

# The Leader in High Temperature Semiconductor Solutions

# **CHT-LDOS** Datasheet

Version: 2.4 25-Mar-15 (Last Modification Date)

High-Temperature,1A Low-Dropout Voltage Regulator for symmetrical voltage applications. 2.5V; 3.3V; 5V; 5.5V; 9V; 10V; 12V; 13V or 15V

### **General Description**

The CHT-LDOS is a 1A, low-dropout linear voltage regulator compatible with high-temperature environments. Typical operation temperature range extends from -55°C to 225°C.

The circuit is stable throughout the whole temperature range and under a large choice of capacitive loads.

The minimum dropout voltage ( $V_{in}$ - $V_{out}$ ) is 2V with a 1A load current at 225°C and 1V for load currents lower than 400mA. The dropout voltage can span from 1 Volts to 20 Volts<sup>(1)</sup>.

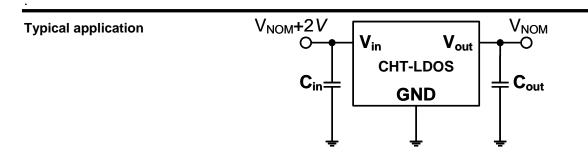
The circuit is a one-die solution.

CHT-LDOS is available in TO-254 package and in bare die.

#### Related documents:

- AN-06016: "Selecting correct CIS-SOID regulator depending on your application"
- AN-06002: "Voltage regulator shortcircuit protection and associated potential startup problem".
- AN-090477: "Power Dissipation Considerations During Short Circuit Conditions"

#### Applications


Power supplies for high-temperature electronic systems used in Automotive, Aeronautics, Aerospace or Oil&Gas applications

### Features

- 1V to 20V dropout Voltage @400mA<sup>(1)</sup>
- 2V to 20V dropout Voltage @1A<sup>(1)</sup>
- Max 1A output current @ 225°C
- 60dB input ripple rejection (0-100Hz)
- C<sub>load</sub> from 100nF to 1000µF, large ESR range
- Output voltage programmable by bonding option (bare die version)
- Available in TO-254 package and bare die form (contact CISSOID) (for other package options, please contact CIS-SOID)
- The start-up is operative over the whole temperature range
- Latch-up free
- Validated at 225°C for 43800 hours (and still on-going)

#### Available voltages:

- CHT-LDOS-025: 2.5V
- CHT-LDOS-033: 3.3V
- CHT-LDOS-050: 5.0V
- CHT-LDOS-055 : 5.5V
- CHT-LDOS-090 : 9.0V
- CHT-LDOS-100 : 10.0V
- CHT-LDOS-120: 12.0V
- CHT-LDOS-130: 13.0V
- CHT-LDOS-150: 15.0V



### **Absolute Maximum Ratings**

| Supply Voltage Vin                       | -0.3V40V |
|------------------------------------------|----------|
| Junction Temperature <sup>(2)</sup> (Tj) | 315°C    |
| Power dissipation (3)                    |          |

### **Operating Conditions**

Supply Voltage  $V_{\text{in}}$  to GND Junction temperature Power dissipation  $^{(3)}$ 

V<sub>out</sub>+(1V to 20V)<sup>(1)</sup> -55°C to +225°C

ESD Rating (expected)

Human Body Model

**CAUTION:** Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Frequent or extended exposure to absolute maximum rating conditions or above may affect device reliability.

<1kV

### **Electrical Characteristics**

Unless otherwise stated, the following table is relative to the 5V mode (CHT-LDOS-050) with Vin=7V (Vout+2V). For other nominal voltages, see notes under this table.

