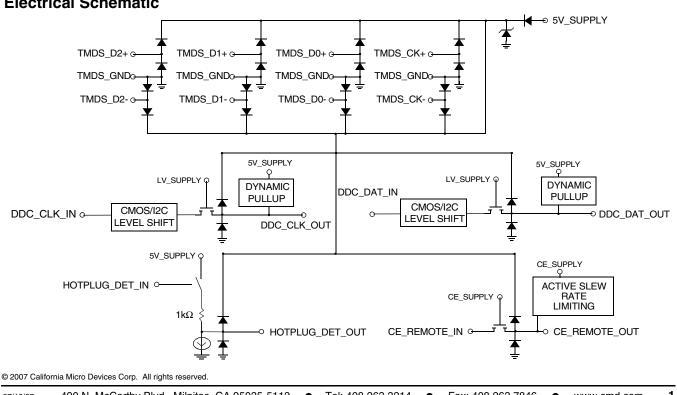
HDMI Receiver Port Protection and Interface Device

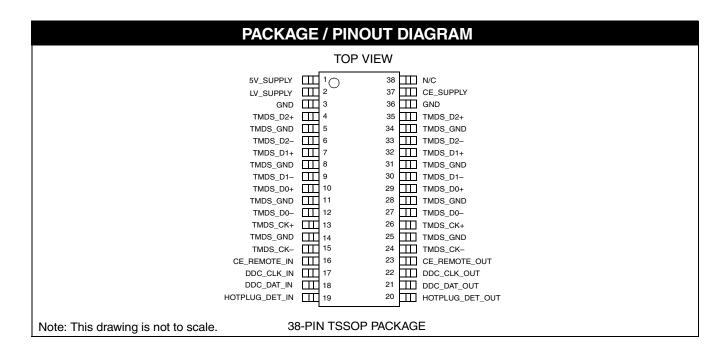
Features

- HDMI 1.3 compliant
- Supports thin dielectric and 2-layer boards
- Minimizes TMDS skew with 0.05pF matching
- Long HDMI cable support with integrated I²C accelerator
- Active termination and slew rate limiting for CEC
- Supports direct connection to CEC microcontroller
- Integrated I²C level shifting to CMOS level • including low logic level voltages
- Integrated 8kV ESD protection and backdrive protection on all external I/O lines
- Supports active and passive control of hot plug detect signal
- Multiport I²C support eliminates need for analog mux on DDC lines
- Simplified layout with matched 0.5mm trace spacing

Applications


- PC and consumer electronics
- Digital TV, PC monitors and projectors

Product Description


The CM2031 HDMI Receiver Port Protection and Interface Device is specifically designed for next generation HDMI Sink interface protection.

An integrated package provides all ESD, slew rate limiting on CEC line, level shifting/isolation and backdrive protection for an HDMI port in a single 38-Pin TSSOP package.

The CM2031 part is specifically designed to provide the designer with the most reliable path to HDMI 1.3 CTS compliance.

Electrical Schematic

PIN DESCRIPTIONS						
PINS	NAME	ESD Level	DESCRIPTION			
4, 35	TMDS_D2+	8kV ³	TMDS 0.9pF ESD protection. ¹			
6, 33	TMDS_D2-	8kV ³	TMDS 0.9pF ESD protection. ¹			
7, 32	TMDS_D1+	8kV ³	TMDS 0.9pF ESD protection. ¹			
9, 30	TMDS_D1-	8kV ³	TMDS 0.9pF ESD protection. ¹			
10, 29	TMDS_D0+	8kV ³	TMDS 0.9pF ESD protection. ¹			
12, 27	TMDS_D0-	8kV ³	TMDS 0.9pF ESD protection. ¹			
13, 26	TMDS_CK+	8kV ³	TMDS 0.9pF ESD protection. ¹			
15, 24	TMDS_CK-	8kV ³	TMDS 0.9pF ESD protection. ¹			
16	CE_REMOTE_IN	2kV ⁴	CE_SUPPLY referenced logic level in.			
23	CE_REMOTE_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 10pF ESD.			
17	DDC_CLK_IN	2kV ⁴	LV_SUPPLY referenced logic level in.			
22	DDC_CLK_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 10pF ESD.			
18	DDC_DAT_IN	2kV ⁴	LV_SUPPLY referenced logic level in.			
21	DDC_DAT_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 10pF ESD.			
19	HOTPLUG_DET_IN	2kV ⁴	LV_SUPPLY referenced logic level in.			
20	HOTPLUG_DET_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 10pF ESD. A $0.1\mu F$			
			bypass ceramic capacitor is recommended on this pin. ²			
2	LV_SUPPLY	2kV ⁴	Bias for CE / DDC / HOTPLUG level shifters.			
37	CE_SUPPLY	2kV ^{4,2}	CEC bias voltage. Previously CM2020 ESD_BYP pin.			
1	5V_SUPPLY	2kV ⁴	Current source for 5V_OUT, VREF for DDC $\rm I^2C$ voltage references, and bias for 8kV ESD pins.			
38	N/C	N/A	N/C			

