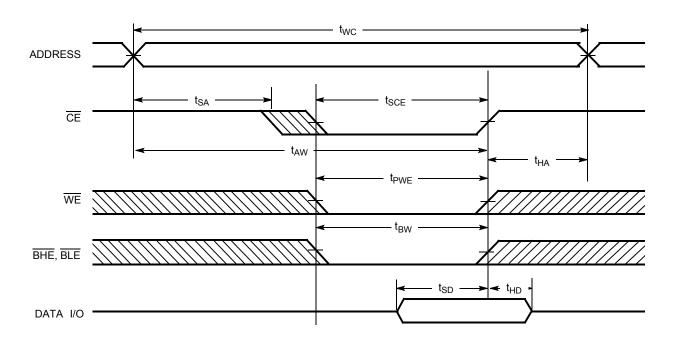
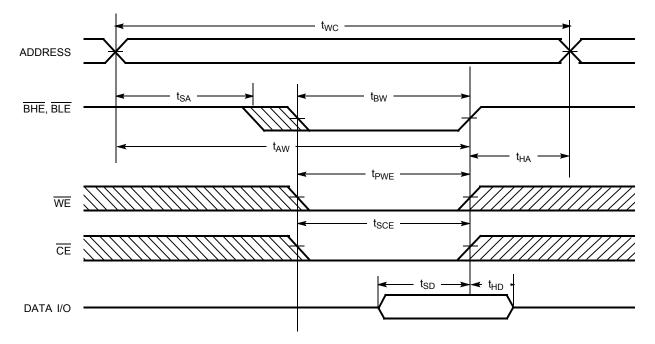
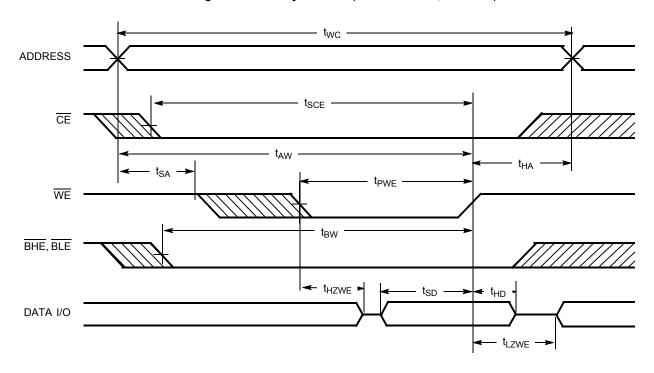



Figure 6. Write Cycle No. 2 (BLE or BHE Controlled)

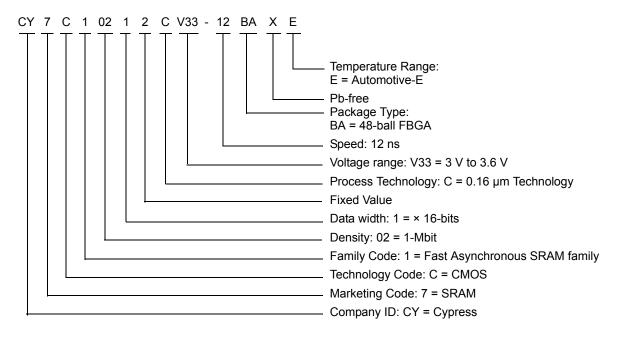


^{15.} Data I/O is high impedance if OE, BHE, and/or BLE = V_{IH}. 16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

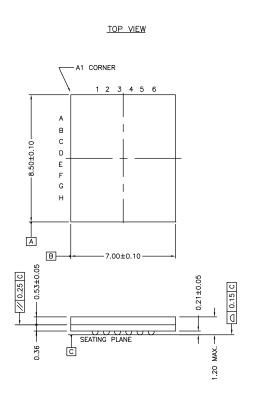
Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW)

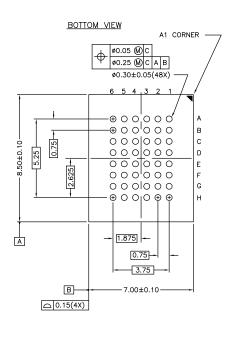
Truth Table


CE	OE	WE	BLE	BHE	I/O ₀ – I/O ₇	I/O ₈ – I/O ₁₅	Mode	Power
Н	X	X	X	X	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All Bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower Bits Only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All Bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower Bits Only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper Bits Only	Active (I _{CC})
L	Н	Н	Х	Χ	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C10212CV33-12BAXE	51-85106	48-ball FBGA (Pb-free)	Automotive-E


Ordering Code Definitions



Package Diagrams

Figure 8. 48-ball FBGA (7 × 8.5 × 1.2 mm) BA48A Package Outline, 51-85106

51-85106 *G

Acronyms

Acronym	Description
BGA	Ball Grid Array
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
FBGA	Fine-Pitch Ball Grid Array
I/O	Input/Output
ŌĒ	Output Enable
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TTL	Transistor-Transistor Logic
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
mm	millimeter			
mW	milliwatt			
MHz	megahertz			
ns	nanosecond			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C10212CV33, 1-Mbit (64 K × 16) Static RAM Document Number: 001-82303					
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change	
**	3723052	10/29/2012	TAVA	New data sheet.	
*A	4178071	10/30/2013	VINI	Updated in new template. Completing Sunset Review.	
*B	4571877	11/18/2014	VINI	Added related documentation hyperlink in page 1. Added Note 11 in Switching Characteristics. Added note reference 11 in the Switching Characteristics table. Updatd Figure 7 title.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.