

35 W, 8.0 - 12.0 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA801B030F1 is a packaged, 35 W HPA utilizing Cree's high performance, 0.15um GaN on SiC production process. The CMPA801B030F1 operates from 8-12 GHz and targets pulsed radar systems supporting both defense and commercial applications. With 2 stages of gain, this high performance amplifier provides 19 dB of large signal gain and 35% efficiency to support lower system DC power requirements and simplify system thermal management solutions. Packaged in a bolt-down, flange package, the CMPA801B030F1 also supports superior thermal management to allow for simplified system cooling requirements.

PN: CMPA801B030F1 Package Type: 440213

Typical Performance Over 8.0 - 12.0 GHz ($T_c = 25$ °C)

Parameter	8.0 GHz	8.5 GHz	9.0 GHz	10.0 GHz	11.0 GHz	12.0 GHz	Units
Small Signal Gain ^{1,2}	27.2	28.0	26.2	25.0	25.0	25.4	dB
Output Power ^{1,3}	45.0	45.2	46.1	45.7	45.9	45.6	dBm
Power Gain ^{1,3}	19.0	19.2	20.1	19.7	19.9	19.6	dB
Power Added Efficiency ^{1,3}	40	40	44	36	37	36	%

Notes:

Features

- 35 W Typical P_{SAT}
- >36% Typical Power Added Efficiency
- 19 dB Large Signal Gain
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed **Radar Amplifiers**

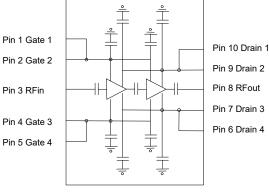


Figure 1.

 $^{^{1}}V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 800 mA

² Measured at Pin = -20 dBm

 $^{^3}$ Measured at Pin = 26 dBm and 100 μ s; Duty Cycle = 10%

Absolute Maximum Ratings (not simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	84	VDC	25°C
Gate-source Voltage	V_{GS}	-10, +2	VDC	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Maximum Forward Gate Current	l _G	12.9	mA	25°C
Maximum Drain Current	I _{DMAX}	4.0	А	
Soldering Temperature	T _s	260	°C	
Junction Temperature	T _J	225	°C	MTTF > 1e6 Hours

Electrical Characteristics (Frequency = 8.0 GHz to 12.0 GHz unless otherwise stated; T_c = 25 $^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V, } I_{D} = 12.9 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-1.8	_	$V_{_{DC}}$	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	12.9	15.48		Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BD}}}$	84	_		V	$V_{GS} = -8 \text{ V}, I_{D} = 12.9 \text{ mA}$
RF Characteristics ²						
Small Signal Gain	S21 ₁	-	26	_	dB	Pin = -20 dBm, Freq = 8.0 - 12.0 GHz
Output Power	P_{out1}	-	45.0	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, \text{ Freq} = 8.0 \text{ GHz}$
Output Power	P _{OUT2}	-	45.2	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Output Power	Роитз	-	46.1	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Output Power	P _{out4}	-	45.7	_	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 GHz}$
Output Power	P _{outs}	-	45.9	_	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 GHz$
Output Power	Роите	-	45.6	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 GHz$
Power Added Efficiency	PAE ₁	-	40	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Added Efficiency	PAE ₂	-	40	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	44	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Power Added Efficiency	PAE ₄	-	36	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 GHz$
Power Added Efficiency	PAE ₅	-	37	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 GHz$
Power Added Efficiency	PAE ₆	-	36	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 GHz$
Power Gain	$G_{_{P1}}$	-	19.0	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Gain	G _{P2}	-	19.2	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Gain	G _{P3}	-	20.1	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, \text{Freq} = 9.0 \text{ GHz}$
Power Gain	G _{P4}	-	19.7	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 GHz$
Power Gain	G _{P5}	-	19.9	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 GHz$
Power Gain	G _{P6}	-	19.6	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 GHz$

