

GENERAL DESCRIPTION

This of PWM modulator provides a complete pulse width modulation system in a single monolithic integrated circuit. This device includes a 5V reference accurate to \pm 1%, two independent amplifiers usable for both voltage and current sensing, an externally synchronizable oscillator with its linear ramp generator, and two-uncommitted transistor output switches. These two outputs may be operated either in parallel for single-ended operation or alternating for push-pull applications with an externally controlled dead-band. This unit is internally protected against double-pulsing of a single output or from extraneous output signals when the input supply voltage is below minimum.

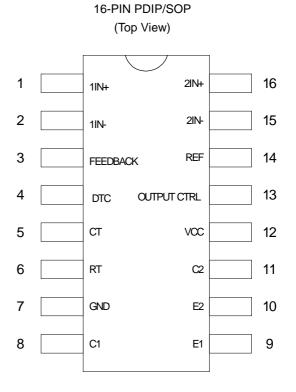
The CM494 contains an on-chip 39V zener diode for high-voltage applications where Vcc would be greater than 40V, and a buffered output steering control that overrides the internal control of the pulse steering flip-flop.

FEATURES

٠

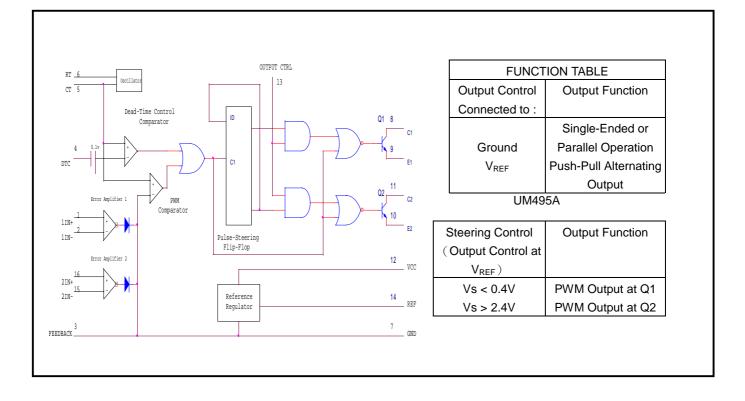
٠

٠


٠

- Dual uncommitted 40V, 200mA output transistors.
- 1% accurate 5V reference.
- Dual error amplifiers.
- Wide range, variable dead time.
- Single-ended or push-pull operation.
- Under-voltage lockout with hysteresis.
- Double pulse protection.
- Master or slave oscillator operation.

APPLICATIONS


- Linear Regulators
- Adjustable Supplies
- Switching Power Supplies
- Battery Operated Computers
- Instrumentation
- Computer Disk Drives

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Temperature Range	Package
CM494CP	0°C to 70°C	16-PIN DPIP (P16)
CM494CS	0° C to 70° C	16-PIN SOP (S16)

ABSOULTE MAXIMUM RATINGS

Supply voltage, Vcc(Note 2) 45V				
Amplifier input voltages Vcc + 0.3V				
Collector output voltage 41V				
Collector output current 250mA				
Continuous total dissipation 1000mW				
@ (or below) 25 $^\circ\!\!\mathbb{C}$ free air temperature range (Note 3)				
Storage temperature range				
Lead temperature 1 / 16"(1.6mm) from case for 60 seconds,				
J package 300° C				
Lead temperature 1 / 16"(1.6mm) from case for 10 seconds,				
N package				
Note 1: Over operating free air temperature range unless				
otherwise noted.				
Note 2: All voltage values are with respect to network				
ground terminal 3.				
Note 3: Consult package section of data book regarding				

Note 3: Consult package section of data book regarding thermal specification and limitation of package.