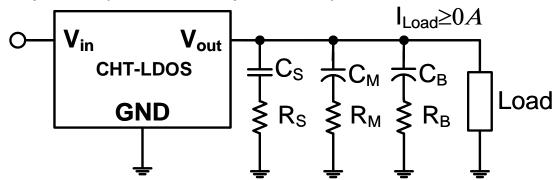
| Parameter                                                     | Condition                                                                                                                            | Min | Тур        | Max | Units             | Note |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-----|-------------------|------|
| Output voltage<br>accuracy                                    | I∟=10mA<br>-55°C <tj <225°c<="" td=""><td>-2</td><td>0</td><td>2</td><td>%</td><td></td></tj>                                        | -2  | 0          | 2   | %                 |      |
| Output voltage<br>Temperature drift                           | I <sub>L</sub> =10mA<br>25°C <tj <225°c<="" td=""><td>0</td><td>40</td><td>80</td><td>ppm</td><td>(4)</td></tj>                      | 0   | 40         | 80  | ppm               | (4)  |
| Output voltage line regulation                                | dropout=2V to 15V<br>I <sub>L</sub> =60mA, -55°C <tj <225°c<="" td=""><td>-1</td><td></td><td>1</td><td>mV/V</td><td>(5)</td></tj>   | -1  |            | 1   | mV/V              | (5)  |
| Output voltage load<br>regulation<br>(i.e. R <sub>out</sub> ) | I <sub>L</sub> =10mA to 1A @2V dropout<br>-55°C <tj <225°c<="" td=""><td></td><td>0.04</td><td>0.1</td><td>V/A</td><td>(6)</td></tj> |     | 0.04       | 0.1 | V/A               | (6)  |
| (Vin-Vout)                                                    | l∟≤400mA, -55°C <tj <225°c<="" td=""><td>1</td><td></td><td></td><td>V</td><td></td></tj>                                            | 1   |            |     | V                 |      |
| (droupout)                                                    | I <sub>L</sub> =1A, -55°C <tj <225°c<="" td=""><td>2</td><td></td><td></td><td>V</td><td></td></tj>                                  | 2   |            |     | V                 |      |
| Quiescent Ground<br>Pin current                               | 0 < I∟ <1A<br>-55°C<br>225°C                                                                                                         |     | 3.2<br>2.9 |     | mA                | (7)  |
| Power supply rejec-<br>tion ratio                             | f=0Hz100Hz<br>I <sub>load</sub> =100mA                                                                                               |     | 60         |     | dB                |      |
| Foldback current                                              |                                                                                                                                      |     | 2.5        |     | Α                 |      |
| Short-circuit current                                         | 20°C <tj <225°c<="" td=""><td></td><td>300</td><td></td><td>mA</td><td></td></tj>                                                    |     | 300        |     | mA                |      |
| Output noise                                                  | 10Hz-10kHz<br>I∟=100mA, -30°C <tj<br>&lt;225°C</tj<br>                                                                               |     | tbd        |     | μV <sub>RMS</sub> |      |

#### Notes:

(1) Vin max=30V

(2) Above 225°C (T<sub>j</sub>), a minimum load current of few mA could be required.

(3) Max Power dissipation depends on packaging. CHT-LDOS in TO-3 or TO-254 packages presents a "junction-tocase" thermal resistance of maximum 5°C/W (Rth).


(4) ppm are defined as [d(Vout)/d(T)]/Vout. For 5V mode, 40ppm corresponds to 200µV/°C.

(5) Defining "x" as the nominal voltage, the line regulation is better than x/5 mV/V.

(6) This includes the packaging parasitic resistor.

(7) Defining "x" as the nominal voltage, the typical quiescent current at 2V dropout can be approximated as 2.8+x/13 mA @ -30°C and 2.5+x/13 mA at 225°C.

#### **Output Load (recommended specifications)**



Resistances in series with capacitors represent the internal ESR of these capacitors.

$$\label{eq:capacitors} \begin{split} \hline For large capacitors: \\ C_{\text{B}} = 0 \text{ to } 1000 \mu\text{F} \\ R_{\text{B}} = 0.2 \text{ to } \infty \ \Omega \\ \hline For medium capacitors: \\ C_{\text{M}} = 0 \text{ to } 6 \mu\text{F} \\ R_{\text{M}} = 0.1 \text{ to } 1 \ \Omega \end{split}$$

 $\frac{For small Capacitors:}{C_{S}=100n to 220nF} R_{S}=10m to 50m \Omega$ 

#### **Operating Conditions**

#### Start-up conditions

The start-up is operative over the whole temperature range as long as the current flowing from a positive voltage and the negative voltage is below 500mA.

Please refer to our application notes for more details:

- AN-06016: "Selecting correct CIS-SOID regulator depending on your application"
- **AN-06002:** "Voltage regulator shortcircuit protection and associated potential startup problem".

#### Power dissipation considerations

When determining the maximum power dissipated by the regulator, not only the dissipation during normal operation must be considered, but also the power dissipated during any eventual short circuit or overload.

During short circuit or overload, worst case conditions are normally found for maximum Vin and a shorting resistance in the order of few Ohms.

Entering into short-circuit or overload conditions with high input voltages Vin may lead to extreme overheating, placing the part above Absolute Maximum Rating conditions.

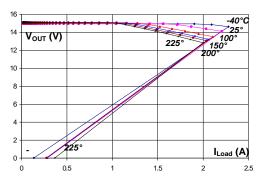
Please refer to our application note for more detail:

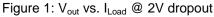
 AN-090477: "Power Dissipation Considerations During Short Circuit Conditions"

#### Shorting the regulator input

If the input terminal is shorted to ground once the output capacitance has been charged, a large current corresponding to the discharge of the output capacitor will flow from the output to the input through the drain-body diode of the internal pass transistor. This large current may cause the permanent damage of the part.

Sinking current or raising the output voltage above the input voltage can cause permanent damage to the part.


#### **Regulator floating ground**


When the ground becomes disconnected, the output voltage gets unregulated, causing possible damage to other circuits connected to Vout. If the ground terminal is reconnected while Vin is applied, permanent damage may also occur to the regulator. If a regulator needs to be reconnected with the power supply on, then connect the ground terminal first.



### **Typical Performance Characteristics (CHT-LDOS-150)**

Note: Temperatures hereafter are ambient temperatures, not junction temperatures.





