

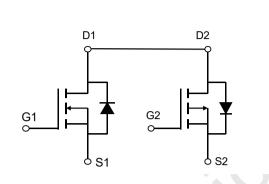
CRMXTL0414AC

N and P Channel Power MOSFET

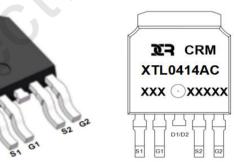
Description

Features

- 40V, 25A $R_{DS(ON)}$ Typ = 15.4m Ω @ V_{GS} = 10V $R_{DS(ON)}$ Typ = 21m Ω @ V_{GS} = 4.5V
- -40V, -18A


 $R_{DS(ON)}$ Typ = 28m Ω @ V_{GS} = -10V

 $R_{DS(ON)}$ Typ = 39.5m Ω @ V_{GS} = -4.5V


- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead Free
- 100% UIS TESTED!
- 100% ΔVds TESTED!

Application

- Load Switch
- PWM Application
- Power Management

Marking and Pin Assignment

Package Marking and Ordering Information

Device	Marking	Package	Outline	Reel Size	Reel (pcs)	Per Carton (pcs)
CRMXTL0414AC	CRMXTL0414AC	TO-252-4L	TAPING	13"	2500	25000

01/02

Absolute Maximum Ratings (@ T_J = 25°C unless otherwise specified)

Symbol	Parameter		N Value	P Value	Units
V _{DS}	Drain-to-Source Voltage		40	-40	V
V _{GS}	Gate-to-Source Voltage		±20	±20	V
	Continuous Desis Current	T _C = 25°C	25	-18	А
Ι _D	Continuous Drain Current	T _C = 100°C	4.5	-3.6	А
I _{DM}	Pulsed Drain Current ⁽¹⁾		100	-72	А
E _{AS}	Single Pulsed Avalanche Energy ⁽²⁾		30	30	mJ
P _D	Power Dissipation	T _C = 25°C	20.7	20.7	W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case		6	6	°C/W
T _J , T _{stg}	Junction & Storage Temperature Range		-55	to 150	°C

Electrical Characteristics (T₁ = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Char	acteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	40	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 40V, V _{GS} = 0V	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Char	acteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	1.5	2	V
	(2)	V _{GS} = 10V, I _D = 10A	-	15.4	20	mΩ
$R_{DS(ON)}$	Static Drain-Source ON-Resistance ⁽³⁾	V _{GS} = 4.5V, I _D = 7A	-	21	27.3	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance		-	1000	-	pF
C_{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 20V,$ f = 1MHz	-	84	-	pF
C _{rss}	Reverse Transfer Capacitance			63	-	pF
Qg	Total Gate Charge		<u> </u>	14	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0$ to 10V $V_{DS} = 20V, I_{D} = 5A$	-	4	-	nC
Q_{gd}	Gate Drain("Miller") Charge	$v_{\rm DS} = 20$ V, $I_{\rm D} = 3$ A	-	4.5	-	nC
Switchin	g Characteristics					
t _{d(on)}	Turn-On DelayTime		-	10	-	ns
t,	Turn-On Rise Time	V _{GS} = 10V, V _{DD} = 20V	-	12	-	ns
$\mathbf{t}_{d(off)}$	Turn-Off DelayTime	$I_D = 5A, R_{GEN} = 3\Omega$	-	33	-	ns
t _f	Turn-Off Fall Time		-	10	-	ns
Drain-So	ource Diode Characteristics and M	lax Ratings				
۱ _s	Maximum Continuous Drain to Source Di	ode Forward Current	-	-	25	А
I _{SM}	Maximum Pulsed Drain to Source Diode	Forward Current	-	-	100	А
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 10A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time		-	19	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 5A, di/dt = 100A/us	-	11	-	nC