© 2007 California Micro Devices Corp. All rights reserved.

2

PIN DESCRIPTIONS (CONT'D)						
PINS	NAME	ESD Level	DESCRIPTION			
3, 5, 8, 11, 14, 25, 28, 31, 34, 36	GND / TMDS_GND	N/A	GND reference.			
Note 1: These 2 pins need to be connected together in-line on the PCB. See recommended layout diagram.						

Note 2: This output can be connected to an external 0.1µF ceramic capacitor/pads to maintain backward compatibility with the CM2020.

Note 3: Standard IEC 61000-4-2, C_{DISCHARGE}=150pF, R_{DISCHARGE}=330Ω, 5V_SUPPLY and LV_SUPPLY within recommended operating conditions, GND=0V, 5V_OUT (pin 38), and HOTPLUG_DET_OUT (pin 20) each bypassed with a 0.1µF ceramic capacitor connected to GND.

Note 4: Human Body Model per MIL-STD-883, Method 3015, C_{DISCHARGE}=100pF, R_{DISCHARGE}=1.5kΩ, 5V_SUPPLYand LV_SUPPLY within recommended operating conditions, GND=0V, 5V_OUT (pin 38), and HOTPLUG_DET_OUT (pin 20) each bypassed with a 0.1µF ceramic capacitor connected to GND.

Note 5: These pins should be routed directly to the associated GND pins on the HDMI connector with single point ground vias at the connector

Backdrive Protection and Isolation

Backdrive current is defined as the undesirable current flow through an I/O pin when that I/O pin's voltage exceeds the related local supply voltage for that circuitry. This is a potentially common occurrence in multimedia entertainment systems with multiple components and several power plane domains in each system.

For example, if a DVD player is switched off and an HDMI connected TV is powered on, there is a possibility of reverse current flow back into the main power supply rail of the DVD player from pull-ups in the TV. As little as a few milliamps of backdrive current flowing back into the power rail can charge the DVD player's bulk bypass capacitance on the power rail to some intermediate level. If this level rises above the power-on-reset (POR) voltage level of some of the integrated circuits in the DVD player, then these devices may not reset properly when the DVD player is turned back on.

If any SOC devices are incorporated in the design which have built-in level shifter and/or ESD protection structures, there can be a risk of permanent damage due to backdrive. In this case, backdrive current can forward bias the on-chip ESD protection structure. If the current flow is high enough, even as little as a few milliamps, it could destroy one of the SOC chip's internal DRC diodes, as they are not designed for passing DC.

To avoid either of these situations, the CM2031 was designed to block backdrive current, guaranteeing less than 5μ A into any I/O pin when the I/O pin voltage exceeds its related operating CM2031 supply voltage.

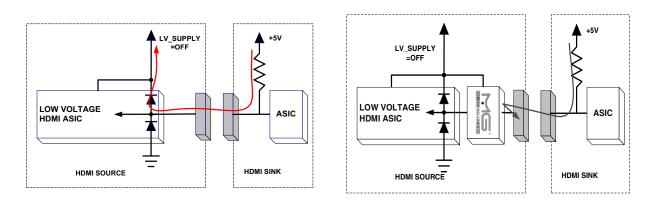


Figure 1. Backdrive Protection Diagram.

Display Data Channel (DDC) lines

The DDC interface is based on the I²C serial bus protocol for EDID configuration.