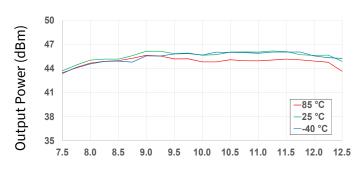
Electrical Characteristics (Frequency = 8.0 GHz to 12.0 GHz unless otherwise stated; T_c = 25 $^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Мах.	Units	Conditions
RF Characteristics ²						
Input Return Loss	S11	-	-10	-	dB	Pin = -20 dBm, 8.0-12.0 GHz
Output Return Loss	S22	-	-7	-	dB	Pin = -20 dBm, 8.0-12.0 GHz
Output Mismatch Stress	VSWR	-	_	5:1	Ψ	No damage at all phase angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions	
Operating Junction Temperature	T _J	144	°C	Pulse Width = 100 μs, Duty Cycle =10%, - P _{DISS} = 48 W, T _{CASE} = 85 °C	
Thermal Resistance, Junction to Case	$R_{\scriptscriptstyle{\theta JC}}$	1.22	°C/W		
Operating Junction Temperature	T,	179	°C	_ CW, $P_{DISS} = 48 \text{ W}$, $T_{CASF} = 85 ^{\circ}\text{C}$	
Thermal Resistance, Junction to Case	$R_{_{ heta JC}}$	1.95	°C/W	— , DISS , CASE	


 $^{^{\}scriptscriptstyle 1}$ Scaled from PCM data

 $^{^{2}}$ Unless otherwise noted: Pulse Width = 100 $\mu s,\, Duty\, Cycle$ = 10%

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pulse Width = 100 μ s, Duty Cycle = 10%, Pin = 26 dBm, $T_{RASF} = +25 \,^{\circ}\text{C}$

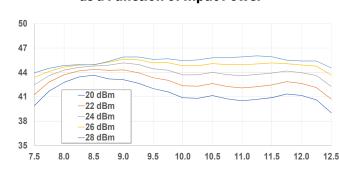

Output Power (dBm)

Figure 1. Output Power vs Frequency as a Function of Temperature

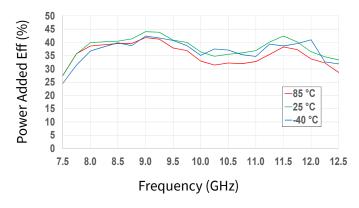

Frequency (GHz)

Figure 2. Output Power vs Frequency as a Function of Input Power

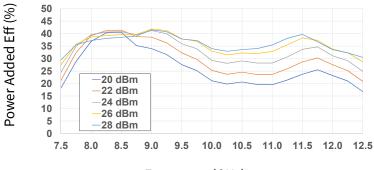

Frequency (GHz)

Figure 3. Power Added Eff. vs Frequency

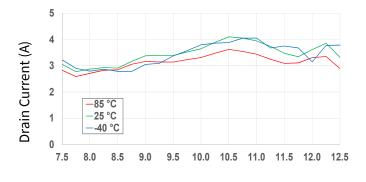

as a Function of Temperature

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

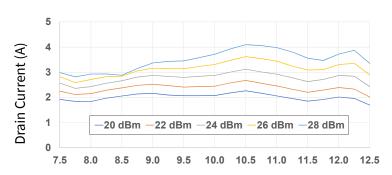

Frequency (GHz)

Figure 5. Drain Current vs Frequency as a Function of Temperature

Frequency (GHz)

Figure 6. Drain Current vs Frequency as a Function of Input Power

Frequency (GHz)

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 800 \text{ mA}$, Pulse Width = 100 μs , Duty Cycle = 10%, Pin = 26 dBm, $T_{BASE} = +25 \, ^{\circ} \text{C}$

Power Added Eff (%)

