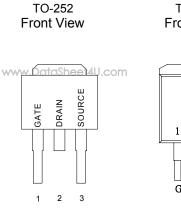


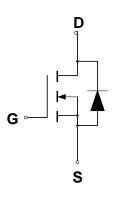
APPLICATION

- Buck Converter High Side Switch
- Other Applications


V _{DSS}	R _{DS(ON)} Typ.	I _D
30V	10.8mΩ	50A

FEATURES

SYMBOL


- ◆ Low ON Resistance
- ◆ Low Gate Charge
- ♦ Peak Current vs Pulse Width Curve
- ◆ Inductive Switching Curves
- Improved UIS Ruggedness

PIN CONFIGURATION

2 3

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Source Voltage (Note 1)	V_{DSS}	30	٧
Drain to Current $-$ Continuous Tc = 25°C, V_{GS} @10V (Note 2)	I_D	50	Α
Continuous Tc = 100°C, V_{GS}@10V (Note 2)	I_D	Fig.3	
- Pulsed Tc = 25°ℂ, V _{GS} @10V (Note 3)	I _{DM}	Fig.6	
Gate-to-Source Voltage — Continue	V_{GS}	±20	V
Total Power Dissipation	P_D	52	W
Derating Factor above 25°ℂ		0.5	W/°C
Peak Diode Recovery dv/dt (Note 4)	dv/dt	3.0	V/ns
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to 150	$^{\circ}\mathbb{C}$
Single Pulse Avalanche Energy L=1.1mH,I _D =30 Amps	E _{AS}	500	mJ
Maximum Lead Temperature for Soldering Purposes	TL	300	$^{\circ}\!\mathbb{C}$
Maximum Package Body for 10 seconds	T_{PKG}	260	$^{\circ}\!\mathbb{C}$
Pulsed Avalanche Rating	I _{AS}	Fig.8	

THERMAL RESISTANCE

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
$R_{\theta JC}$	Junction-to-case			2.4	°C/W	Water cooled heatsink, PD adjusted for a peak junction
						temperature of +150°C
$R_{\theta JA}$	Junction-to-ambient			50	°C/W	Minimum pad area, 2-oz copper, FR-4 circuit board, double
	(PCB Mount)					sided
$R_{\theta JA}$	Junction-to-ambient			62	°C/W	1 cubic foot chamber, free air

ORDERING INFORMATION

Part Number	Package
CMT60N03GN252	TO-252
CMT60N03GN263	TO-263

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^{\circ}C$.

			CMT60N030		3	
Chara	acteristic	Symbol	Min	Тур	Max	Units
	OFF Characterist	ics				
Drain-to-Source Breakdown Voltage		V_{DSS}	30			V
$(V_{GS} = 0 \text{ V}, I_D = 250 \ \mu \text{ A})$						
Breakdown Voltage Temperature Coef	ficient, Fig.11	$\Delta V_{DSS}/\Delta T_{J}$		27		mV/°C
(Reference to 25°C , I_D = 250 μ A)						
Drain-to-Source Leakage Current		I _{DSS}				μΑ
$(V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C})$					1	
$(V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C})$					10	
Gate-to-Source Forward Leakage		I_{GSS}			100	nA
(V _{GS} = 20 V)						
Gate-to-Source Reverse Leakage		I_{GSS}			-100	nA
$(V_{GS} = -20 \text{ V})$						
	ON Characterist	ics				
Gate Threshold Voltage,Fig.12		$V_{GS(th)}$	1.0		3.0	V
$(V_{DS} = V_{GS}, I_{D} = 250 \ \mu A)$				<u> </u>		
Static Drain-to-Source On-Resistance,	Fig.9,10 (Note 5)	R _{DS(on)}				mΩ
$(V_{GS} = 10 \text{ V}, I_D = 15\text{A})$				10.8	12.5	
$(V_{GS} = 4.5 \text{ V}, I_D = 12A)$			15.4			
Forward Transconductance (V _{DS} = 15 \	g FS		28		S	
	Dynamic Character	istics				
Input Capacitance	$(V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$	C _{iss}		1520		pF
Output Capacitance	f = 1.0 MHz)	C _{oss}		314		pF
Reverse Transfer Capacitance	Fig.14	C _{rss}		152		pF
Total Gate Charge (V _{GS} = 10 V)		Qq		27.9	35	nC
Total Gate Charge (V _{GS} = 4.5 V)	$(V_{DS} = 15 \text{ V}, I_D = 12 \text{ A}) \text{ (Note 6)}$	Q _q		14	19	nC
Gate-to-Source Charge	Fig.15	Q_gs		4.9		nC
Gate-to-Drain Charge	-	Q _{qd}		4.3		nC
<u> </u>	Resistive Switching Cha					
Turn-On Delay Time		$t_{d(on)}$		10		ns
Rise Time	$(V_{DD} = 15 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 10 \text{ V},$	t _r		3.4		ns
Turn-Off Delay Time	t _{d(off)}		36		ns	
Fall Time	t _f		6.0		ns	
Turn-On Delay Time		t _{d(on)}		16		ns
Rise Time	$(V_{DD} = 15 \text{ V}, I_D = 12 \text{ A},$	t _r		7.2		ns
Turn-Off Delay Time $V_{GS} = 4.5V$, $R_G = 1.0\Omega$) (Note 6)		t _{d(off)}		34		ns
Fall Time	t _f		14		ns	
	Source-Drain Diode Cha			1		1
Continuous Source Current (Body	Com So Siam Sida Gila	I _s			50	Α
Diode Fig.16)	Integral pn-diode in MOSFET	'5				'`
Pulse Source Current (Body Diode)		I _{SM}			Fig.6	Α
Forward On-Voltage	(I _S = 12 A, V _{GS} = 0 V)	V _{SD}			1.0	V
Forward Turn-On Time	$(I_S - 12 A, V_{GS} - 0 V)$ $(I_F = 12 A, V_{GS} = 0 V,$	t _{rr}		25	38	ns
Reverse Recovery Charge	$d_i/d_t = 100A/\mu s$	Q _{rr}		31	46	nC