DYNAMIC PULLUPS

Based on the HDMI specification, the maximum capacitance of the DDC line can approach 800pF (50pF from source, 50pF from sink, and 700pF from cable). At the upper range of capacitance values (i.e. long cables), it becomes impossible for the DDC lines to meet the I^2C timing specifications with the minimum pull-up resistor of 1.5k Ω (at the source).

For this reason, the CM2031 was designed with an internal I^2C accelerator to meet the AC timing specification even with very long and non-compliant cables.

The internal accelerator works with the source pull-up and the local $47k\Omega$ pullup to increase the positive slew rate of the DDC_CLK_OUT and DDC_DAT_OUT lines whenever the sensed voltage level exceeds $0.3*5V_SUPPLY$ (approximately 1.5V). This provides faster overall risetime in heavily loaded situations without overloading the mutli-drop open drain I²C outputs elsewhere.

DYNAMIC PULLUPS (CONT'D)

ວວງ

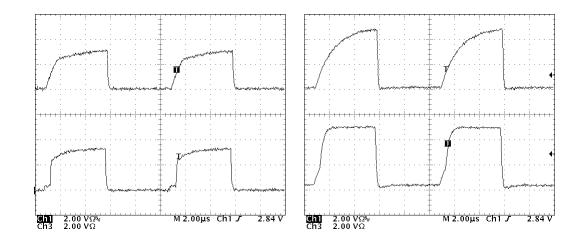


Figure 2. Dynamic DDC Pullups (Discrete - Top, CM2031 - Bottom; 3.3V ASIC - Left, 5V Cable - Right.)

Figure 2 demonstrates the "worst case" operation of the dynamic CM2031 DDC level shifting circuitry (bottom) against a discrete NFET common-gate level shifter circuit with a typical $1.5k\Omega$ pullup at the source (top.) Both are shown driving an off-spec, but unfortunately readily available 31m HDMI cable which exceeds the 700pF HDMI specification. Some widely available HDMI cables have been measured at *over 4nF*.

When the standard I/OD cell releases the NFET discrete shifter, the risetime is limited by the pullup and the parasitics of the cable, source and sink. For long cables, this can extend the risetime and reduce the margin for reading a valid "high" level on the data line. In this case, an HDMI source may not be able to read uncorrupted data and will not be able to initiate a link.

With the CM2031's dynamic pullups, when the ASIC driver releases its DDC line and the "OUT" line reaches at least 0.3*VDD (of 5V_SUPPLY), then the "OUT" active pullups are enabled and the CM2031 takes over driving the cable until the "OUT" voltage approaches the 5V_SUPPLY rail.

The internal pass element and the dynamic pullups also work together to damp reflections on the longer cables and keep them from glitching the local ASIC.

I²C LOW LEVEL SHIFTING

In addition to the Dynamic Pullups described in the previous section, then CM2031 also incorporates

improved I²C low-level shifting on the DDC_CLK_IN and DDC_DAT_IN lines for enhanced compatibility.

Typical discrete NFETs level shifters can advertise specifications for low RDS[on], but usually state relatively high V[GS] test parameters, requiring a 'switch' signal (gate voltage) as high as 10V or more. At a sink current of 4mA for the ASIC on DDC_XX_IN, the CM2031 guarantees no more than 140mV increase to DDC_XX_OUT, even with a switching control of 2.5V on LV_SUPPLY.

Additionally, when I²C devices are driving the external cable, an internal pulldown on DDC_XX_IN guarantees that the VOL seen by the ASIC on DDC_XX_IN is equal to or lower than DDC_XX_OUT.

Multiport DDC Multiplexing

Additionally, by switching LV_SUPPLY, the DDC/HPD blocks can be independently disabled by engaging their inherent "backdrive" protection. This allows N:1 multiplexing of the low-speed HDMI signals without any additional FET switches.

Consumer Electronics Control (CEC)

The Consumer Electronics Control (CEC) line is a high level command and control protocol, based on a single wire multidrop open drain communication bus running at approximately 1kHz (See Figure 3). While the HDMI link provides only a single point-to-point connection, up to ten (10) CEC devices may reside on the bus, and

they may be daisy chained out through other physical connectors including other HDMI ports or other dedicated CEC links. The high level protocol of CEC can be implemented in a simple microcontroller or other interface with any I/OD (input/open-drain) GPIO.