Figure 7. Output Power vs Frequency as a Function of VD

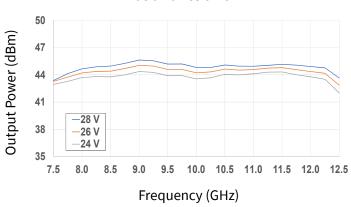


Figure 8. Output Power vs Frequency as a Function of IDQ

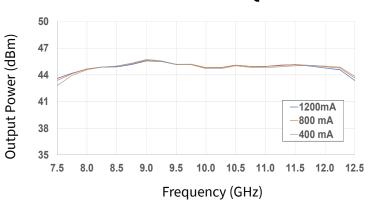


Figure 9. Power Added Eff. vs Frequency as a Function of VD

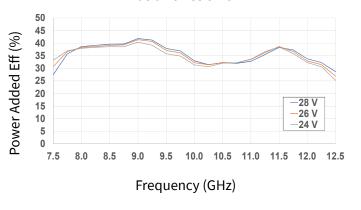


Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

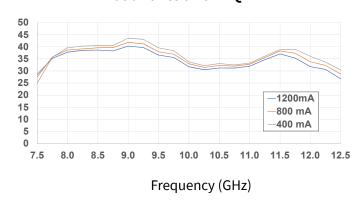


Figure 11. Drain Current vs Frequency as a Function of VD

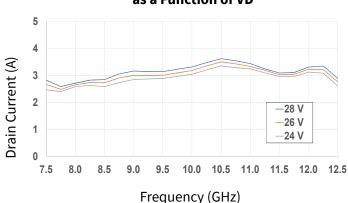
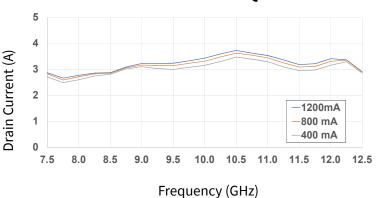



Figure 12. Drain Current vs Frequency as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pulse Width = 100 μ s, Duty Cycle = 10%, Pin = 26 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 13. Output Power vs Input Power as a Function of Frequency

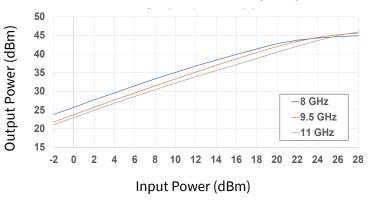
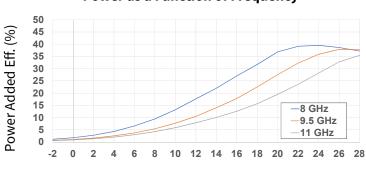
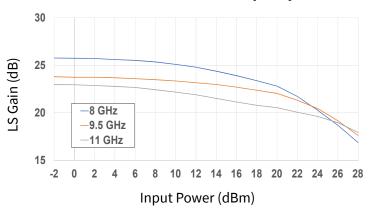




Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Input Power (dBm)

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

Gate Current (mA)

Figure 16. Drain Current vs Input Power as a Function of Frequency

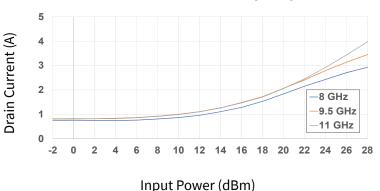
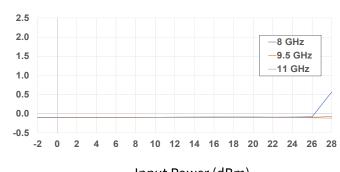



Figure 17. Gate Current vs Input Power as a Function of Frequency

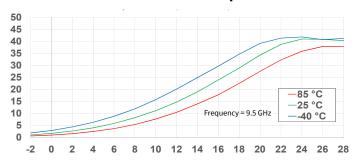

Input Power (dBm)

Figure 18. Output Power vs Input

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pulse Width = 100 μ s, Duty Cycle = 10%, Pin = 26 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Power as a Function of Temperature 50 Output Power (dBm) Power Added Eff. (%) 45 40 85 °C 35 25 °C Frequency = 9.5 GHz -40 °C 30 25 20 16 18 20 22 24 26

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Input Power (dBm)

Input Power (dBm)

