

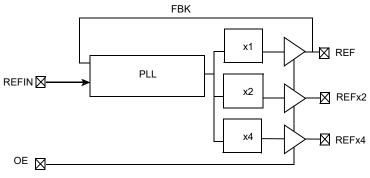
Phase-Aligned Clock Multiplier

### Features

- 3-Multiplier configuration (1×, 2×, 4× ref)
- 10 MHz to 166.67 MHz operating range (reference input from 10 MHz to 41.67 MHz)
- Phase alignment
- 80 ps typical period jitter
- Output enable pin
- 3.3 V operation
- 5 V tolerant input
- 8-pin 150-mil small-outline integrated circuit (SOIC) package
- Commercial temperature range

### Logic Block Diagram

### **Functional Description**


The CY2303 is a 3 output 3.3 V phase-aligned system clock designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high-performance applications.

The part allows user to obtain 1×, 2×, and 4× REFIN output frequencies on respective output pins.

The CY2303 has an on-chip PLL, which locks to an input clock presented on the REFIN pin. The PLL feedback is internally connected to the REF output. The input-to-output is guaranteed to be less than  $\pm 200$  ps, and output-to-output skew is guaranteed to be less than 200 ps.

Multiple CY2303 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 400 ps.

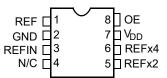
For a complete list of related documentation, click here.



٠



## Contents


| Pin Configurations         | 3 |
|----------------------------|---|
| Pin Description            |   |
| Maximum Ratings            |   |
| Operating Conditions       |   |
| Electrical Characteristics |   |
| Thermal Resistance         |   |
| Switching Characteristics  |   |
| Switching Waveforms        |   |
| Test Circuits              |   |
| Ordering Information       |   |
| Ordering Code Definitions  |   |
| Package Diagram            |   |
| Acronyms                   |   |
| Document Conventions       |   |
| Units of Measure           |   |

| Reference Documents                          | 10 |
|----------------------------------------------|----|
| Errata                                       | 11 |
| Part Numbers Affected                        | 11 |
| CY2303 Errata Summary                        | 11 |
| CY2303 Qualification Status of fixed silicon | 11 |
| Document History Page                        | 13 |
| Sales, Solutions, and Legal Information      | 14 |
| Worldwide Sales and Design Support           | 14 |
| Products                                     | 14 |
| PSoC® Solutions                              | 14 |
| Cypress Developer Community                  | 14 |
| Technical Support                            | 14 |
| Technical Support                            | 14 |



# **Pin Configurations**

### Figure 1. 8-pin SOIC pinout



## **Pin Description**

| Pin | Signal <sup>[1]</sup> | Description                                   |
|-----|-----------------------|-----------------------------------------------|
| 1   | REF                   | REF output (1× reference input)               |
| 2   | GND                   | Ground                                        |
| 3   | REFIN                 | Input reference frequency, 5 V tolerant input |
| 4   | N/C                   | No connect                                    |
| 5   | REF×2                 | 2× reference input                            |
| 6   | REF×4                 | 4× reference input                            |
| 7   | V <sub>DD</sub>       | 3.3 V supply                                  |
| 8   | OE                    | Output enable (weak pull-up)                  |



## **Maximum Ratings**

| Supply voltage to ground potential                       |
|----------------------------------------------------------|
| DC input voltage (except ref) –0.5 V to $V_{DD}$ + 0.5 V |
| DC input voltage REFIN –0.5 V to 7 V                     |

| Storage temperature                                        | –65 °C to +150 °C |
|------------------------------------------------------------|-------------------|
| Junction temperature                                       | 150 °C            |
| Static discharge voltage<br>(per MIL-STD-883, method 3015) | > 2000 \/         |
| (per MIL-01D-000, method 5010)                             |                   |

## **Operating Conditions**

| Parameter       | Description                                                                                                             | Min  | Мах | Unit |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|------|-----|------|
| V <sub>DD</sub> | Supply voltage                                                                                                          | 3.0  | 3.6 | V    |
| T <sub>A</sub>  | Operating temperature (ambient temperature)                                                                             | 0    | 70  | °C   |
| CL              | Load capacitance, 10 MHz < F <sub>OUT</sub> < 133.33 MHz                                                                | -    | 18  | pF   |
|                 | Load capacitance, 133.33 MHz < F <sub>OUT</sub> < 166.67 MHz                                                            | _    | 12  | pF   |
| C <sub>IN</sub> | Input capacitance                                                                                                       | -    | 7   | pF   |
| t <sub>PU</sub> | Power-up time for all $V_{\mbox{\scriptsize DD}}$ 's to reach minimum specified voltage (power ramps must be monotonic) | 0.05 | 50  | ms   |