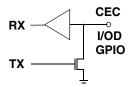
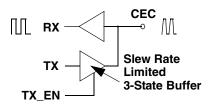



Figure 3. Typical µC I/OD Driver

To limit possible EMI and ringing in this potentially complex connection topology, the rise- and fall-time of this line are limited by the specification. However, meeting the slew-rate limiting requirements with additional discrete circuitry in this bi-directional block is not trivial without an additional RX/TX control line to limit the output slew-rate without affecting the input sensing (See Figure 4).

Figure 4. Three-Pin External Buffer Control

Simple CMOS buffers cannot be used in this application since the load can vary so much (total pullup of $27k\Omega$ to less than $2k\Omega$, and up to 7.3nF total capacitance.) The CM2031 targets an output drive slew-rate of less than 100mV/µs regardless of static load for the CEC line. Additionally, the same internal circuitry will perform active termination, thus reducing ringing and overshoot in entertainment systems connected to legacy or poorly designed CEC nodes.

The CM2031's bi-directional slew rate limiting is integrated into the CEC level-shifter functionality thus allowing the designer to directly interface a simple low voltage CMOS GPIO directly to the CEC bus and simultaneously guarantee meeting all CEC output logic levels and HDMI slew-rate and isolation specifications (See Figure 5).

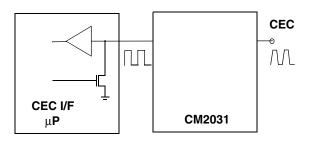


Figure 5. Integrated CM2031 Solution

The CM2031 also includes an internal backdrive protected static pullup $120\mu A$ current source from the CE_SUPPLY rail in addition to the dynamic slew rate control circuitry.

Figure 6 shows a typical shaped CM2031 CEC output (bottom) against a ringing uncontrolled discrete solution (top).

Figure 6. CM2031 CEC Output

© 2007 California Micro Devices Corp. All rights reserved.

www.cmd.com 07/10/07 www.DataSheet4U.com

Hotplug Output Pullup Logic

The CM2031 includes flexible circuitry for active or passive control of the HDMI Sink's Hotplug Present Output line by integrating the $1k\Omega$ pullup resistor.

Section 8.5 of the HDMI Specification allows the HDMI Sink to pulse the HotPlug line "low" for at least 100msec to indicate to the Source that the EEPROM should be re-read. This function can be implemented with a few discrete components as shown in Figure 7.

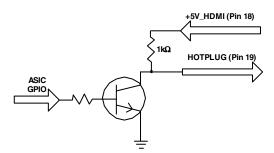


Figure 7. Typical Discrete HPD Switching Circuit

The Hot Plug Detect circuit of the CM2031 is specifically designed to provide this "pulse" capability and still pass CTS testing requirements.

When a logic "high" is applied to the HOTPLUG_DET_IN pin, an internal switch enables the $1k\Omega$ pull-up. When a logic "low" is sensed on this pin, the $1k\Omega$ logic resistor is disconnected, and a weak pulldown ensures a valid low output on the HDMI cable.

5V Passive Pullup

In the most basic implementation, where HOTPLUG is to be asserted only when the HDMI +5V supply is applied, simply tie HOTPLUG_DET_IN to the +5V supply and connect HOTPLUG_DET_OUT to HDMI Connector (Pin 19).

Local Power Supply Pullup Passive

For a system that needs to inhibit the HOTPLUG signal when the local ASIC low voltage supply ("LV SUPPLY" on CM2031) has been powered, the designer can simply connect HOTPLUG DET OUT to HDMI Connector (Pin 19) the and tie HOTPLUG_DET_IN to the "LV_SUPPLY" which can be 1.5V, 1.8V, 2.5V, etc. Then the internal $1k\Omega$ pullup will be enabled between HOTPLUG DET OUT and 5V SUPPLY.

If a weak pullup is used on HOTPLUG_DET _IN, then this still allows dynamic switching by the local ASIC

while still retaining the isolation/backdrive protection on this pin.

Active Local Pullup Control

For a system where a low voltage GPIO signal needs to control the HOTPLUG pin (i.e. if the local system needs to boot up before asserting HOTPLUG) the ASIC GPIO can be connected directly to the HOTPLUG_DET_IN pin to control the 5V pullup "on" and "off." A logic "low" on HOTPLUG_DET_IN will disable the 5V pullup, and a logic "high" will enable the pullup. (NOTE: If the ASIC Power-ON Reset {POR} default of the GPIO is high-impedance or defaults to an input, then the designer should include a weak pulldown on the GPIO to eliminate any POR glitches.)

