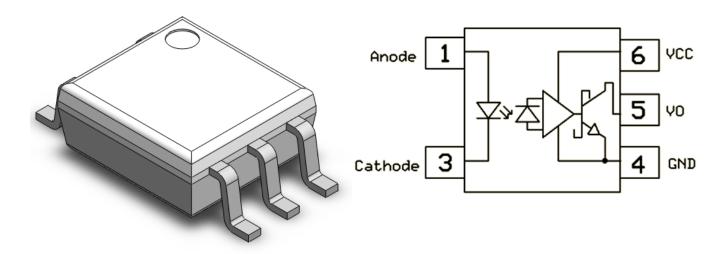


Features

- High speed 10MBit/s
- High isolation voltage between input and output (Viso=3750 Vrms)
- Guaranteed performance from -40°C to 85°C
- RoHS and REACH compliance
- Halogen Free compliance
- MSL class 1
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898 (14001105803)
 - IEC62368 (FI/41119)

Description


The CTM600, CTM601, and CTM611 optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobe able output. The output of the detect IC is a high speed logic Wide operating temperature range of -55°C to 125°C gate integrated with a photo detector. The switching parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA (fan out of 8).

Applications

- Line receivers
- Telecommunication equipment
- High speed logic ground isolation
- Feedback loop in switch-mode power supplies
- Home appliances

Package Outline

Schematic

Absolute Maximum Ratings $T_A = 25$ °C, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Ratings	Units	Notes	
Viso	Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.)	3750	V _{RMS}		
Topr	Operating temperature	-55 ~ +125	°C		
Тѕтс	Storage temperature	-55 ~ +150	°C		
TsoL	Soldering temperature (For 10 seconds)	260	°C		
Emitter					
l _F	Forward current	50	mA		
V _R	Reverse voltage	5	V		
PD	Power dissipation	100	mW		
Detector					
P _D	Power dissipation	85	mW		
lo	Average Output current	50	mA		
Vcc	Supply voltage	7	V		
Vo	Output voltage	7	V		

Electrical Characteristics Over recommended temperature (TA = -40°C to +85°C) unless otherwise specified. All Typicals at TA = 25°C.

Emitter Characteristics

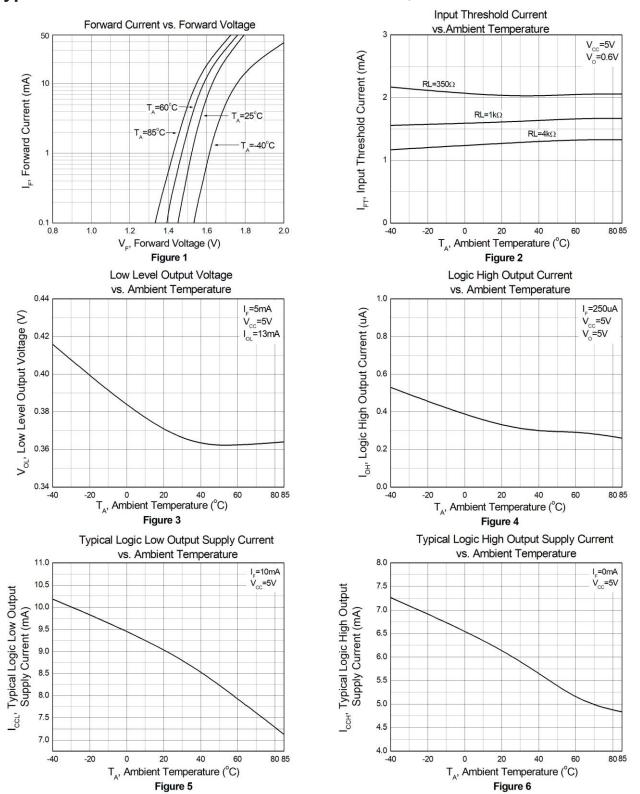
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
V _F	Forward voltage	I _F = 10mA	-	1.6	1.8	V	
VR	Reverse Voltage	$I_R = 5\mu A$	5.0	-	-	V	
$\Delta V_F/\Delta T_A$	Temperature coefficient of forward voltage	I _F =10mA	-	-1.6	-	mV/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Iccl	Logic Low Supply Current	I _F =10mA, V _O =Open, V _{CC} =5V		9	13	mA	
Іссн	Logic High Supply Current	I _F =0mA, V _O =Open, V _{CC} =5V	ı	6	9	mA	
Rio	Isolation Resistance	V _{IO} = 500V _{DC}	5x10 ¹⁰	-	-	Ω	
Сю	Isolation Capacitance	f= 1MHz	-	0.5	1.2	pF	