RECOMMENDED OPERATING CONDITION

Supply voltage Vcc 7V to 40V				
Error amplifier input voltages0.3 to Vcc-2V				
Collector output voltage				
Collector output current (each transistor) 200mA				
Current into feedback terminal0.3mA				
Timing capacitor, C_T 0.47nF to 10,000nF				
Timing resistor, RT1.8k Ω to 500k Ω				
Oscillator Frequency1kHz to 300kHz				
Operating free air temperature				
UC494A, UC495A55 $^\circ\!$ C to + 125 $^\circ\!$ C				
UC494AC, UC495AC0°C to +70°C				

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, over recommended operating free-air

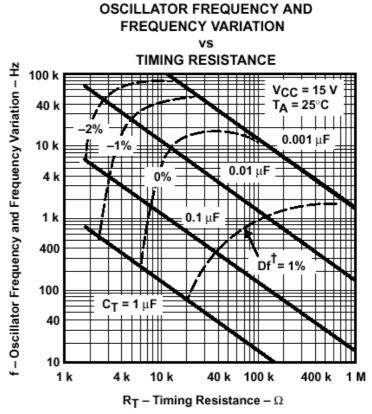
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reference Section		-			
Output voltage V _{REF}	lo = 1mA, T _A = 25°C	4.75	5	5.25	V
Input regulation	Vcc = 7V to 40V		2	25	mV
Output regulation	lo = 1mA to 10mA		1	15	mV
Output voltage over temperature	ΔT_A = Min. to Max	4.90		5.10	V
Short circuit output current	$V_{REF} = 0, T_A = 25^{\circ}C$	10	35	50	mA
Oscillator Section					
Frequency (Note 2)	$C_{T} = 0.01 \mu F, R_{T} = 12 \Omega$		10		kHz
Standard deviation of frequency (Note 3)	All values of Vcc, C_T , R_T , T_A		10		%
Frequency change with voltage	Vcc = 7V to 40V, T_A = 25°C		0.1		%
Frequency change with temperature	$C_T = 0.01 \mu F$, $R_T = 12 k \Omega$, $\Delta T_A = Min$. to Max			2	%
Deadtime Control Section (Output control	connected to V _{REF})	-			
Input bias current (Pin 4)	V (_{PIN 4}) = 0V to 5.25V		-2	-10	μA
Maximum duty-cycle (each output)	V (_{PIN 4}) = 0V	45			%
Deadtime control Section (cont.) (Output	t control connected to V_{REF})				
Input threshold voltage (Pin 4)	Zero duty-cycle		3	3.3	V
	Maximum duty-cycle	0			V
Amplifier Section					
Input offset voltage	Vo (PIN 3) = 2.5V		2	10	mV
Input offset current	Vo _(PIN 3) = 2.5V		25	250	nA
Input bias current	Vo _(PIN 3) = 2.5V		-0.2	-1	μΑ
Common-mode input voltage range	Vcc = 7V to 40V	.03 to			V
		Vcc -2			
Open loop voltage gain	\triangle Vo = 3V, Vo = 0.5V to 3.5V	70	95		dB
Unity gain bandwidth			800		kHz
Common-mode rejection ratio	Vcc = 40V, T _A = 25°C	65	80		dB
Output sink current (Pin 3)	$V_{ID} = -15mV$ to $-5V$, $V_{(Pin 3)} = 3.5V$	0.3	0.7		mA
Output Source current (Pin 3)	$V_{ID} = -15 \text{mV}$ to 5V, V (Pin 3) = 3.5V	-2			mA

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, over recommended operating free-air