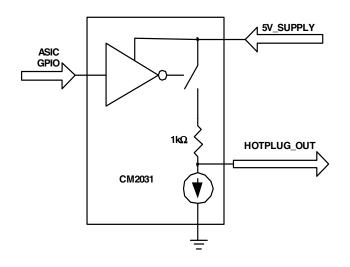


Figure 8. Simplified CM2031 HPD Circuit

© 2007 California Micro Devices Corp. All rights reserved.

www.cmd.com 7 www.DataSheet4U.com

•

Ordering Information

PART NUMBERING INFORMATION						
	Lead-free Finish					
		Ordering Part				
Pins	Package	Number ¹ Part Marking				
38	TSSOP-38	CM2031-A0TR CM2031-A0TR				

Note 1: Parts are shipped in Tape & Reel form unless otherwise specified.

Specifications

ABSOLUTE MAXIMUM RATINGSPARAMETERRATINGUNITSV_CC5, V_CCLV6.0VDC Voltage at any Channel Input[GND - 0.5] to [VCC + 0.5]VStorage Temperature Range-65 to +150°C

STANDARD (RECOMMENDED) OPERATING CONDITIONS						
SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	
5V_SUPPLY	Operating Supply Voltage		5	5.5	V	
LV_SUPPLY	Bias Supply Voltage	1	3.3	5.5	V	
CE_SUPPLY Bias Supply Voltage		3	3.3	3.6	V	
	Operating Temperature Range	-40		85	°C	

ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1)								
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS			
I _{CC5}	Operating Supply Current	5V_SUPPLY = 5.0V, CEC_OUT = 3.3V, LV_SUPPLY= CE_SUPPLY= 3.3V, DDC=5V; Note 7		300	350	μA		
I _{CC} LV	Bias Supply Current	LV_SUPPLY = 3.3V; Note 7		60	150	μA		
I _{CC} CE	Bias Supply Current	CE_SUPPLY=3.3V, CEC_OUT=0V; Note 7		60	150	μA		
I _{OFF}	OFF state leakage current, level shifting NFET	LV_SUPPLY=0V		0.1	5	μA		
I _{BACKDRIVE} TMDS	Current through TMDS pins when powered down	All Supplies = 0V; TMDS_[2:0]+/-, TMDS_CK+/- = 4V		0.1	5	μA		
I _{BACKDRIVE} DDC	Current through DDC_DAT_OUT when pow- ered down	All Supplies = 0V; DDC_DAT/CLK_OUT = 5V; DDC_DAT/CLK_IN = 0V		0.1	5	μΑ		

 $\ensuremath{\textcircled{\sc 0}}$ 2007 California Micro Devices Corp. All rights reserved.

