

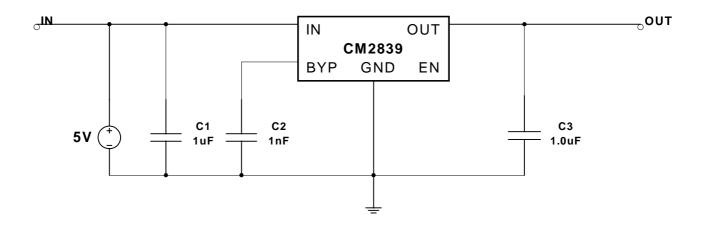
GENERAL DESCRIPTION

The CM2839 family is a positive voltage linear regulator developed utilizing CMOS technology featured low quiescent current (30μ A typ.), low dropout voltage, and high output voltage accuracy, making them ideal for battery applications. EN input connected to CMOS has low bias current. The space-saving SOT-23-5 package is attractive for "Pocket" and "Hand Held" applications.

These rugged devices have both Thermal Shutdown, and Current limit to prevent device failure under the "Worst" of operating conditions.

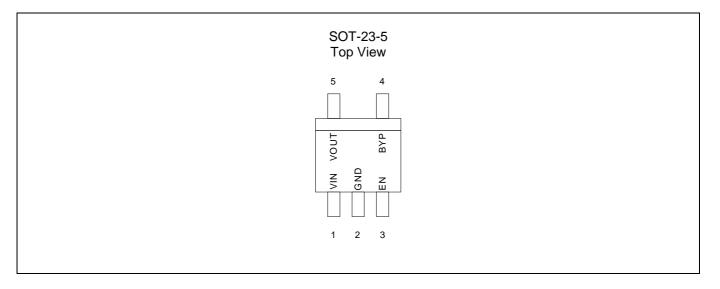
In application requiring a low noise, regulated supply, place a 1000pF capacitor between Bypass and Ground.

The CM2839 is stable with a Low ESR output capacitance of $1.0\mu F$ or greater.

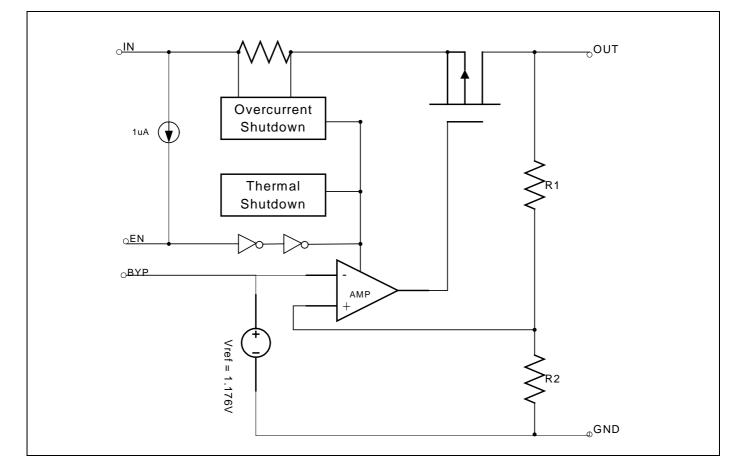

APPLICATIONS

- Battery-powered devices
- Personal communication devices
- Home electric/electronic appliances
- PC peripherals

TYPICAL APPLICATIONS


FEATURES

- Very Low Dropout Voltage
- Low Current Consumption: Typ. 30μA, Max. 35μA
- Output Voltage: 3.3V
- High Accuracy Output Voltage: +/- 1.5%
- Guaranteed 300mA Output
- Input Range up to 7.0V
- Thermal Shutdown
- Current Limiting
- Stability with Low ESR Capacitors
- Compact Package: SOT-23-5
- Factory Pre-set Output Voltages
- Low Temperature Coefficient



PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Output Voltage	Temperature Range	Package
CM2839SIM25	3.3V	-40° C ∼ +85 °C	SOT-23-5
CM2839GSIM25	3.3V	-40° C ∼ +85 °C	SOT-23-5

Note: For other pre-set output voltage requirements, please contact Champion Sales office.