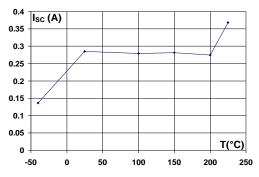



Figure 3: Typical short-circuit current vs. T°

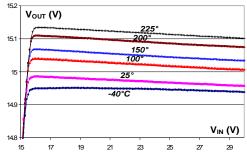
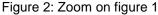




Figure 5: Vout vs. Vin over T°





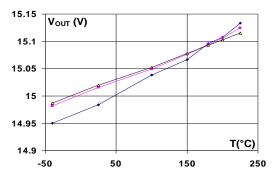
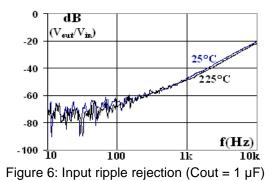




Figure 4: Vout vs. T° (2V dropout, 3 samples)



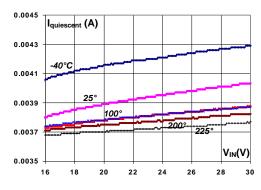



Figure 7:  $I_{Quiescent}$  vs.  $V_{in}$  over T°

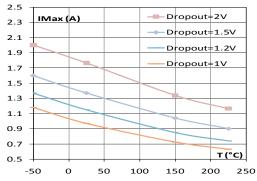
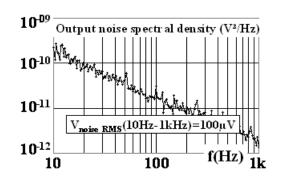
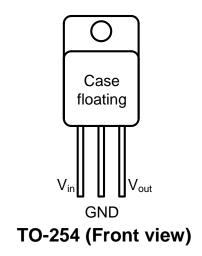
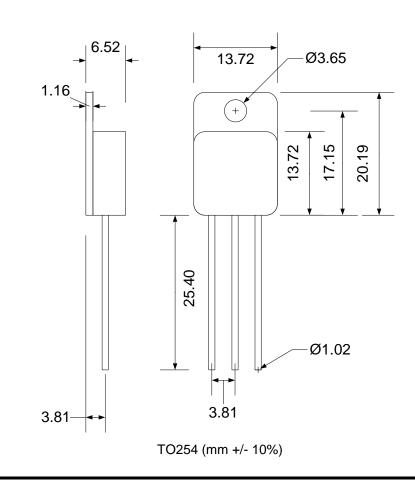



Figure 9: Typical max load current over T° vs. dropout



Figure 8: S<sub>Vout</sub>(V<sup>2</sup>/Hz) @25°C, I<sub>Load</sub>=100mA



# Packaging and Pinout



### Package Dimension



(Last Modification Date)

## **Ordering Information**

| Ordering Reference   | Package     | Output<br>Voltage | Temperature<br>Range | Marking      |
|----------------------|-------------|-------------------|----------------------|--------------|
| CHT-LDOS-025-TO254-T | Metal TO254 | 2.5V              | -55°C to +225°C      | CHT-LDOS-025 |
|                      |             |                   |                      |              |
| CHT-LDOS-033-TO254-T | Metal TO254 | 3.3V              | -55°C to +225°C      | CHT-LDOS-033 |
|                      |             |                   |                      |              |
| CHT-LDOS-050-TO254-T | Metal TO254 | 5V                | -55°C to +225°C      | CHT-LDOS-050 |
|                      |             |                   |                      |              |
| CHT-LDOS-055-TO254-T | Metal TO254 | 5.5V              | -55°C to +225°C      | CHT-LDOS-055 |
|                      |             |                   |                      |              |
| CHT-LDOS-090-TO254-T | Metal TO254 | 9V                | -55°C to +225°C      | CHT-LDOS-090 |
|                      |             | (0) (             |                      |              |
| CHT-LDOS-100-TO254-T | Metal TO254 | 10V               | -55°C to +225°C      | CHT-LDOS-100 |
| CHT-LDOS-120-TO254-T | Metal TO254 | 12V               | -55°C to +225°C      | CHT-LDOS-120 |
| CH1-ED03-120-10234-1 |             | 120               | -55 C 10 +225 C      | CH1-LD03-120 |
| CHT-LDOS-130-TO254-T | Metal TO254 | 13V               | -55°C to +225°C      | CHT-LDOS-130 |
|                      | Motal 10204 | 101               | 00 0 10 1220 0       |              |
| CHT-LDOS-150-TO254-T | Metal TO254 | 15V               | -55°C to +225°C      | CHT-LDOS-150 |



### Contact & Ordering

CISSOID S.A.

| Headquarters and contact EMEA: | CISSOID S.A. – Rue Francqui, 3 – 1435 Mont Saint Guibert - Belgium<br>T : +32 10 48 92 10 - F: +32 10 88 98 75<br>Email: <u>sales@cissoid.com</u> |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Sales<br>Representatives:      | Visit our website: http://www.cissoid.com                                                                                                         |

#### Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.