•

		NOTE			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Current through HOTPLUG_DET_OUT when powered down	All Supplies = 0V; HOTPLUG_DET_OUT = 5V; HOTPLUG_IN = 0V		0.1	5	μΑ
Current through CE-REMOTE_OUT when powered down	CE-REMOTE_IN = CE_SUPPLY < CE_REMOTE_OUT		0.1	1.8	μA
CEC Slew Limit	Measured from10-90% or 90-10%		0.26	0.65	V/µs
CEC Rise Time	Measured from 10-90% Assumes a signal swing from 0- 3.3V	26.4		250	μs
CEC Fall Time	Measured from 90-10% Assumes a signal swing from 0- 3.3V	4		50	μs
Hotplug Resistance	Voltage on HotPlug_In is greater than the specified range below	0.8	1	1.2	kΩ
Threshold Voltage to Assert $1k\Omega$		1.5		5.5	V
Turn On Threshold of I ² C/DDC Accelerator	Voltage is 0.3 X 5V_Supply	1.35	1.5	1.65	V
Voltage drop across DDC level shifter	LV_SUPPLY=2.5V, 4mA Sink at DDC _{IN} , DDC _{OUT} < V _{ACC}			140	mV
Logic Level (ASIC side) when I ² C/DDC Logic Low Applied; (I ² C pass-through compatibility)	DDC_OUT=0.4V, LV_SUPPLY=3.3V, 1.5kΩ pullup on DDC_OUT to 5.0V, Note 2		0.3	0.4	V
DDC_OUT Line Risetime, V _{ACC} < V _{DDC_OUT} < (5V_Supply-0.5V)	DDC_IN floating, LV_SUPPLY= $3.3V$, $1.5k\Omega$ pullup on DDC_OUT to $5.0V$, Bus Capacitance = $1500pF$, Note 2			1	μs
Diode Forward Voltage Top Diode Bottom Diode	I _F = 8mA, T _A = 25°C, Note 2	0.6 0.6	0.85 0.85	0.95 0.95	V V
ESD Withstand Voltage (IEC)	Pins 4, 7, 10, 13, 20, 21, 22, 23, 24, 27, 30, 33; Notes 2 and 3	±8			kV
ESD Withstand Voltage (HBM)	Pins 1, 2, 16, 17, 18, 19, 37, 38; Notes 2 and 4	±2			kV
Channel Clamp Voltage Positive Transients Negative Transients	T _A =25°C, I _{PP} =1A, t _P =8/20μS; Notes 2 & 6		11.0 -2.0		V V
Dynamic Resistance Positive Transients Negative Transients	$T_A=25^{\circ}C$, $I_{PP}=1A$, $t_P=8/20\mu S$ Any I/O pin to Ground; Note 6		1.4 0.9		Ω Ω
TMDS Channel Leakage Current	T _A = 25°C, Note 2		0.01	1	μA
	HOTPLUG_DET_OUT when powered downCurrent through CE-REMOTE_OUT when powered downCEC Slew LimitCEC Slew LimitCEC Rise TimeCEC Fall TimeHotplug ResistanceThreshold Voltage to Assert 1kΩTurn On Threshold of I²C/DDC AcceleratorVoltage drop across DDC level shifterLogic Level (ASIC side) when I²C/DDC Logic Low Applied; (I²C pass-through compatibility)DDC_OUT Line Risetime, VACC < V_DDC_OUT < (5V_Supply-0.5V)Diode Forward Voltage Bottom DiodeESD Withstand Voltage (IEC)ESD Withstand Voltage (HBM)Channel Clamp Voltage Positive Transients Negative Transients	Current through HOTPLUG_DET_OUT when powered downAll Supplies = 0V; HOTPLUG_DET_OUT = 5V; HOTPLUG_IN = 0VCurrent through CE-REMOTE_OUT when powered downCE-REMOTE_OUT = 5V; HOTPLUG_IN = 0VCEREMOTE_OUT when powered downCE-REMOTE_OUT CE_REMOTE_OUTCEC Slew LimitMeasured from 10-90% or 90-10% Assumes a signal swing from 0- 3.3VCEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3VHotplug ResistanceVoltage on HotPlug_In is greater than the specified range belowThreshold Voltage to Assert 1kQVoltage is 0.3 X 5V_SupplyVoltage drop across DDC level (I ² C/DDC Logic Level (ASIC side) when I ² C/DDC Logic Low Applied; (I ² C pass-through compatibility)DDC_OUT=0.4V, LV_SUPPLY=3.3V, 1.5kQ pullup on DDC_OUT to 5.0V, Note 2DDC_OUT Line Risetime, VAcc < VDDC_OUT	Current through HOTPLUG_DET_OUT when powered downAll Supplies = 0V; HOTPLUG_DET_OUT = 5V; HOTPLUG_IN = 0VAll Supplies = 0V; HOTPLUG_IN = 0VCurrent through CE-REMOTE_OUT when powered downCE-REMOTE_IN = CE_SUPPLY < CE_REMOTE_OUTCE-REMOTE_OUTCEC Slew LimitMeasured from 10-90% or 90-10%26.4 Assumes a signal swing from 0- 3.3V26.4 Assumes a signal swing from 0- 3.3VCEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V4 Assumes a signal swing from 0- 3.3VHotplug ResistanceVoltage on HotPlug_In is greater than the specified range below0.8 1.5Turn On Threshold of I ² C/DDC AcceleratorVoltage is 0.3 X 5V_Supply1.35Voltage drop across DDC level shifterDDC_OUT=0.4V, LV_SUPPLY=3.3V, 1.5KΩ pullup on DDC_OUT < VACC	Current through HOTPLUG_DET_OUT when powered downAll Supplies = 0V; HOTPLUG_DET_OUT = 5V; HOTPLUG_IN = 0V0.1Current through CE-REMOTE_OUT when powered downCE-REMOTE_IN = CE_SUPPLY < CE_REMOTE_OUT0.1CEC Slew LimitMeasured from 10-90% or 90-10%0.26CEC Rise TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V26.4CEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V4CEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V4Threshold Voltage to Assert than the specified range below1.5Turn On Threshold of I²C/DDC AcceleratorVoltage is 0.3 X 5V_Supply UV_SUPPLY=2.5V, 4mA Sink at DDC_IN. DDC_OUT < VACC	Current through HOTPLUG_DET_OUT when powered downAll Supplies = 0V; HOTPLUG_IN = 0V0.15Current through CE-REMOTE_OUT when powered downCE-REMOTE_IN = CE_SUPPLY < CE_REMOTE_OUT0.11.8Current through CE-REMOTE_OUTCE-REMOTE_OUT0.260.65CEC Siew LimitMeasured from 10-90% Assumes a signal swing from 0- 3.3V26.4250CEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V450CEC Fall TimeMeasured from 90-10% Assumes a signal swing from 0- 3.3V1.55.5Threshold Voltage to Assert than the specified range below1.55.55.5Turn On Threshold of I ² C/DDC AcceleratorVoltage is 0.3 X 5V_Supply1.351.51.65Voltage drop across DDC level LV_SUPPLY=3.3V, 1.5KΩ pullup on DDC_OUT < VACC

