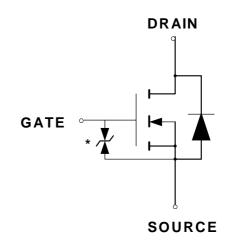

STRUCTURE

Silicon N-channel MOSFET


FEATURES

- ◆ Low Qg
- ◆ Low on-resistance
- ◆ Excellent resistance to damage from static electricity

PIN CONFIGURATION

SYMBOL

N-Channel MOSFET

ORDERING INFORMATION

Part Number	Package
CMT4410	8-PIN SOP (S08)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DS}	30	V
Drain to Current − Continuous (at 25°C)	I _D	10	Α
- Pulsed*	I _{DP}	40	
Reverse Drain to Current − Continuous (at 25°C)	I _R	10	Α
- Pulsed*	I _{DRP}	40	
Source Current (Body Diode) − Continuous (at 25°C)	Is	1.3	Α
Pulsed*	I _{SP}	5.2	
Gate-to-Source Voltage — Continue	V_{GS}	±20	V
Total Power Dissipation ($T_C = 25^{\circ}C$)	P _D	2.0	W
Storage Temperature Range	T _{STG}	-55 to 150	$^{\circ}\!\mathbb{C}$
Channel Temperature	T _{ch}	150	$^{\circ}\!\mathbb{C}$

^{*} Pw≤10ms, Duty cycle≤1%

^{*} Gate Protection Diode is included between the gate and the source terminals to protect the diode against static electricity when the product is in use. Use a protection circuit when the fixed voltage are exceeded.

THERMAL RESISTANCE (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Channel to Ambient	Rth(ch-A)	62.5	°C/W

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_a = 25^{\circ}C$.

				CMT4410		
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		V _{(BR)DSS}	30			V
$(V_{GS} = 0 \text{ V}, I_D = 1\text{mA})$						
Zero Gate Voltage Drain Current		I _{DSS}			10	μ A
$(V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V})$						
Gate-Source Leakage Current		I_{GSS}			±10	μ A
$(V_{gs} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate Threshold Voltage		$V_{GS(th)}$	1.0		2.5	V
$(V_{DS} = 10V, I_D = 1mA)$						
Static Drain-Source On-Resistance		R _{DS(on)}				mΩ
$(V_{GS} = 10 \text{ V}, I_D = 10\text{A})$				9	12	
$(V_{GS} = 4.5 \text{ V}, I_D = 10\text{A})$ $(V_{GS} = 4.0 \text{ V}, I_D = 10\text{A})$				13	18	
				15	20	
Forward Transfer Admittance ($V_{DS} = 1$	0V, I _D = 10A) *	Y _{FS}	10			mhos
Input Capacitance	$(V_{DS} = 10 \text{ V}, f = 1 \text{MHz},$	C _{iss}		1750		pF
Output Capacitance	$V_{GS} = 10 \text{ V}, 1 = 110112,$ $V_{GS} = 0 \text{ V}$	C _{oss}		950		pF
Reverse Transfer Capacitance	V _{GS} = 0 V)	$C_{\sf rss}$		450		pF
Turn-On Delay Time	0/ -45\/ -5 A	$t_{d(on)}$		20		ns
Rise Time	$(V_{DD} = 15 \text{ V}, I_D = 5 \text{ A},$ $V_{GS} = 10 \text{ V},$ $R_L = 3\Omega, R_{GS} = 10\Omega) *$	t _r		55		ns
Turn-Off Delay Time		$t_{d(off)}$		100		ns
Fall Time		t _f		70		ns
Source-Drain Reverse Recovery		t _{fr}		50	80	ns
Time **	$I_F = 2.3A$, di/dt = 100A/ μ s					
Total Gate Charge	0/ -45 // -40 /	Q_g		44.8	89.6	nC
Gate-Source Charge	$(V_{DD} = 15 \text{ V}, I_D = 10 \text{ A},$	Q_{gs}		5.9		nC
Gate-Drain Charge	$V_{GS} = 10 \text{ V})^*$	Q_{gd}		12.2		nC

^{*} Pulsed

BODY DIODE CHARACTERISTICS (SOURCE-DRAIN)

Unless otherwise specified, $T_a = 25^{\circ}C$.

