

CX4 CRYSTAL

Fundamental Mode: 600 kHz to 1.4 MHz Overtone: 1.8432 MHz - 2.5 MHz

> Ultra-Miniature Low Profile Surface Mount Quartz Crystal

DESCRIPTION

STATEK's CX4 quartz crystals are hermetically sealed in an ultra-miniature low profile surface mount ceramic package. This high quality quartz resonator forms the basis of a stable oscillator.

FEATURES

- Designed for low power applications in this frequency range
- Smallest available package in this frequency range
- Hermetically sealed ceramic package
- Excellent aging characteristics
- Full military testing to MIL-PRF-3098 available
- Designed and manufactured in the USA

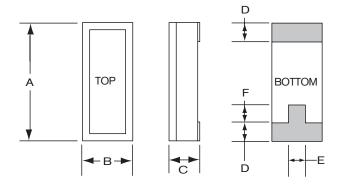
APPLICATIONS

Medical

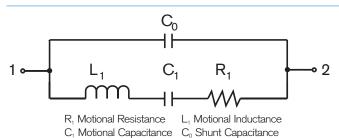
Pacemaker, defibrillator and hearing aid

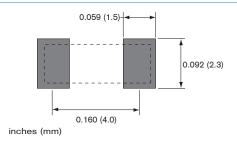
Industrial, Computer & Communications

- PCMCIA (FAX, Modem and LAN)
- Smart Card


Military & Aerospace

- Airborne hybrid computer
- Low power system clock
- Hybrid multi-chip modules


PACKAGE DIMENSIONS


	TYP.		MAX.		
DIM	inches	mm	inches	mm	
Α	0.197	5.00	0.210	5.33	
В	0.072	1.83	0.085	2.16	
С	-	-	see b	elow	
D	0.036	0.91	0.046	1.16	
Е	0.020	0.51	-	-	
F	0.025	0.64	-	-	
DIM "C"	GLASS LID		CERAMIC	LID	

DIM "C"	GLASS	GLASS LID		LID	
MAX	inches	mm	inches	mm	
SM1	0.045	1.14	0.050	1.27	
SM2/SM4	0.046	1.17	0.051	1.30	
SM3/SM5	0.048	1.22	0.053	1.35	

EQUIVALENT CIRCUIT

SUGGESTED LAND PATTERN

10161 Rev B

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Parameters	Fu	ndame	ental	Over	tone
Frequency, (Hz)	600 K	1.0 M	1.4 M	1.8432 M	2.4576 M
Motional Resistance, $R_1(\Omega)$	300	400	600	500	1000
Motional Resistance, R ₁ MAX			3Ks	2	
Motional Capacitance, C ₁ (fF)	3.5	2.0	1.3	3.5	1.5
Quality Factor, Q (k)	250	200	150	80	45
Shunt Capacitance, C ₀ (pF)	1.0	0.8	0.7	1.0	0.8

Standard Calibration ± 500 ppm (± 0.05%) ± 1000 ppm (±0.1%) Tolerance¹ ± 10000 ppm (± 1.0%)

3 µW MAX Drive Level

Load Capacitance, C₁² 7pF 35°C Turning Point, T₀²

-0.035 ppm/°C2 TYP Temperature Coefficient, k

Note: Frequency f at temperature T is related to frequency f₀ at

turning point temperature T_0 by: $\frac{f-f_0}{f_0} = k(T-T_0)^2$

Functional Mode Extensional Aging, first year 5ppm MAX

Shock, survival 1500 g, 0.3 ms, $\frac{1}{2}$ sine

20 g RMS, 10-2,000 Hz random Vibration, survival Operating Temp. Range -10°C to +70°C (Commercial)

> -40°C to +85°C (Industrial) -55°C to +125°C (Military)

-55°C to +125°C

260°C for 20 sec.

Storage Temp. Range

Max Process Temperature

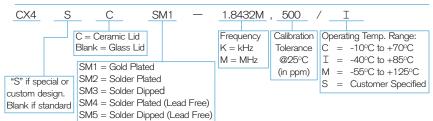
1. Tighter tolerances available 2. Other values available

NOTE: All values subject to change without notice.

TERMINATIONS

<u>Designation</u>	<u>Termination</u>
SM1	Gold Plated
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)

SM5 Solder Dipped (Lead Free)


PACKAGING OPTIONS

CX4 - Tray Pack

- Tape and Reel

(Reference tape and reel data sheet 10109)

HOW TO ORDER CX4 CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX4 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX4 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PInetwork circuit with C_{D} and C_{G} provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_{Ω}) is 50 to 250 ppm above the crystal's series resonant frequency (f_S) .

Drive Level

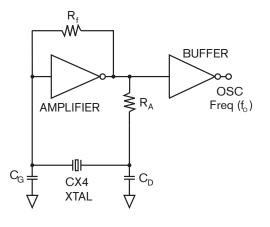
RA is used to limit the crystal's drive level by forming a voltage divider between R_A and C_D. R_A also stabilizes the oscillator against changes in the amplifiers output resistance (R₀). R_A should be increased for higher voltage operation.

Load Capacitance

The CX4 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_l) . C_l is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE: C_{D} and C_{G} include stray layout to ground and C_{S} is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_I will be less than that calculated from C_D, C_G and C_S values because of the effect of the amplifier output resistance. $\ensuremath{C_S}$ should be minimized.


The oscillation frequency (f_0) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_1)} \right]$$
 (2)

 f_S = Series resonant frequency of the crystal

C₁ = Motional Capacitance C₀ = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

10161 Rev B

