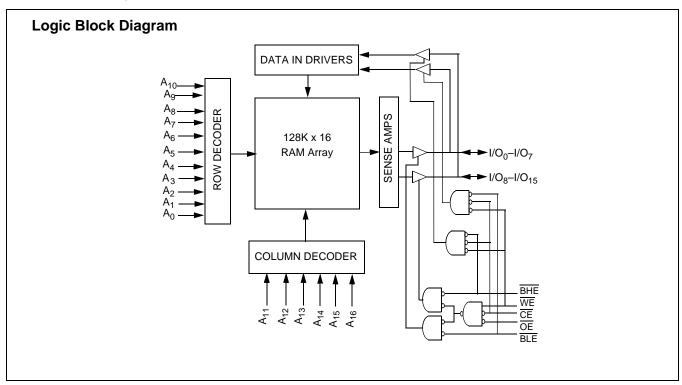


2-Mbit (128K x 16) Static RAM

Features

- · Very high speed
 - 55 ns
- Voltage range
 - 2.7V 3.3V
- Pin-compatible with the CY62136V
- · Ultra-low active power
 - Typical active current: 1.5 mA @ f = 1 MHz
 - Typical active current: 7 mA @ f = f_{Max} (55 ns speed)
- · Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in Pb-free and non Pb-free 48-ball VFBGA package


Functional Description^[1]

The CY62136CV30 is high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current.

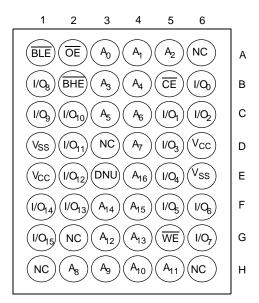
This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note

^{1.} For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



Product Portfolio

						Powe	r Dissipa	ation		
					0	perating	j, I _{CC} (m <i>l</i>	A)		
	\ \	V _{CC} Range (V)			f = 1	MHz	f = f	Мах	Stand	by, I _{SB2} (μΑ)
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Speed (ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CY62136CV30LL	2.7	3.0	3.3	55	1.5	3	7	15	2	10
				70	1.5	3	5.5	12		

Pin Configuration^[3, 4]

48-ball VFBGA **Top View**

- Notes:
 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.
 3. NC pins are not connected to the die.
 4. E3 (DNU) pin have to be left floating or tied to V_{SS} to ensure proper operation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential–0.5V to $V_{CC(max)}$ + 0.5V

DC Input Voltage ^[5]	-0.5V to V _{CC} + 0.3V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62136CV30	Industrial	-40°C to +85°C	2.7V to 3.3V

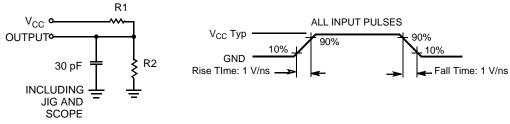
Electrical Characteristics Over the Operating Range

				CY6	2136CV3	30-55	CY6	2136CV3	30-70	
Parameter	Description	Test Cond	ditions	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$		-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, ($GND \le V_O \le V_{CC}$, Output Disabled			+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{Max} = 1/t_{RC}$	$V_{CC} = 3.3V$		7	15		5.5	12	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:center_constraints} \begin{split} \overline{\text{CE}} & \ge \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{V}_{\text{IN}} & \ge \text{V}_{\text{CC}} - 0.2\text{V or V}_{\text{IN}} \le 0.2\text{V}, \\ \text{f} & = \text{f}_{\text{Max}} \text{ (Address and Data Only)}, \\ \text{f} & = 0 \text{ (OE, WE, BHE, and BLE)} \end{split}$			2	10		2	10	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$, $f = 0, V_{CC} = 3.3V$			2	10		2	10	μА

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ.)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

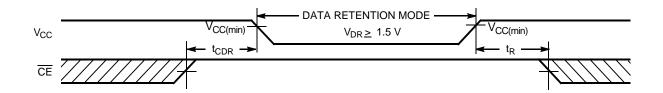
Thermal Resistance^[7]


Parameter	Description	Test Conditions	VFBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, 2-layer printed circuit board	55	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)		16	°C/W

Notes:

- Notes:
 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.
 Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μs or stable at V_{CC(min.)} > 100 μs.