## **Electrical Characteristics**

| Parameter       | Description                        | Test Conditions                     | Min | Max | Unit |
|-----------------|------------------------------------|-------------------------------------|-----|-----|------|
| V <sub>IL</sub> | Input LOW voltage                  |                                     | _   | 0.8 | V    |
| V <sub>IH</sub> | Input HIGH voltage                 |                                     | 2.0 | -   | V    |
| IIL             | Input LOW current                  | V <sub>IN</sub> = 0 V               | _   | 100 | μA   |
| I <sub>IH</sub> | Input HIGH current                 | $V_{IN} = V_{DD}$                   | -   | 50  | μA   |
| V <sub>OL</sub> | Output LOW voltage <sup>[2]</sup>  | I <sub>OL</sub> = 8 mA              | -   | 0.4 | V    |
| V <sub>OH</sub> | Output HIGH voltage <sup>[2]</sup> | I <sub>OH</sub> = –8 mA             | 2.4 | _   | V    |
| I <sub>DD</sub> | Supply current                     | Unloaded outputs, REFIN = 41.67 MHz | _   | 45  | mA   |
|                 |                                    | Unloaded outputs, REFIN = 25 MHz    | _   | 32  | mA   |
|                 |                                    | Unloaded outputs, REFIN = 10 MHz    | -   | 18  | mA   |

### **Thermal Resistance**

| Parameter <sup>[3]</sup> | Description                              | Test Conditions                                                                                 | 8-pin SOIC | Unit |
|--------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|------------|------|
| JA                       | 0                                        | Test conditions follow standard test methods and procedures for measuring thermal impedance, in | 140        | °C/W |
| 30                       | Thermal resistance<br>(junction to case) | accordance with EIA/JESD51.                                                                     | 54         | °C/W |

Notes

Parameter is guaranteed by design and characterization. It is not 100% tested in production.
 These parameters are guaranteed by design and are not tested.



# Switching Characteristics

| Parameter         | Name                                                       | Test Conditions                                                          | Min | Тур | Max    | Unit |
|-------------------|------------------------------------------------------------|--------------------------------------------------------------------------|-----|-----|--------|------|
| 1/t <sub>1</sub>  | Output frequency                                           | 18-pF load                                                               | 10  | -   | 133.33 | MHz  |
|                   |                                                            | 12-pF load                                                               | -   | -   | 166.67 | MHz  |
|                   | Duty cycle <sup>[4]</sup> = $t_2 \div t_1$                 | Measured at V <sub>DD</sub> /2                                           | 40  | 50  | 60     | %    |
| t <sub>3</sub>    | Rise time <sup>[4]</sup>                                   | Measured between 0.8 V and 2.0 V                                         | -   | -   | 1.20   | ns   |
| t <sub>4</sub>    | Fall time <sup>[4]</sup>                                   | Measured between 0.8 V and 2.0 V                                         | -   | -   | 1.20   | ns   |
| t <sub>5</sub>    | Output to output skew on rising edges <sup>[4]</sup>       | All outputs equally loaded<br>Measured at V <sub>DD</sub> /2             | -   | -   | 200    | ps   |
| t <sub>6</sub>    | Delay, REFIN rising edge to REF rising edge <sup>[4]</sup> | Measured at V <sub>DD</sub> /2 from REFIN to any output                  | -   | -   | ±200   | ps   |
| t <sub>7</sub>    | Device to device skew <sup>[4]</sup>                       | Measured at $V_{DD}$ /2 on the REF pin of the device (pin 1)             | -   | -   | 400    | ps   |
| tj                | Period jitter <sup>[4]</sup>                               | Measured at F <sub>OUT</sub> < 133.33 MHz,<br>loaded outputs, 18-pF load | -   | ±80 | ±175   | ps   |
| t <sub>LOCK</sub> | PLL lock time <sup>[4]</sup>                               | Stable power supply, valid clocks<br>presented on REFIN                  | -   | -   | 1.0    | ms   |



## **Switching Waveforms**

Figure 2. Duty Cycle Timing

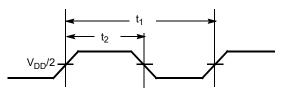



Figure 3. All Outputs Rise/Fall Time

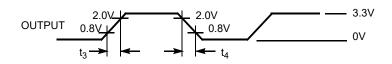



Figure 4. Output to Output Skew

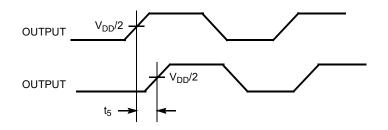
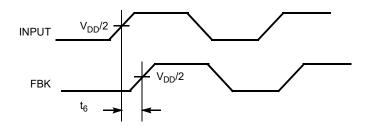
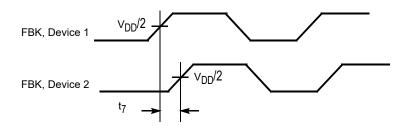
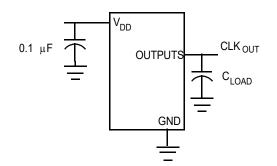



