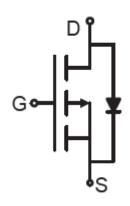
P-Channel Enhancement Mode Power MOSFET CN2305

General Description:

The CN2305 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

Applications:

- Battery protection
- Load switch
- Power management


Features:

- $V_{DS} = -20V, I_D = -4.1A$ $R_{DS(ON)} < 75m\Omega$ @ $V_{GS} = -2.5V$ $R_{DS(ON)} < 52m\Omega$ @ $V_{GS} = -4.5V$
- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- Available in 3 pin SOT23 Package
- Pb-free, rohs compliant and halogen free

Pin Assignment

Schematic diagram

Top view

Ordering Information

Part Number	Device Marking	Package	Operating Ambient Temperature
CN2305	2305	SOT-23	-40° C to 85° C

Absolute Maximum Ratings ($T_A=25$ °C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		$V_{ m DS}$	-20	V
Gate-Source Voltage		V_{GS}	±12	V
	T _C =25 °C		-4.1	A
Drain Current-Continuous	T _C =70 °C	т	-3.2	
	T _A =25°C	I_{D}	-3	
	T _A =70 °C		-2.3	
Drain Current-Pulsed (Note 1)		I_{DM}	-15	A
Maximum Power Dissipation		P_{D}	1.2	W
Operating Junction and Storage Temperature Range		T_{J} , T_{STG}	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	100	°C/W
--	----------------	-----	------

Electrical Characteristics ($T_A=25$ °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	n-Source Breakdown Voltage B_{VDSS} V_{GS} =0V I_D =-250 μ A		-20	-	-	V	
Zero Gate Voltage Drain Current	I_{DSS}	V_{DS} =-20V, V_{GS} =0V	-	-	-1	uA	
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm 10V, V_{DS}=0V$	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	VDS=VGS,ID=-250μA	-0.45	-0.7	-1	V	
Drain-Source On-State Resistance	D	VGS=-4.5V, ID=-4.1A	-	45	52	m Ω	
Drain-Source On-State Resistance	$R_{DS(ON)}$	VGS=-2.5V, ID=-3A	-	60	75	m Ω	
Forward Transconductance	g_{FS}	VDS=-5V,ID=-4.1A	-	8.5	-	A/V	
Dynamic Characteristics (Note4)							
Input Capacitance	$C_{I}ss$	V - 4VV -0V	-	740	-	PF	
Output Capacitance	Coss	V_{DS} =-4V, V_{GS} =0V, F=1.0MHz	-	290	-	PF	
Reverse Transfer Capacitance	Crss	Γ-1.UIVIΠZ	-	190	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	td(on)	V - 4V I - 2 2 A	-	12	-	nS	
Turn-on Rise Time	tr	V_{DD} =-4V, I_D =-3.3A,	-	35	-	nS	
Turn-Off Delay Time	td(off)	$R_L=1.2\Omega, V_{GEN}=-4.5V,$	-	30	-	nS	
Turn-Off Fall Time	tf	$R_g=1\Omega$	-	10	-	nS	
Total Gate Charge	Qg	X7 4X7 T 4 1 A	-	7.8	-	nC	
Gate-Source Charge	Qgs	$V_{DS}=-4V_{AD}=-4.1A$.		1.2	-	nC	
Gate-Drain Charge	Qgd	V _{GS} 4.3 V	-	1.6	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V_{SD}	VGS=0V,IS=-1.6A	-	-	-1.2	V	
Diode Forward Current (Note 2)	I_S		-	-	1.6	A	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $R_{\theta JA}$ is measured with the device mounted on 1 in² FR4 board with 2oz. copper, in a still air environment with T_A =25°C, $t \leq 10$ sec. The value in any given application depends on the user's specific board design.
- 3. Pulse Test: Pulse Width \leq 300us, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