				CMT4410		
Cha	racteristic	Symbol	Min	Тур	Max	Units
Forward Voltage		V_{SD}			1.5	V
$(V_{GS} = 0 \text{ V}, I_S = 5.2\text{A})^*$						
Reverse Recovery Time	$(V_{GS} = 0V, I_{DR} = 5.2 A,$	t _{rr}		240		ns
Reverse Recovery Charge	di/dt = 100A/µs)*	Q _{rr}		310		nC

TYPICAL ELECTRICAL CHARACTERISTICS

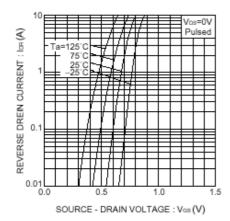


Fig.1 Reverse Drein Current vs. Source - Drain Voltage

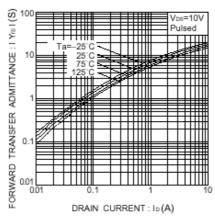


Fig.2 Forward Transfer Admittance vs. Drain Current

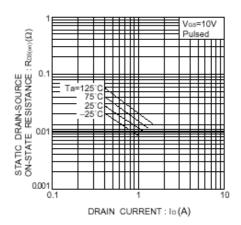


Fig.3 Static Drain-Source On-State Resistance vs. Drain Current (1)

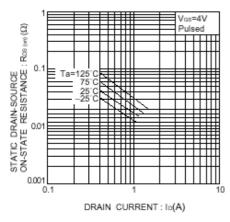


Fig.4 Static Drain-Source On-State Resistance vs. Drain Current (II)

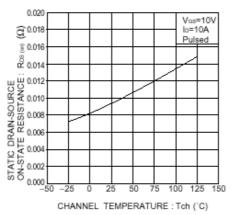


Fig.5 Static Drain-Source On-State Resistance vs. Channel Temperature

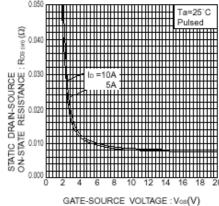


Fig.6 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

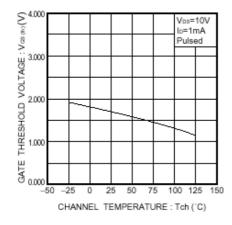


Fig.7 Gate Threshold Voltage vs. Channel Temperature

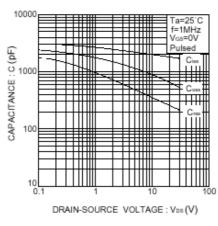


Fig.8 Typical Capacitance vs. Drain-Source Voltage

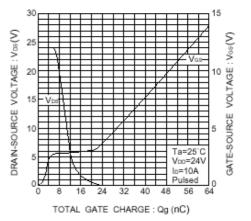
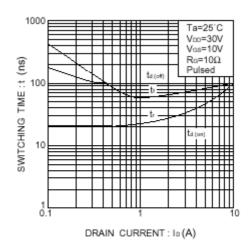



Fig.9 Dynamic Input Characteristics

TYPICAL ELECTRICAL CHARACTERISTICS (Conti.)

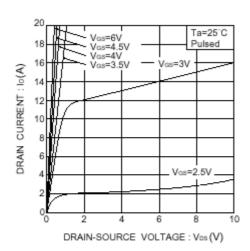


Fig.10 Switching Characteristics

Fig.11 Typical Output Characteristics

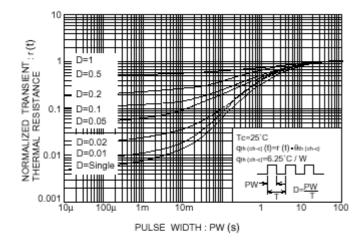
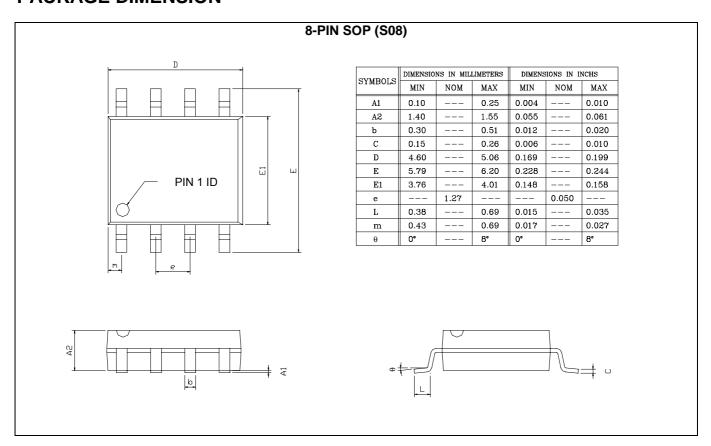



Fig.12 Normalized Transient Thermal Resistance vs. Pulse Width

PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596

