CRMGTL0303A

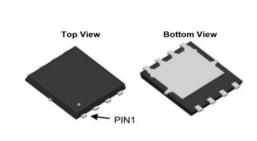
Description

N-channel Enhancement Mode Power MOSFET

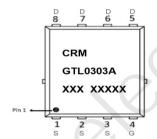
Features

• 30V, 130A

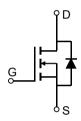
 $R_{DS(ON)}$ Typ=2.2m Ω @ V_{GS} = 10V $R_{DS(ON)}$ Typ=3.3m Ω @ V_{GS} = 4.5V


- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge

Applications


- Load Switch
- PWM Application
- Power Management

100% UIS TESTED! 100% ΔVds TESTED!



Marking and Pin Assignment

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Outline	Package	Reel Size	Reel(pcs)	Per Carton (pcs)
CRMGTL0303A	CRMGTL0303A	TAPING	PDFN5x6-8L	13"	5000	50000

Absolute Maximum Ratings (@ T_C = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units
V _{DS}	Drain-to-Source Voltage		30	V
V _{GS}	Gate-to-Source Voltage		±20	V
	Continuous Drain Current $ T_{C} = 25^{\circ}C $ $ T_{C} = 100^{\circ}C $	T _C = 25°C	130	^
I _D		90	A	
I _{DM}	Pulsed Drain Current ⁽¹⁾		520	А
E _{AS}	Single Pulsed Avalanche Energy (2)		196	mJ
P _D	Power Dissipation	T _C = 25°C	104	W
$R_{\theta JC}$	Thermal Resistance, Junction to Case		1.2	°C/W
T _J , T _{STG}	Junction & Storage Temperature Range		-55 to 150	°C

CRMGTL0303A

Electrical Characteristics (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 30V, V_{GS} = 0V$	-	-	1.0	μА
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	racteristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1	1.6	2.1	V
		V _{GS} = 10V, I _D = 20A	-	2.2	2.9	mΩ
$R_{DS(ON)}$	Static Drain-Source ON-Resistance ⁽³⁾	$V_{GS} = 4.5V, I_{D} = 10A$	-	3.3	4.3	mΩ
Dynami	ic Characteristics					
C _{iss}	Input Capacitance	T	- (3800	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$		441	-	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-	329	-	pF
Q_g	Total Gate Charge			67	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 15V, I_D = 15A$	<u></u>	11	-	nC
Q_{gd}	Gate Drain("Miller") Charge	V _{DS} = 13V, I _D = 13A	-	19	-	nC
Switchi	ing Characteristics					
t _{d(on)}	Turn-On DelayTime	4()	-	10	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 15V$	-	19	-	ns
$t_{d(off)}$	Turn-Off DelayTime	I_D = 30A, R_{GEN} = 3Ω	-	50	-	ns
t _f	Turn-Off Fall Time		-	20	-	ns
Drain-S	Source Diode Characteristics and I	Max Ratings				
I _s	Maximum Continuous Drain to Source Dioc	le Forward Current	-	-	130	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Fo	orward Current	-	-	520	Α
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 30A$	-	-	1.2	V
trr	Body Diode Reverse Recovery Time	1 004 11/14 4004/	-	18	-	ns
Qrr	Body Diode Reverse Recovery Charge	$I_F = 20A$, di/dt = 100A/us	-	6	-	nC

Notes:

^{1.} Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

^{2.} E_{AS} condition: Starting T_J =25C, V_{DD} =15V, V_G =10V, R_G =25ohm, L=0.5mH, I_{AS} =28A

^{3.} Pulse Test: Pulse Width $\!\! \leqslant \! 300 \mu s,$ Duty Cycle $\!\! \leqslant \! 0.5 \%.$

Test Circuit

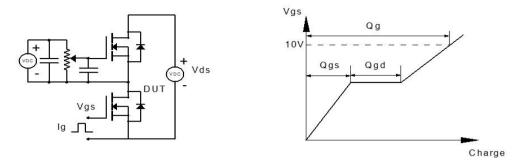


Figure 1: Gate Charge Test Circuit & Waveform

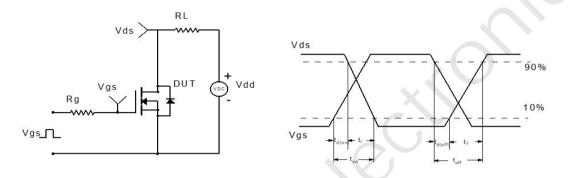


Figure 2: Resistive Switching Test Circuit & Waveform

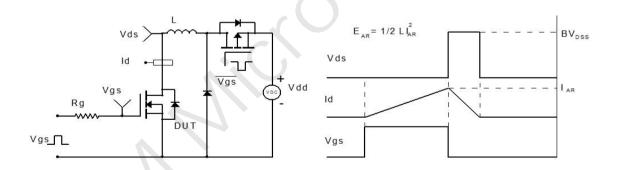
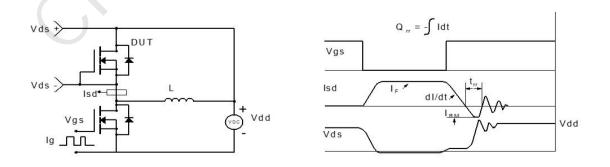
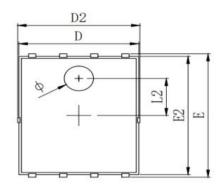
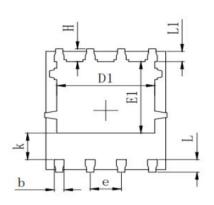
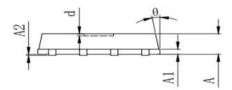


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform


Figure 4: Diode Recovery Test Circuit & Waveform


CRMGTL0303A

Package Mechanical Data(PDFN5X6-8L)

SYMBOL	3	MILLIMETER			
	MIN	Typ,	MAX		
A	0.900	1.000	1.100		
A1	0. 254 REF.				
A2	0~0.05				
D	4.824	4.900	4.976		
D1	3. 910	4.010	4. 110		
D2	4. 924	5. 000	5.076		
E	5. 924	6.000	6.076		
E1	3, 375	3. 475	3. 575		
E2	5. 674	5. 750	5. 826		
b	0.350	0. 400	0.450		
е	1. 270 TYP.				
L	0.534	0.610	0.686		
L1	0.424	0.500	0. 576		
1.2	1. 800 REF.				
k	1. 190	1. 290	1. 390		
H	0.549	0. 625	0. 701		
0	8°	10°	12°		
ф	1. 100	1.200	1.300		
d			0.100		

Information furnished in this document is believed to be accurate and reliable. However, CRM Microelectronics Co., Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it.

Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, CRM complies with the agreement.

Products and information provided in this document have no infringement of patents. CRM assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of CRM Microelectronics Co., Ltd. Copyright ©2023 CRM Microelectronics Co., Ltd. Printed All rights reserved.