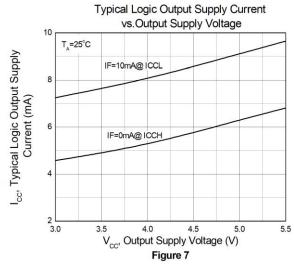
Transfer Characteristics

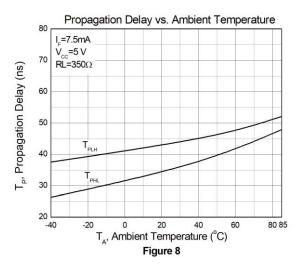
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Іон	Logic High Output Current	I _F =250uA, V _O = 5.5V,		2	100	uA	
1	IFT Input Threshold Current Vcc=5.5V, Vo=0.6V, Io=13mA	Vcc=5.5V, Vo=0.6V,		0	5	A	
IF I		-	2	5	mA		
VoL	Logic Low Output Voltage	I _F =5mA, I _O =13mA,	-	0.35	0.6	V	
		Vcc=5.5V,					

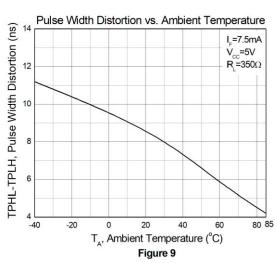

Electrical Characteristics Over recommended temperature (TA = -40°C to +85°C) unless otherwise specified. All Typicals at TA = 25°C.

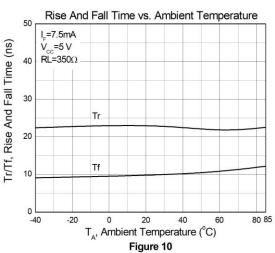
Switching Characteristics

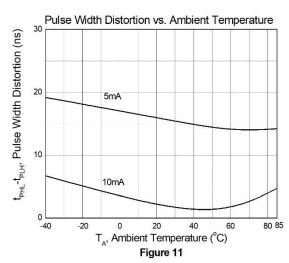
Symbol	Paramete	rs	Test Conditions	Min	Тур	Max	Units	Notes
Трнц	Propagation Delay Time Logic High to Logic Low			-	40	75	ns	
T _{PLH}	Propagation Delay Ti Low to Logic High	me Logic	$C_L=15pF,R_L=350\Omega$	-	35	75	ns	
Tr	Output Rise Time			-	40	-	ns	
Tf	Output Fall Time			-	10	-	ns	
		CTM600	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=10Vp-p	-	-	-		
СМн	Common Mode Transient Immunity at Logic High	CTM601	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=50Vp-p	5000	-	-	V/µs	
		CTM611	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=1000Vp-p	20000	-	-		
		CTM600	IF = 7.5mA , VoL=0.8V, RL=350Ω, TA=25°C, VcM=10Vp-p	-	-	-		
CML	Common Mode Transient Immunity at Logic Low	CTM601	IF = 7.5mA , Vol= 0.8V , RL= 350Ω , TA= 25°C , VCM= 50Vp-p	5000	-	-	V/µs	
		CTM611	IF = 7.5mA , VoL=0.8V, RL=350Ω, TA=25°C, VCM=1000Vp-p	20000	-	-		




Typical Characteristic Curves T_A = 25°C, unless otherwise specified






Typical Characteristic Curves T_A = 25°C, unless otherwise specified

Test Circuits

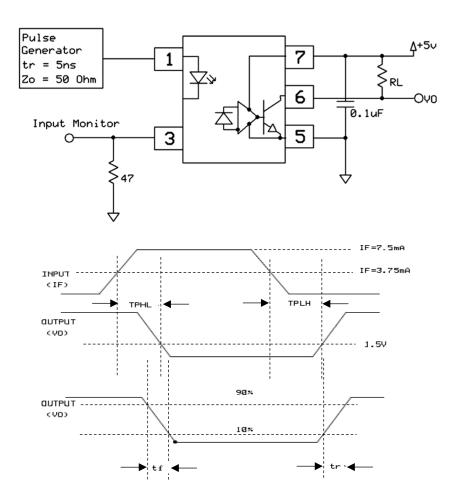
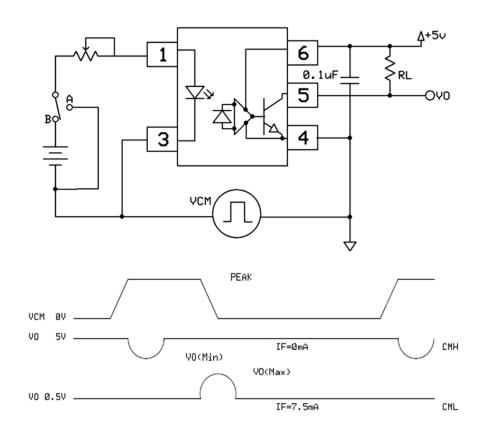
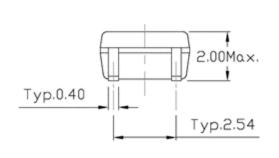
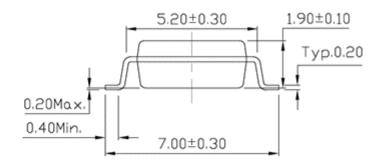
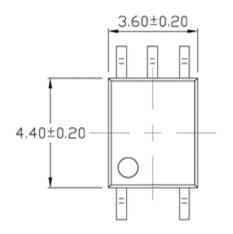
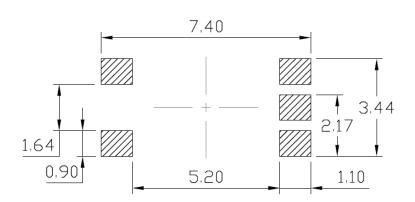