temperature range. Vcc = 15V, f = 10Khz, $T_A=T_J$

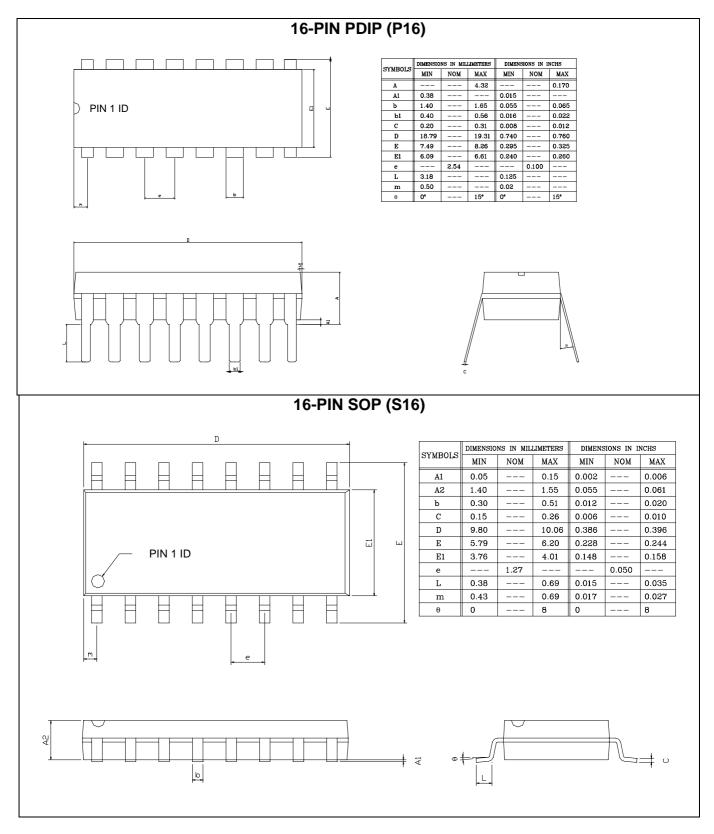
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNITS
Output Section							
Collector off-state current		$V_{CE} = 40V, Vcc = 40V$			2	100	μA
Emitter off-state current		$Vcc = Vc = 40V, V_E = 0$				-100	μA
Collector-Emitter	Common-Emitter	$V_{E} = 0$, $Ic = 200 mA$			1.1	1.3	V
Saturation voltage	Emitter-follower	Vc =15 V, I _E = -200mA			1.5	2.5	V
Output control input current		VI = V _{REF}				3.5	mA
PWM Comparator Se	ction						
Input threshold voltage (Pin 3)		Zero duty-cycle			4	4.5	V
Input sink current (Pin 3)		V (Pin 3) = 0.7V		0.3	0.7		mA
Steering Control							
Input current		$V_{(Pin 13)} = 0.4V, Q_{1 ACTIVE}$				-200	μA
		V (Pin 13) = 2.4V, Q _{2 ACTIVE}				300	μA
Deadband					500		mA
Zener Diode Circuit (UC495A)						
Breakdown voltage		Vcc = 45V, lz = 2mA		36	39	.45	V
Sink current		V (Pin 15) = 1V		0.2	0.3	0.6	mA
Total Device							
Standby supply current		Pin 6 at V _{REF} , All other inputs	Vcc = 15V		6	10	mA
		and outputs open	Vcc = 40V		9	15	mA
Under voltage lockout				3.5		6.5	V
Hysteresis					300		mV
Switching Characteri	stics $(T_A = 25^{\circ}C)$						
Output voltage rise time		Common-emitter configuration			100	200	ns
Output voltage fall time		$R_L = 68 \Omega, C_L = 15 pF$			25	100	ns
Output voltage rise time		Emitter-follower configuration			100	200	ns
Output voltage fall time		R _L = 68Ω, C _L = 15pF			40	100	ns

Note 1: Duration of the short circuit should not exceed one second.


Note 2: Frequency for other values of C_T and R_T is approximately f = 1.1/RTCT

Note 3: Standard deviation is measure of the statistical distribution about the mean as derived from the formula:

$$\sigma = \sqrt{\frac{\prod_{n=1}^{n} \sum (Xn - X)^2}{n=1}}$$


TYPICAL CHARACTERISTICS

Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

PACKAGE DIMENSION

2000/12/29 Preliminary

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F-1, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
T E L : +886-3-567 9979	T E L : +886-2-8692 1591
F A X : +886-3-567 9909	F A X : +886-2-8692 1596