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

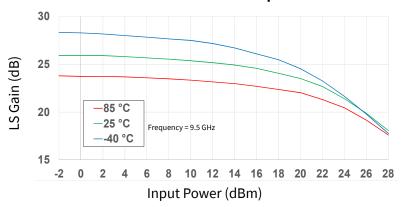


Figure 21. Drain Current vs Input Power as a Function of Temperature

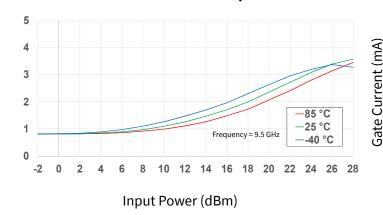
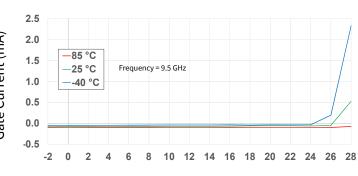



Figure 22. Gate Current vs Input Power as a Function of Temperature

Input Power (dBm)

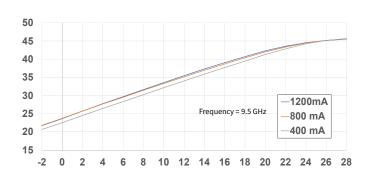
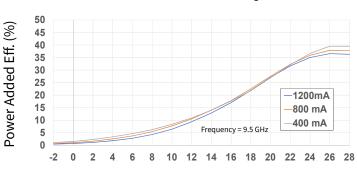
Drain Current (A)

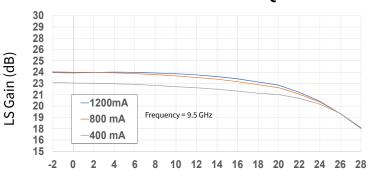
Output Power (dBm)

Typical Performance of the CMPA801B030F1

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pulse Width = 100 μ s, Duty Cycle = 10%, Pin = 26 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 23. Output Power vs Input Power as a Function of IDQ


Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

Input Power (dBm)

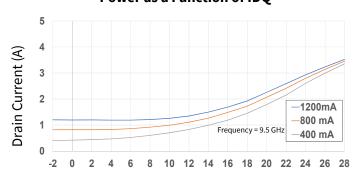

Input Power (dBm)

Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

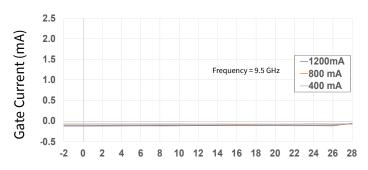

Input Power (dBm)

Figure 26. Drain Current vs Input Power as a Function of IDQ

Input Power (dBm)

Figure 27. Gate Current vs Input Power as a Function of IDQ

Input Power (dBm)

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pulse Width = 100 μ s, Duty Cycle = 10%, Pin = 26 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

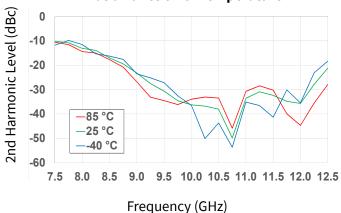


Figure 29. 2nd Harmonic vs Output Power as a Function of Frequency

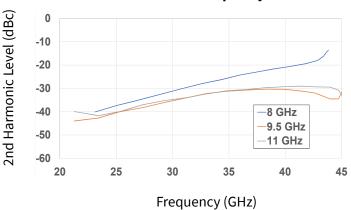
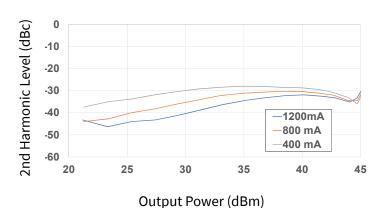



Figure 30. 2nd Harmonic vs Output Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \text{ }^{\circ}\text{C}$