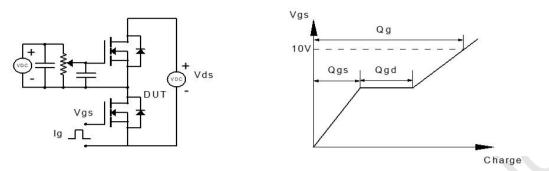
Electrical Characteristics (T₁ = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Char	acteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-40	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -40V, V _{GS} = 0V	-	-	-1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = -250 μ A	-1.1	-1.6	-2.2	V
D	Statia Drain Source ON Desistance ⁽³⁾	V _{GS} = -10V, I _D = -8A	-	28	36.4	mΩ
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽³⁾	V _{GS} = -4.5V, I _D = -6A	-	39.5	51.4	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance		-	887	-	pF
C_{oss}	Output Capacitance	V _{GS} = 0V, V _{DS} = -20V, f = 1MHz		92	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 110112		79	-	pF
Qg	Total Gate Charge		9-	35	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0$ to -10V $V_{DS} = -20V$, $I_D = -3A$	-	6	-	nC
Q_{gd}	Gate Drain("Miller") Charge	$v_{\rm DS} = -20v, t_{\rm D} = -3A$		7	-	nC
Switchin	g Characteristics					
t _{d(on)}	Turn-On DelayTime		-	13	-	ns
t _r	Turn-On Rise Time	V _{GS} = -10V, V _{DD} = -20V	-	10	-	ns
$t_{d(off)}$	Turn-Off DelayTime	I_D = -5A, R_{GEN} = 3 Ω	-	20	-	ns
t _f	Turn-Off Fall Time		-	12	-	ns
Drain-So	ource Diode Characteristics and M	lax Ratings				
۱ _s	Maximum Continuous Drain to Source Di	ode Forward Current	-	-	-18	А
I _{SM}	Maximum Pulsed Drain to Source Diode	Forward Current	-	-	-72	А
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = -8A	-	-	-1.2	V
trr	Body Diode Reverse Recovery Time		-	23	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = -3A, di/dt = 100A/us	-	15	-	nC

Notes:

1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

2. E_{AS} condition: Starting T_J=25°C, V_{DD}=20V, V_G=10V, R_G=250hm, L=0.5mH, I_{AS}=11A


 E_{AS} condition: Starting $T_{\rm J}$ =25°C, $V_{\rm DD}$ =-20V, $V_{\rm G}$ =-10V, $R_{\rm G}$ =250hm, L=0.5mH, I_{AS} =-11A

3. Pulse Test: Pulse Width ${\leqslant}300\mu s,$ Duty Cycle ${\leqslant}0.5\%.$

Test Circuit

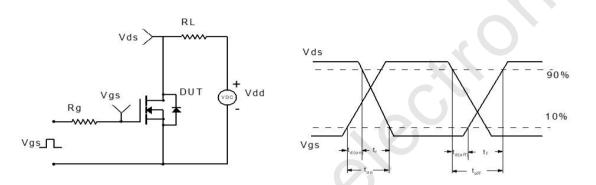
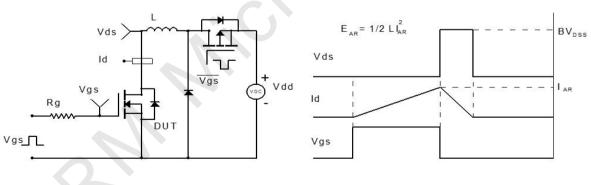



Figure 2: Resistive Switching Test Circuit & Waveform

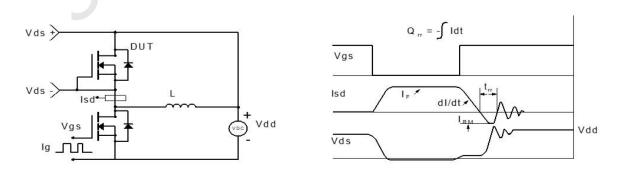
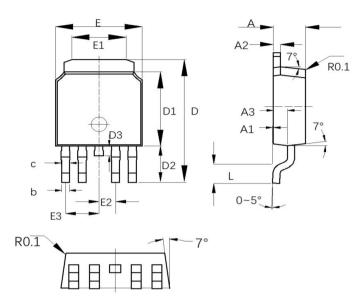



Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data(TO-252-4L)

	COMMON DIM	ENSION (MM)			
PKG	TO-252-4L				
Symbol	MIN	MON	MAX		
А	2.250	2.300	2.400		
A1	0.010	0.060	0.150		
A2	0. 500	0.508	0.550		
A3	0.960	1.010	1.060		
b	0.570	0.600	0.630		
С	-	-	0.900		
D	9.800	10. 025	10.35		
D1	6.050	6. 100	6.180		
D2	2. 850	2. 900	2.950		
D3	0.700	0.800	0.900		
E	6. 550	6. 600	6.700		
E1	4.050	4. 130	4. 200		
E2	1.240	1.270	1.300		
E3	2.510	2.540	2.570		
L	1. 400	1.500	1.600		

Important Notice

The information presented in datasheets is for reference only. CRM reserves the right to make changes at any time to any products or information herein, without notice. Customers are responsible for the design and applications, including compliance with all laws, regulations and safety requirements or standards.

"Typical" parameters which provided in datasheets can vary in different applications and actual performance may vary over time. Customers are responsible for doing all necessary testing to minimize the risks associated with their applications and products.

Contact information

For more information, please visit: http://www.crm-semi.tech For sales information, please send an email to: sales@crm-semi.com