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage	+7V
Output Current	P _D / (V _{IN} - Vo) mA
Output Voltage GND-0).3V to V _{IN} +0.3V
ESD Classification	В

THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (Θ_{jc})	SOT-23-5	160	°C/W
Internal Power Dissipation (P_D) ($\Delta T = 100^{\circ}C$)	SOT-23-5	250	°C/W
Maximum Junction Temperature		150	°C
Maximum Lead Temperature (10 Sec)		300	°C

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

 T_{A} = +25 $^{\circ}\text{C}$; unless otherwise noted

Duranta		Test Conditions		CM2839			
Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Unit	
Input Voltage	V _{IN}			Note 1		7	V
Output Voltage Accuracy	Vout	I _O = 1mA to	300mA	-1.5		1.5	%
	Vdropout	$l_0 = 300 \text{mA}$	$.2V < V_{O(NOM)} \le 2.0V$			1300	
Dropout Voltage			$2.0V < V_{O(NOM)} \le 2.5V$			800	
			2.5V <v<sub>O(NOM)</v<sub>			300	
Output Current	lo	V _{OUT} > 1.2V		300			mA
Current Limit	I _{LIM}	V _{OUT} > ²	1.2V	300	450		mA
Quiescent Current	Ι _Q	I _O = 0mA			30	35	μA
Ground Pin Current		I _O = 1mA to	300mA		30	50	μA
Line Regulation	REG _{LINE}	I _{OUT} =5mA, V _{IN} =V _{OI}	_{JT} +1 to V _{OUT} +2	-0.1	0.02	0.1	%
Load Regulation	REG _{LOAD}	I _O =1mA to 300mA			0.2	1	%
Over Temperature Shutdown	OTS				150		°C
Over Temperature Hysteresis	OTH				30		°C
V _{OUT} Temperature Coefficient	тс				40		ppm/°C
Power Supply Rejection	PSRR	l _o = 100mA C _O =2.2μF ceramic	f=1kHz		60		dB
			f=10kHz		50		
			f=100kHz		40		
Power Supply Rejection		I _O = 100mA	f=1kHz		75		
	PSRR	C ₀ =2.2µF ceramic	f=10kHz		55		dB
		$C_{BYP}=0.01\mu F$	f=100kHz		30		
Output Voltage Noise	oN	f=10Hz to 100kHz	C ₀ =2.2µF		30		
	eN	$I_O = 10 \text{mA}, C_{BYP}=0 \mu F$	C _O =100µF		20		μ Vrms
Output Voltage Noise	eN	f=10Hz to 100kHz	C ₀ =2.2µF		30		
		$I_{O} = 10 \text{mA}, C_{BYP} = 0.01 \mu$	F C ₀ =100µF		20		$-\mu$ Vrms
Shutdown Supply Current	I _{SD}	V _{IN} =5.0V, V _{OUT} =0	OV, V _{EN} < V _{EL}		0.2	1.0	μA
EN Input Bias Current	I _{EH}	$V_{EN}=V_{IN}$, $V_{IN}=2.6V$ to 7V				0.1	μA
	IEL	V _{EN} =0, V _{IN} =2	.6V to 7V		0.2	1.0	μA
EN Input Throshold	V _{EH}	V_{IN} =2.6V to 7V		2		V _{IN}	V
EN Input Threshold	V_{EL}	V _{IN} =2.6V	to 7V	0		0.4	V