Figure 31. Gain vs Frequency as a Function of Temperature

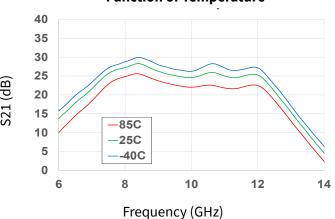
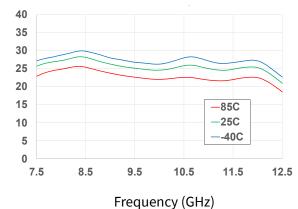



Figure 32. Gain vs Frequency as a Function of Temperature

S21 (dB)

S11 (dB)

Figure 33. Input RL vs Frequency as a Function of Temperature

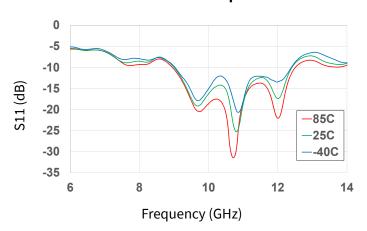


Figure 34. Input RL vs Frequency as a Function of Temperature

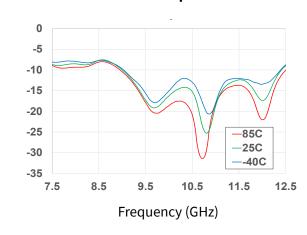


Figure 35. Output RL vs Frequency as a Function of Temperature

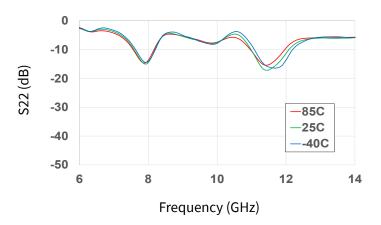
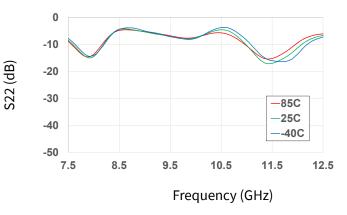
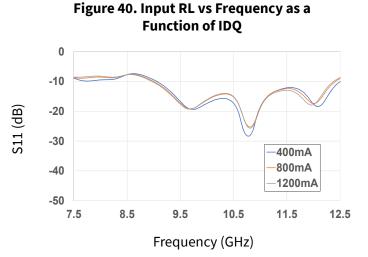
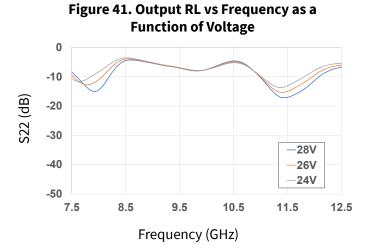



Figure 36. Output RL vs Frequency as a Function of Temperature


Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \text{ }^{\circ}\text{C}$


S21 (dB)

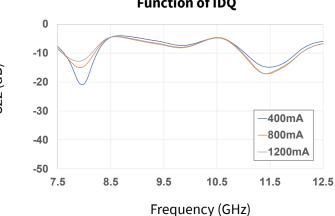
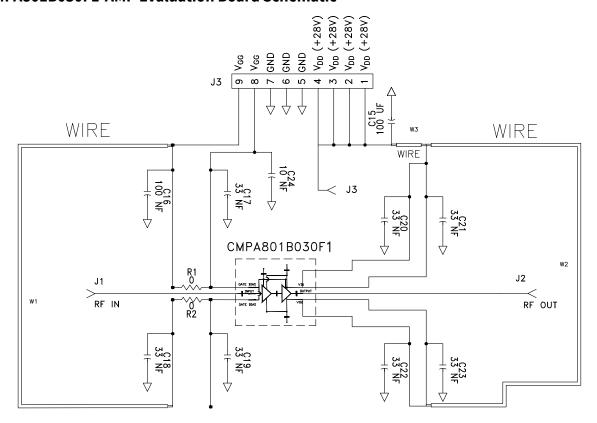
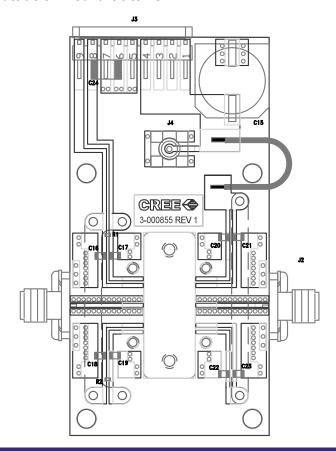