CMT60N03G

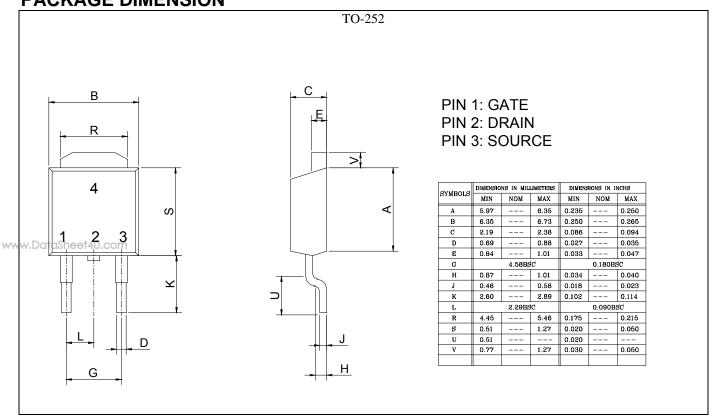
N-CHANNEL Logic Level Power Mosfet

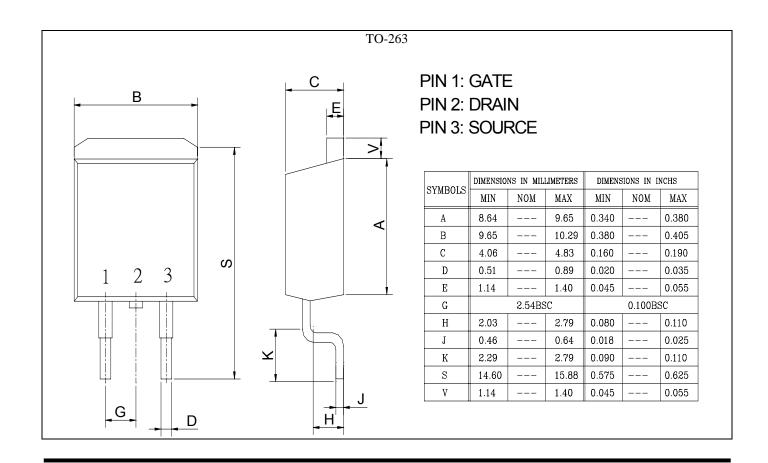
Note 1: $T_J = +25^{\circ}C$ to $150^{\circ}C$

Note 2: Current is calculated based upon maximum allowable junction temperature. Package current limitation is 30A.

Note 3: Repetitive rating; pulse width limited by maximum junction temperature.

Note 4: I_{SD} = 12.0A, di/dt \leq 100A/ μ s, V_{DD} \leq BV $_{DSS}$, T_{J} = +150 $^{\circ}$ C


Note 5: Pulse width ≤ 250µs; duty cycle ≤ 2%


Note 6: Essentially independent of operating temerpature.

www.DataSheet4U.com

PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

www.DataSheet4U.com

	Н	sin	Chu	Head	lquarter
--	---	-----	-----	------	----------

Sales & Marketing

5F-1, No. 11, Park Avenue II,	7F-6, No.32, Sec. 1, Chenggong Rd.,
Science-Based Industrial Park,	Nangang District, Taipei City 115, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-2788 0558
FAX: +886-3-567 9909	FAX: +886-2-2788 2985