Figure 5. Input to Output Propagation Delay



Figure 6. Device to Device Skew





## **Test Circuits**

## Figure 7. Test Circuit #1



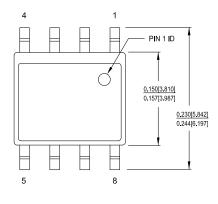


## **Ordering Information**

| Ordering Code | Ordering Code Package Type            |                            |
|---------------|---------------------------------------|----------------------------|
| Pb-free       |                                       |                            |
| CY2303SXC     | 8-pin SOIC (150 Mils)                 | Commercial (0 °C to 70 °C) |
| CY2303SXCT    | 8-pin SOIC (150 Mils) - Tape and Reel | Commercial (0 °C to 70 °C) |

### **Ordering Code Definitions**





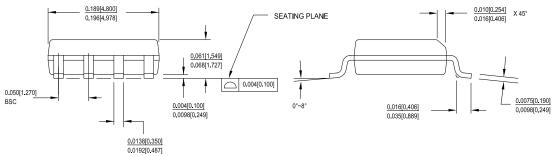


### Package Diagram

Figure 8. 8-pin SOIC (150 Mils) S0815/SZ815/SW815 Package Outline, 51-85066

- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

|         | PART #        |
|---------|---------------|
| S08.15  | STANDARD PKG  |
| SZ08.15 | LEAD FREE PKG |
| SW8.15  | LEAD FREE PKG |





51-85066 \*I



### Acronyms

| Acronym | Description       |
|---------|-------------------|
| FBK     | Feedback          |
| OE      | Output Enable     |
| PLL     | Phase Locked Loop |
| REFIN   | Reference Input   |

### **Document Conventions**

#### **Units of Measure**

| Symbol | Unit of Measure |  |  |
|--------|-----------------|--|--|
| °C     | degrees Celsius |  |  |
| Hz     | hertz           |  |  |
| kHz    | kilohertz       |  |  |
| MHz    | megahertz       |  |  |
| μA     | microampere     |  |  |
| μF     | microfarad      |  |  |
| μs     | microsecond     |  |  |
| μV     | microvolt       |  |  |
| mA     | milliampere     |  |  |
| mm     | millimeter      |  |  |
| ms     | millisecond     |  |  |
| mV     | millivolt       |  |  |
| ns     | nanosecond      |  |  |
| pА     | picoampere      |  |  |
| pF     | picofarad       |  |  |
| ps     | picosecond      |  |  |
| V      | volt            |  |  |

### **Reference Documents**

Reference documents are available through your local Cypress sales representative. You can also direct your requests to tsbusdev@cypress.com.

| Document Number | Document Title | Description |
|-----------------|----------------|-------------|
| NA              | NA             | NA          |



### Errata

This section describes the errors, workaround solution and silicon design fixes for Cypress zero delay clock buffers belonging to the families CY2303. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

### **Part Numbers Affected**

#### Table 1. Part Numbers Affected

| Part Number | Device Variants |
|-------------|-----------------|
| CY2303SXC   | All Variants    |
| CY2303SXCT  | All Variants    |

#### CY2303 Errata Summary

| Items                             | Part Number | Fix Status                                              |
|-----------------------------------|-------------|---------------------------------------------------------|
| Start up lock time issue [CY2303] | All         | Silicon fixed. New silicon available from WW 10 of 2013 |

### CY2303 Qualification Status of fixed silicon

Product Status: In production Qualification report last updated on 11/27/2012 http://www.cypress.com/?rID=72595

#### 1. Start up lock time issue

#### Problem Definition

Output of CY2304 fails to locks within 1 ms upon power up (as per datasheet spec)

#### Parameters Affected

PLL lock time

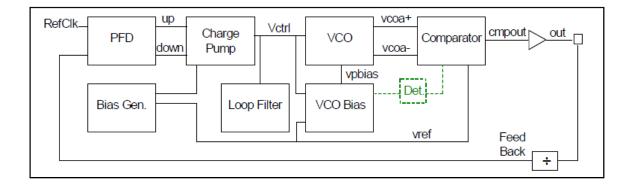
#### Trigger Condition(s)

Start up

#### Scope of Impact

It can impact the performance of system and its throughput

#### Workaround


Apply reference input (RefClk) before power up ( $V_{DD}$ ). If RefClk is applied after power up, noise gets coupled on the output and propagates back to the PLL causing it to take higher time to acquire lock. If reference input is present during power up, noise will not propagate to the PLL and device will start up normally without problems.