Figure 37. Gain vs Frequency as a **Function of Voltage** 40 35 30 25 20 15 -28V 10 26V 24V 5 0 8.5 7.5 9.5 10.5 11.5 12.5 Frequency (GHz)

Figure 38. Gain vs Frequency as a **Function of IDQ** 40 35 30 25 20 15 400mA 10 800mA 5 1200mA 7.5 8.5 9.5 10.5 11.5 12.5 Frequency (GHz)


Figure 39. Input RL vs Frequency as a **Function of Voltage** 0 -10 -20 -30 -28V 26V -40 24V -50 7.5 8.5 9.5 10.5 11.5 12.5 Frequency (GHz)

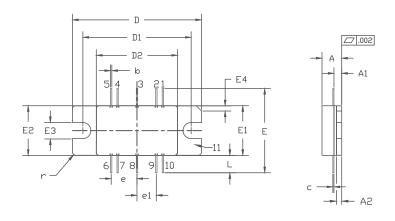


CMPA801B030F1-AMP Evaluation Board Schematic

CMPA801B030F1-AMP Evaluation Board Outline

CMPA801B030F1-AMP Evaluation Board Bill of Materials

Designator	Description	Qty
C15	CAP ELECT 100UF80V AFK SMD	1
C16-C23	CAP, 33000PF, 0805, 100V X7R	8
C24	CAP 10UF 16V TANT 2312	1
R1, R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, R-HOLE, LBLUNT POST, 20MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTICLE, SMT, 50 OHM, AU PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 22 AWG ~ 1.5"	1
W2	WIRE, BLACK, 22 AWG ~ 1.75"	1
W3	WIRE, BLACK, 22 AWG ~ 3.0"	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20MILS, 440208 PKG	1
-	2-56 SOC HD SCREW 1/16 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	Transistor CMPA801B030F1	1


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA801B030F1 (Package 440213)

PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF IUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SOURCE

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INC	HES	MILLIMETERS		NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.148	0.168	3.76	4.27	
A1	0.055	0.065	1.40	1.65	
A2	0.035	0.045	0.89	1.14	
b	0.01	TYP	0.254	TYP	10x
С	0.007	0.009	0.18	0.23	
D	0.995	1.005	25.27	25.53	
D1	0.835	0.845	21.21	21.46	
D2	0.623	0.637	15.82	16.18	
E	0.653	TYP	16.59 TYP		
E1	0.380	0.390	9.65	9.91	
E2	0.380	0.390	9.65	9.91	
E3	0.120	0.130	3.05	3.30	
E4	0.035	0.045	0.89	1.14	45° CHAMFER
е	0.200 TYP		5.08 TYP		4x
e1	0.15	0 TYP	3.81	TYP	4x
L	0.115	0.155	2.92	3.94	10x
r	0.02	5 TYP	.635	TYP	3x

PIN	DESC.
1	Gate Bias for Stage 2
2	Gate Bias for Stage 2
3	RF IN
4	Gate Bias for Stage 1
5	Gate Bias for Stage 1
6	Drain Bias
7	Drain Bias
8	RF OUT
9	Drain Bias
10	Drain Bias
11	Source

Part Number System

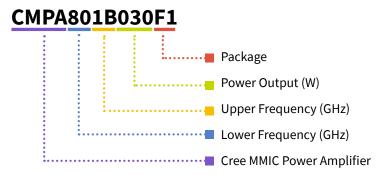


Table 1.

Parameter	Value	Units
Lower Frequency	8.0	GHz
Upper Frequency	11.0	GHz
Power Output	30	W
Package	Flange	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA801B030F1	GaN HEMT	Each	

Each

CMPA801B030F1-AMP

Test board with GaN MMIC installed

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

© 2021 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.