Figure 22: Switching Time Test Circuit

Test Circuits


Figure 23: CMR Test Circuit



Package Dimension Dimensions in mm unless otherwise stated

Marking Information

Note:

CT : Denotes "CT Micro"

M600: Product Number (600,601,611)

V : VDE Safety Mark Option (Blank or V)

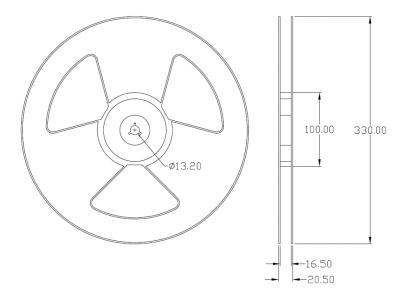
Y : One Digit Year CodeWW : Two Digit Work WeekK : Manufacturing Code

Ordering Information

CTM6XX(V)(Z)

CT = Denotes "CT Micro"

X = Part Number(00, 01, 11)

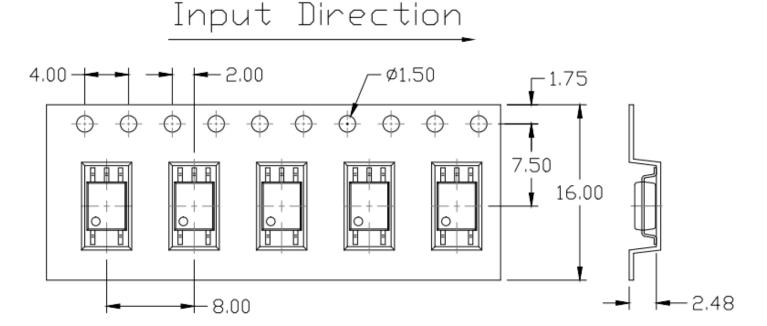

V = VDE Safety Mark Option (Blank or V)

Z = Tape and Reel Option (T1, T2)

Option Description		Quantity
T1 Surface Mount Lead Forming – With Option 1 Tapping		3000 Units/Reel
T2	Surface Mount Lead Forming – With Option 2 Tapping	3000 Units/Reel

Reel Dimension All dimensions are in mm, unless otherwise stated

Option T1/T2



Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option T1

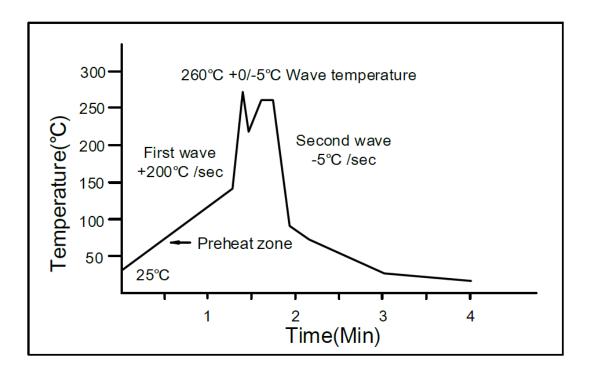
Option T2

Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave soldering (Follow the JEDEC standard JESD22-A111)


One time soldering is recommended within the condition of temperature.

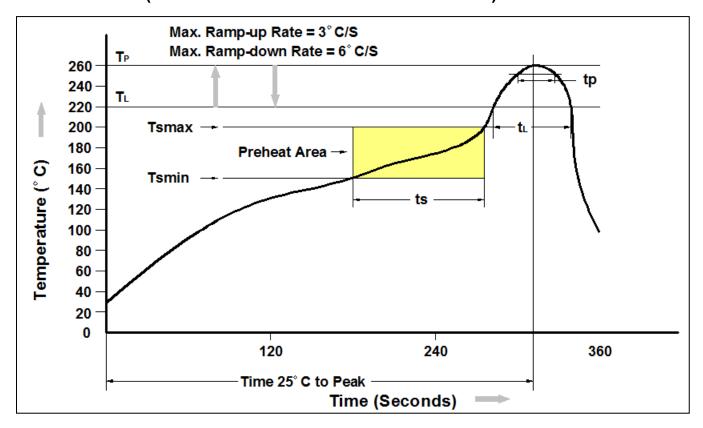
Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature: 25 to 140°C.

Preheat time: 30 to 80 sec.

Iron soldering (Follow the standard MIL-STD 202G, Method 210F)


Allow single lead soldering in every single process.

One time soldering is recommended. Temperature: 350±10°C

Time: 5 sec max.

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t⊳)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

DMC-Isolator® IS A TRADEMARK OF CT MICRO INTERNATIONAL CORPORATION AND/OR ITS SUBSIDIARIES. CT MICRO OWNS THE RIGHTS TO A NUMBER OF PATENTS, TRADEMARKS, COPYRIGHTS AND OTHER INTELLECTUAL PROPERTY.

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG

TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.