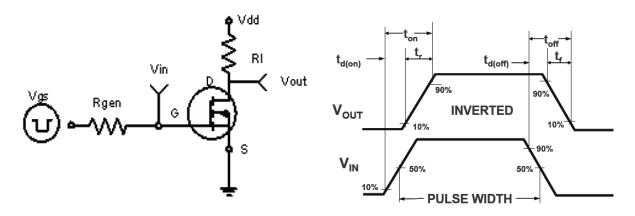


Figure 1 Switching Test Circuit

Figure 2 Switching Waveforms

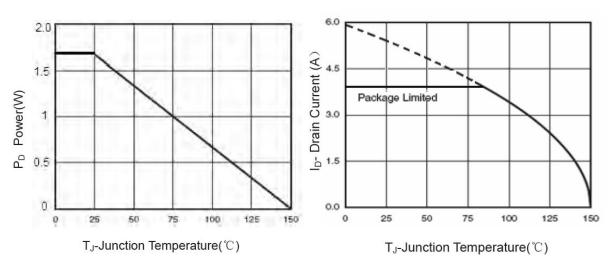
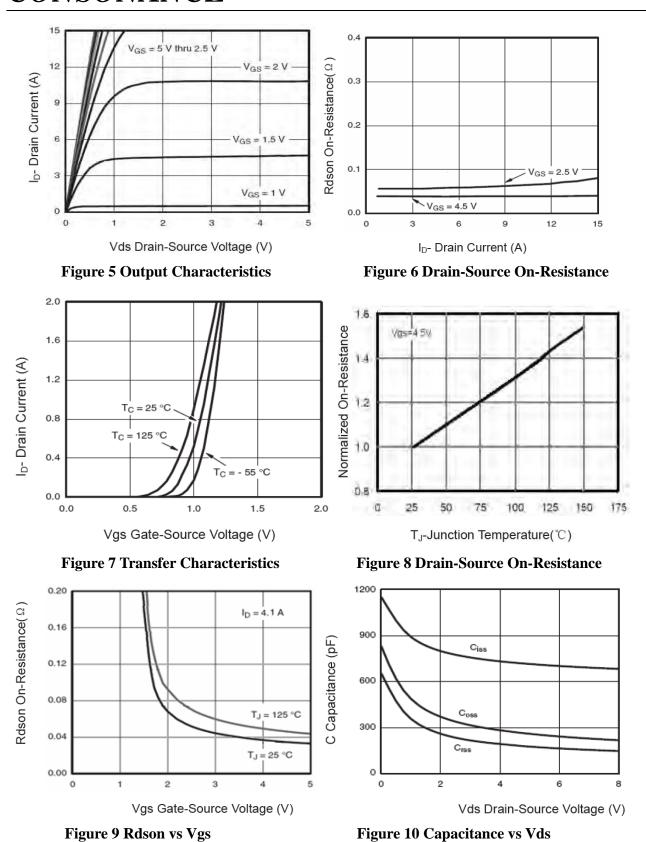



Figure 3 Power Dissipation

Figure 4 Drain Current

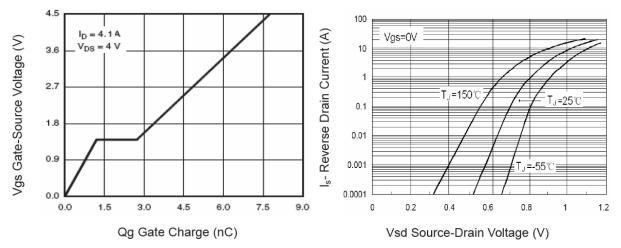


Figure 11 Gate Charge

Figure 12 Source- Drain Diode Forward

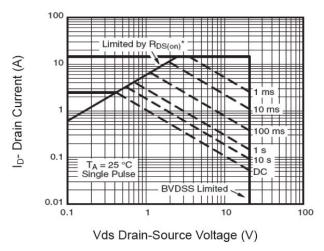


Figure 13 Safe Operation Area

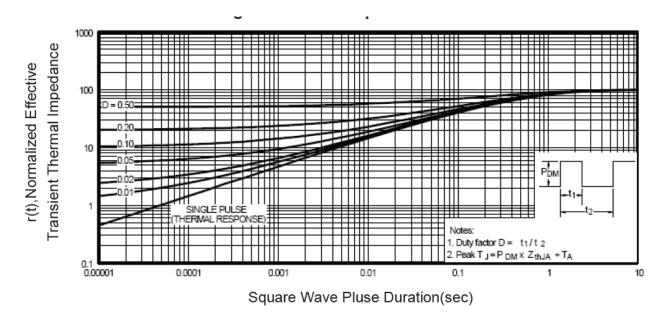
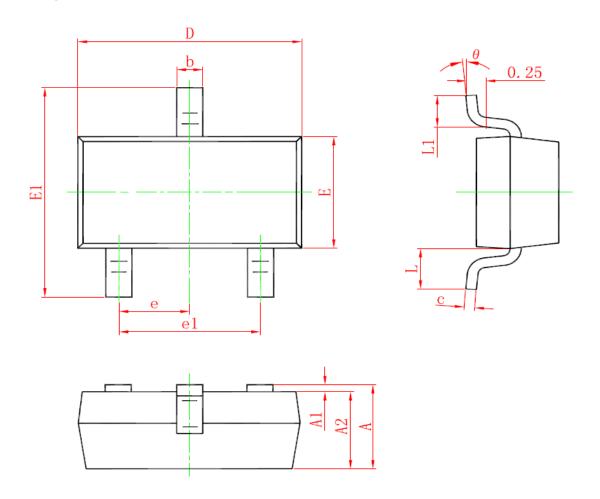



Figure 14 Normalized Maximum Transient Thermal Impedance

Package Information

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950	0.950 TYP.		0.037 TYP.	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Consonance Electronics does not assume any responsibility for use of any circuitry described. Consonance reserves the right to change the circuitry and specifications without notice at any time.