AC Test Loads and Waveforms


Equivalent to: THEVENIN EQUIVALENT $\begin{matrix} R_{TH} \\ OUTPUT & & & V_{TI} \end{matrix}$

Parameters	3.0V	Unit
R1	1105	Ω
R2	1550	Ω
R _{TH}	645	Ω
V _{TH}	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		V _{cc(max)}	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$		1	6	μА
t _{CDR} ^[7]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

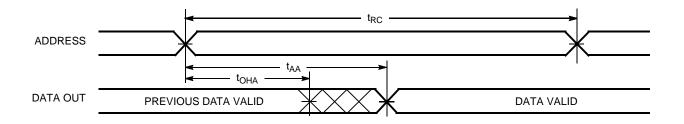
Switching Characteristics Over the Operating Range^[8]

		55	ns	70	ns		
Parameter	Description	Min. Max.		Min. Max.		Unit	
Read Cycle							
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	10		10		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[9]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[9, 10]		20		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[9]	10		10		ns	
t _{HZCE}	CE HIGH to High-Z ^[9, 10]		20		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
t _{DBE}	BHE/BLE LOW to Data Valid		25		35	ns	
t _{LZBE}	BHE/BLE LOW to Low-Z ^[9]	5		5		ns	
t _{HZBE}	BHE/BLE HIGH to High-Z ^[9, 10]		20		25	ns	
Write Cycle ^[11]		•				1	
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		45		ns	
t _{BW}	BHE/BLE Pulse Width	50		60		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t_{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[9, 10]	20			25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[9]	10		10		ns	

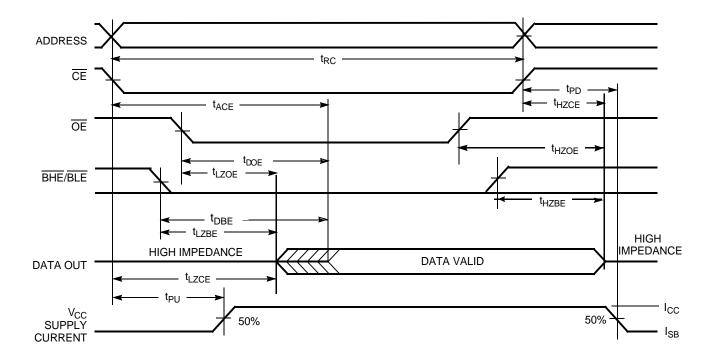
Notes:

^{8.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.


^{10.} It_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high-impedance</u> state.

11. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



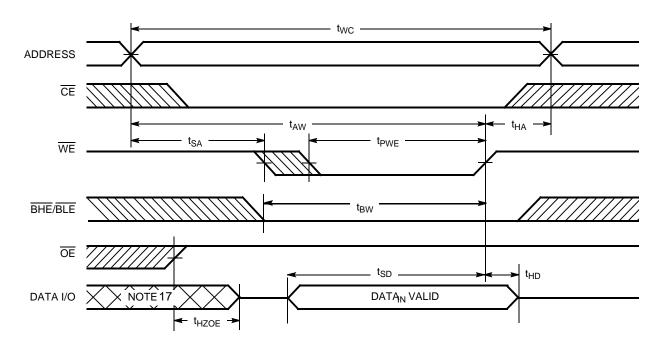
Switching Waveforms

Read Cycle No. 1(Address Transition Controlled)^[12, 13]

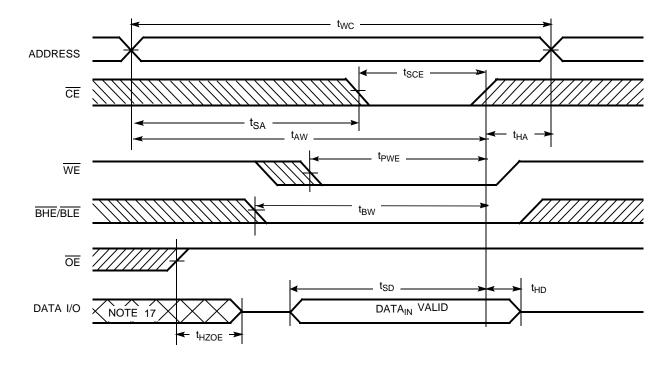
Read Cycle No. 2 (OE Controlled)[13, 14]

Notes:

- 12. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , $\overline{BLE} = V_{IL}$.


 13. \overline{WE} is HIGH for read cycle.

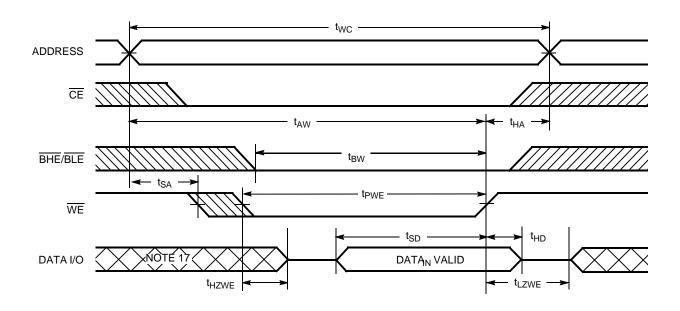
 14. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.