Note 1. VIN(MIN) = VOUT + VDROPOUT

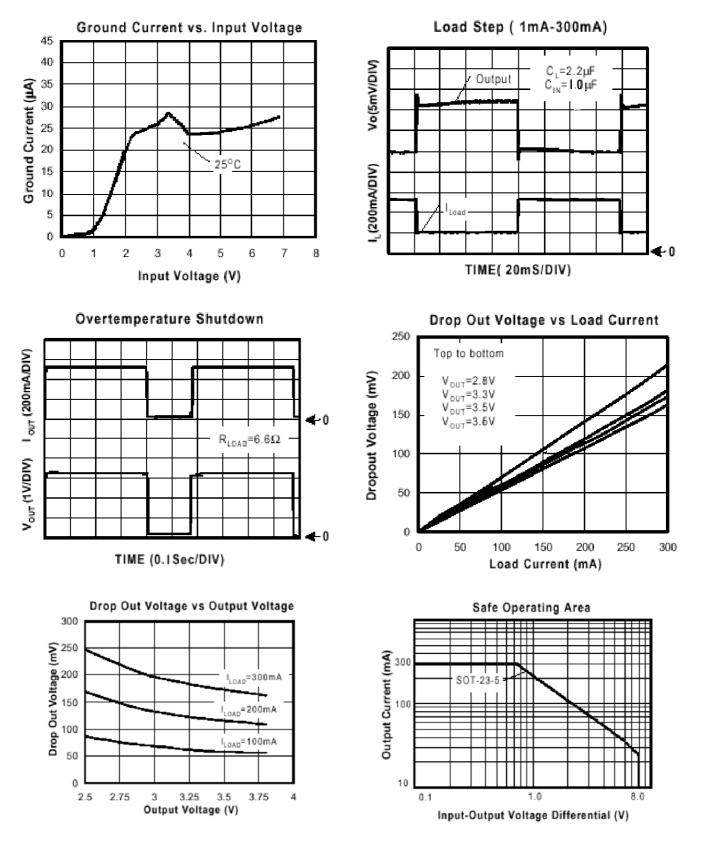
DETAILED DESCRIPTION

The CM2839 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

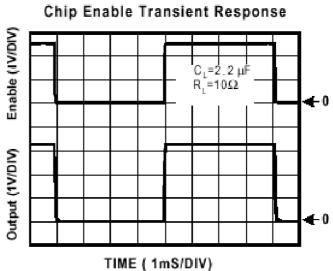
The CM2839 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress.

ENABLE

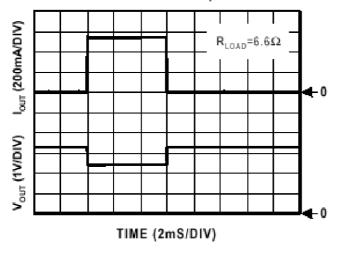

The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 2µA. This pin behaves much like an electronic switch.

EXTERNAL CAPACITOR

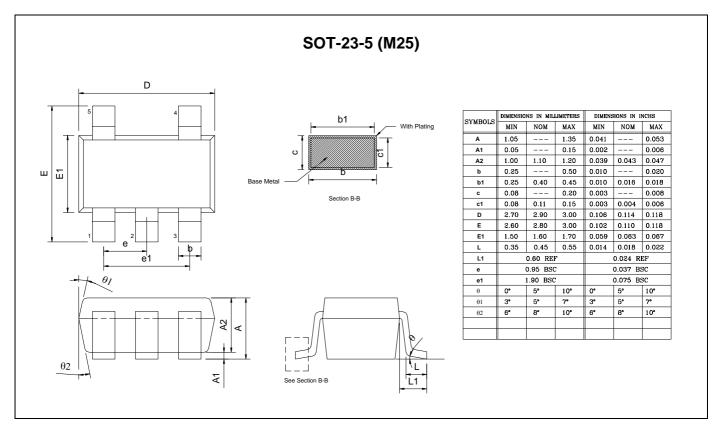
The CM2839 is stable with a Low ESR output capacitor to ground of 1.0μ F or greater. It can keep stable even with higher ESR capacitors. A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than 0.1μ F to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.



TYPICAL CHARACTERISTICS



Chip Enable Transient Response



Current Limit Response

PACKAGE DIMENSION

NUMBERING SCHEME

Ordering Number: CM2839XYZ (note1) Ordering Number: CM2839GXYZ (note2)

note1:

- CM2839: 300mA CMOS LDO with enable
- $\frac{X}{Y}$: Suffix for voltage output (note 3) $\frac{Y}{Y}$: Suffix for Temperature Range (note 4)
- Z : Suffix for Package Type (note 5)

note2:

CM2839: 300mA CMOS LDO with enable

- G: Suffix for Pb Free Product
- X : Suffix for voltage output (note 3)
- Y: Suffix for Temperature Range (note 4)
- Z : Suffix for Package Type (note 5)

note 3: see CMOS LDO Voltage Suffix Table CM2839 will provide S(3.3V)

note 4:

 $Y = I : -40^{\circ}C \sim +85^{\circ}C$ (only I grade support for all CMOS LDOs)

note 5:

Z is single alphabet with or without digits M25 : SOT-25 (TR only)

CMOS LDO Voltage Suffix Table

Output Voltage	Suffix	Output Voltage	Suffix
1.5V	A	3.0V	Р
1.6V	В	3.1V	Q
1.7V	С	3.2V	R
1.8V	D	3.3V	S
1.9V	E	3.4V	Т
2.0V	F	3.5V	U
2.1V	G	3.6V	V
2.2V	Н	3.7V	W
2.3V	I	3.8V	Х
2.4V	J	3.9V	Y
2.5V	K	4.0V	Z
2.6V	L		
2.7V	М		
2.8V	N		
2.9V	0		

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter	Sales & Marketing		
5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,		
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan		
HsinChu City, Taiwan			
TEL: +886-3-567 9979	TEL: +886-2-8692 1591		
FAX: +886-3-567 9909	FAX: +886-2-8692 1596		