© 2007 California Micro Devices Corp. All rights reserved.

•

EL	ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1)							
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
C _{IN,} TMDS	TMDS Channel Input Capacitance	5V_SUPPLY=5.0V, Measured at 1MHz, V _{BIAS} =2.5V, Note 2		0.9	1.2	pF		
$\Delta c_{ m IN,}$ TMDS	TMDS Channel Input Capacitance Matching	5V_SUPPLY=5.0V, Measured at 1MHz, V _{BIAS} =2.5V, Note 2, 5		0.05		pF		
C _{MUTUAL}	Mutual Capacitance between signal pin and adjacent signalpin	5V_SUPPLY=0V, Measured at 1MHz, V _{BIAS} =2.5V, Note 2		0.07		pF		
C _{IN,} DDC _{OUT}	Level Shifting Input Capacitance, Capacitance to GND	5V_SUPPLY=0V, Measured at 100KHz, V _{BIAS} =2.5V, Note 2		10		pF		
C _{IN,} CEC _{OUT}	Level Shifting Input Capacitance, Capacitance to GND	5V_SUPPLY=0V, Measured at 100KHz, V _{BIAS} =1.65V, Note 2		10		pF		
C _{IN,} HP _{OUT}	Level Shifting Input Capacitance, Capacitance to GND	5V_SUPPLY=0V, Measured at 100KHz, V _{BIAS} =2.5V, Note 2		10		pF		

Note 1: Operating Characteristics are over Standard Operating Conditions unless otherwise specified.

Note 2: This parameter is guaranteed by design and verified by device characterization.

Note 3: Standard IEC61000-4-2, C_{DISCHARGE}=150pF, R_{DISCHARGE}=330Ω, 5V_SUPPLY=5V, 3.3V_SUPPLY=3.3V, LV_SUPPLY=3.3V, GND=0V.

Note 4: Human Body Model per MIL-STD-883, Method 3015, C_{DISCHARGE}=100pF, R_{DISCHARGE}=1.5kΩ, 5V_SUPPLY=5V, 3.3V_SUPPLY=3.3V, LV_SUPPLY=3.3V, GND=0V.

Note 5: Intra-pair matching, each TMDS pair (i.e. D+, D-).

Note 6: These measurements performed with no external capacitor on V_P (V_P floating).

Note 7: These static measurements do not include AC activity on controlled I/O lines.