#### Fix Status

This issue is due to design marginality. Two minor design modifications have been made to address this problem.

- a. Addition of VCO bias detector block as shown in the following figure keeps comparator power down till VCO bias is present and thereby eliminating the propagation of noise to feedback.
- b. Bias generator enhancement for successful initialization.







# **Document History Page**

| Document Number: 38-07249 |         |        |            |                                                                                                                                                                                                                                                                                                                      |  |  |
|---------------------------|---------|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev.                      | ECN     | Change | Date       | Description of Change                                                                                                                                                                                                                                                                                                |  |  |
| **                        | 110514  | SZV    | 01/07/2002 | Changed from spec number: 38-01036 to 38-07249.                                                                                                                                                                                                                                                                      |  |  |
| *A                        | 121852  | RBI    | 12/14/2002 | Updated Operating Conditions:<br>Added t <sub>PU</sub> parameter and its details.                                                                                                                                                                                                                                    |  |  |
| *B                        | 390413  | RGL    | 08/10/2005 | Updated Switching Characteristics:<br>Added typical value for t <sub>J</sub> parameter.<br>Updated Ordering Information:<br>Updated part numbers.                                                                                                                                                                    |  |  |
| *C                        | 2568533 | AESA   | 09/23/2008 | Updated Selector Guide:<br>Removed CY2303SC and CY2303SI part number related information.<br>Updated Ordering Information:<br>Updated part numbers.<br>Updated to new template.                                                                                                                                      |  |  |
| *D                        | 2897294 | KVM    | 03/22/2010 | Removed Industrial Temperature Range related information in all instances<br>across the document.<br>Removed Selector Guide.<br>Updated Ordering Information:<br>Updated part numbers.<br>Updated Package Diagram:<br>spec 51-85066 – Changed revision from *C to *D.<br>Updated to new template.                    |  |  |
| *E                        | 3026183 | BASH   | 09/01/2010 | Updated Switching Characteristics:<br>Changed typical value of t <sub>J</sub> parameter from 80 ps to ±80 ps.<br>Updated Ordering Information:<br>No change in part numbers.<br>Added Ordering Code Definitions.<br>Added Acronyms, and Units of Measure.<br>Added Reference Documents.<br>Completing Sunset Review. |  |  |
| *F                        | 4018186 | CINM   | 06/10/2013 | Updated Package Diagram:<br>spec 51-85066 – Changed revision from *D to *F.<br>Added Errata.                                                                                                                                                                                                                         |  |  |
| *G                        | 4127379 | CINM   | 10/23/2013 | Updated to new template.<br>Completing Sunset Review.                                                                                                                                                                                                                                                                |  |  |
| *H                        | 4578443 | TAVA   | 10/25/2014 | Updated Functional Description:<br>Added "For a complete list of related documentation, click here." at the end                                                                                                                                                                                                      |  |  |
| *                         | 5270465 | PSR    | 05/13/2016 | Added Thermal Resistance.<br>Updated Package Diagram:<br>spec 51-85066 – Changed revision from *F to *H.<br>Updated to new template.                                                                                                                                                                                 |  |  |
| *J                        | 5515677 | TAVA   | 11/09/2016 | Updated to new template.<br>Completing Sunset Review.                                                                                                                                                                                                                                                                |  |  |
| *K                        | 6043496 | PAWK   | 01/24/2018 | Updated Package Diagram:<br>spec 51-85066 – Changed revision from *H to *I.<br>Updated to new template.                                                                                                                                                                                                              |  |  |



### Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### Products

| Arm <sup>®</sup> Cortex <sup>®</sup> Microcontrollers | cypress.com/arm        |
|-------------------------------------------------------|------------------------|
| Automotive                                            | cypress.com/automotive |
| Clocks & Buffers                                      | cypress.com/clocks     |
| Interface                                             | cypress.com/interface  |
| Internet of Things                                    | cypress.com/iot        |
| Memory                                                | cypress.com/memory     |
| Microcontrollers                                      | cypress.com/mcu        |
| PSoC                                                  | cypress.com/psoc       |
| Power Management ICs                                  | cypress.com/pmic       |
| Touch Sensing                                         | cypress.com/touch      |
| USB Controllers                                       | cypress.com/usb        |
| Wireless Connectivity                                 | cypress.com/wireless   |

### PSoC<sup>®</sup> Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-07249 Rev. \*K

<sup>©</sup> Cypress Semiconductor Corporation, 2002-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.