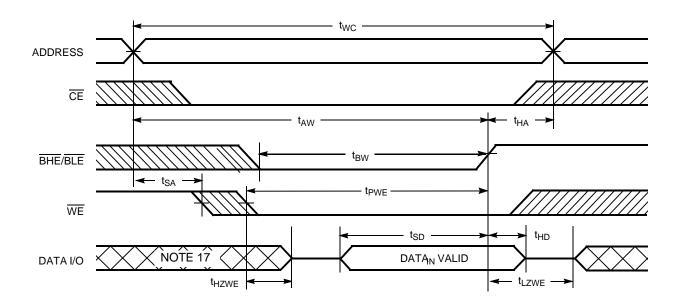
Switching Waveforms

Write Cycle No. 1 (WE Controlled)[11, 15, 16]

Write Cycle No. 2 (CE Controlled)[11, 15, 16]

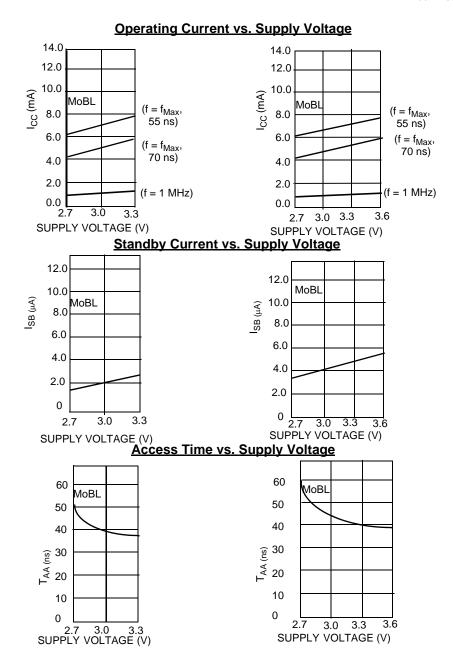


- 15. Data I/O is high-impedance if $\overline{\text{OE}} = \underline{V_{\text{IH}}}$ 16. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms

Write Cycle No. 3 (WE Controlled, OE LOW)[16]


Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[16]

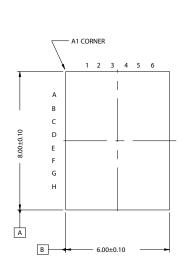
Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$)

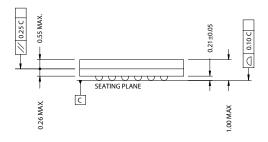
Truth Table

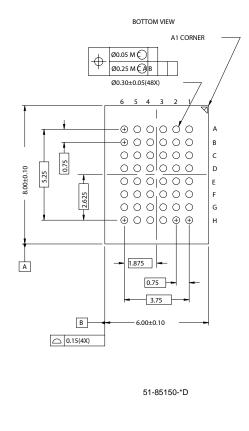
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	High Z (I/O ₈ –I/O ₁₅); Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	High Z (I/O ₈ -I/O ₁₅); Data In (I/O ₀ -I/O ₇)	Write	Active (I _{CC})
L	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	Н	Н	L	L	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Output Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62136CV30LL-55BVI	51-85150	48-ball Fine Pitch BGA (6 x 8 x 1 mm)	Industrial
70	CY62136CV30LL-70BVXI		48-ball Fine Pitch BGA (6 x 8 x 1 mm) Pb-free	

Please contact your local Cypress sales representative for availability of these parts




Package Diagram

48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

TOP VIEW

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY62136CV30 2-Mbit (128K x 16) Static RAM Document Number: 38-05199						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	112379	02/19/02	GAV	New Data Sheet (advance information)			
*A	114023	04/25/02	JUI	Added BV package diagram Changed Advance Information to Preliminary			
*B	117063	07/12/02	MGN	Changed Preliminary to Final			
*C	118121	08/26/02	MGN	Added new part numbers: CY62136CV with wider voltage (2.7V $-$ 3.6V); CY62136CV33 narrower voltage range (3.0V $-$ 3.6V) For T _{AA} = 55 ns, improved t _{PWE} Min from 45 ns to 40 ns For T _{AA} = 70 ns, improved t _{PWE} Min from 50 ns to 45 ns For T _{AA} = 70 ns, improved t _{LZWE} Min from 5 ns to 10 ns			
*D	118622	10/3/02	MGN	Improved Typ. I_{CC} spec. to 7 mA (for 55 ns) and 5.5 mA (for 70 ns) Improved Max I_{CC} spec. to 15 mA (for 55 ns) and 12 mA (for 70 ns) For T_{AA} = 55 ns, improved t_{LZWE} min. from 5 ns to 10 ns Changed upper spec. for Supply Voltage to Ground Potential to $V_{CC(max)}$ + 0.5V Changed upper spec. for DC Voltage Applied to Outputs in High-Z State and DC Input Voltage to V_{CC} + 0.3V			
*E	486789	SEE ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed Part numbers: CY62136CV and CY62136CV33 Updated Ordering Information table			