Performance Information

Typical Filter Performance (T_A=25°C, DC Bias=0V, 50 Ohm Environment)

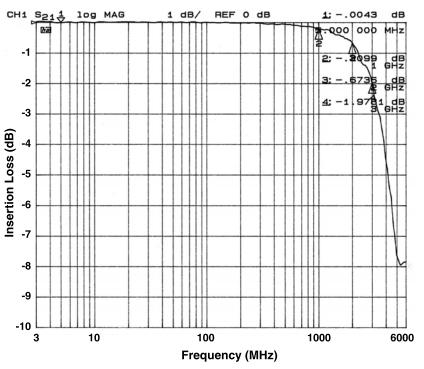


Figure 9. Insertion Loss vs. Frequency (TMDS_D1- to GND)

Application Information

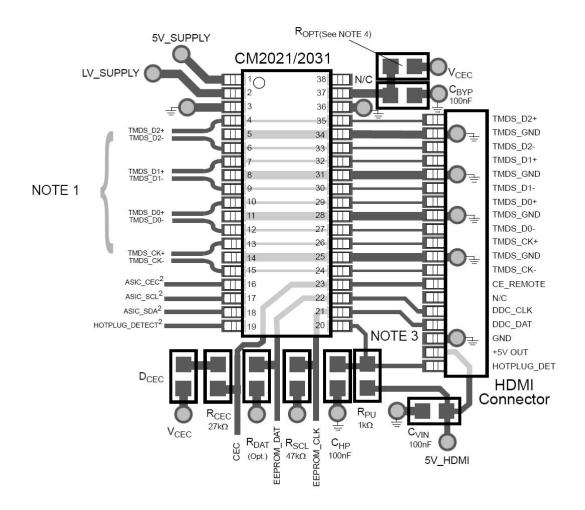


Figure 10. Typical Application for CM2031

LAYOUT NOTES

¹ Differential TMDS Pairs should be designed as normal 100Ω HDMI Microstrip. *Single Ended (decoupled) TMDS traces underneath MediaGuard™, and traces between MediaGuard*[™] and Connector should be tuned to match chip/connector IBIS parasitics. (See MediaGuard[™] Layout Application Notes.)

² Level Shifter signals should be biased with a weak pullup to the desired local LV_SUPPLY. If the local ASIC includes sufficient pullups to register a logic high, then external pullups may not be needed. ³ Place MediaGuard[™] as close to the connector as possible, and as with any controlled impedance line always avoid placing any silkscreen printing over TMDS traces.

⁴ CM2020/CM2031 footprint compatibility. For the CM2031, Pin 37 becomes the V_{CEC} power supply pin for the slew-rate limiting circuitry. This can be supplied by a 0Ω jumper to V_{CEC} which should be depopulated to utilize the CM2020. The 100nF C_{EVP} is recommended for all applications.

Application Information

Design Considerations

DUT On vs. DUT Off

Many HDMI CTS tests require a power off condition on the System Under Test. Many discrete ESD diode configurations can be forward baised when their VDD rail is lower than the I/O pin bias, thereby exhibiting extremely high apparent capacitance measurements, for example. The *MediaGuard*TM backdrive isolation circuitry limits this current to less than 5μ A, and will help ensure HDMI compliance.

PLEASE REVIEW ALL OF THE CURRENT HDMI DESIGN GUIDELINES AVAILABLE AT

http://www.calmicro.com/applications/customer/downloads/current-cmd-mediaguard-design-guidelines.zip

Mechanical Details

<u>__</u>__

TSSOP-38 Mechanical Specifications

CM2031 devices are supplied in 38-pin TSSOP packages. Dimensions are presented below.

For complete information on the TSSOP-38, see the California Micro Devices TSSOP Package Information document.

PACKAGE DIMENSIONS						
Package		TS	SOP			
JEDEC No.		MO-153 (Va	riation BD-	1)		
Pins		3	38			
Dimensions	Millin	neters	Inches			
Dimensions	Min	Max	Min	Max		
А		1.20	—	0.047		
A1	0.05	0.15	0.002	0.006		
b	0.17	0.27	0.007	0.011		
с	0.09	0.20	0.004	0.008		
D	9.60	9.80	0.378	0.386		
E	6.40) BSC	0.252	2 BSC		
E1	4.30	4.50	0.169	0.177		
e	0.50 BSC 0.020 BSC					
L	0.45	0.75	0.018	0.030		
# per tape and reel	2500 pieces					
Controlling dimension: millimeters						

Mechanical Package Diagrams TOP VIEW D 33 32 31 30 29 23 22 21 25 24 E1 Е SIDE VIEW 다는다다다다다다다 SEATING нн END VIEW

Package Dimensions for TSSOP-38