

The Leader in High Temperature Semiconductor Solutions

CHT-CG50LP DATASHEET

Version: 1.6

High-Temperature, Low-Power, Versatile Clock Generator

General Description

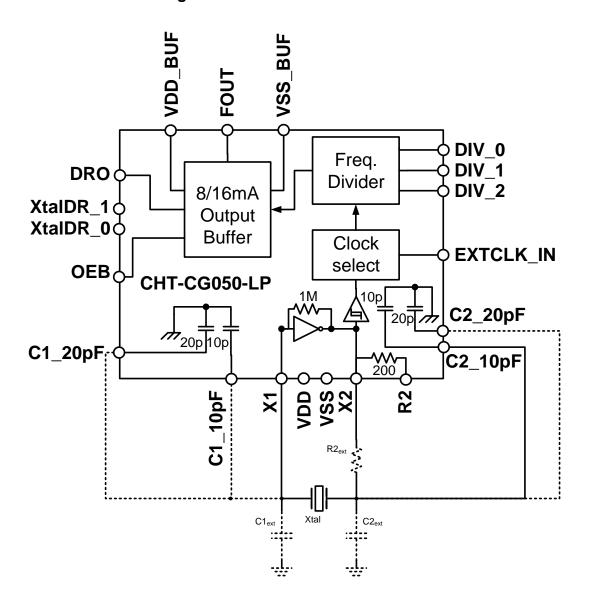
The CHT-CG50LP is a versatile, low-power high-temperature crystal clock generator with low pin count. Compared to CISSOID' industry standard CHT-CG50, the CHT-CG50LP has been optimized for lower power consumption, smaller die size while offering extra features such as built-in frequency division.

The chip features a programmable crystal oscillator driver with an enable/disable control signal, an external clock input and a frequency divider selectable from 1 to 512. Using an external crystal, it is intended to provide reliable precision performance throughout the -55 to +225°C temperature range for supply voltages between 3.3V and 5V.

The CHT-CG50LP can operate with crystals from 1MHz to 50MHz. It can also be used with 32.758kHz crystal for real time clock needs.

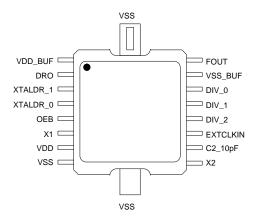
The output frequency can be selected by means of a programmable divider, providing division factors of 1, 2, 4, 8, 16, 32, 256 and 512. The programmability of the crystal driver allows working with a wide range of crystals. An output enable pin (OEB) is also included to put the output in high impedance mode. In applications requiring only a precision divider chain - where an external clock source is already present - the crystal driver may be bypassed via the input EXTCLK_IN.

Features


- Power supply:
 - 5V +/-10% (1MHZ 50MHz)
 - o 3.3V +/-10% (1MHZ 30MHz)
- Qualified from -55 to +225°C (Tj)
- Two input sources: crystal (1 to 50 MHz), external clock (DC to 50MHz)
- Operates with 32.768kHz crystals
- Programmable frequency divider: F_{in}, F_{in}/2, F_{in}/4, F_{in}/8, F_{in}/16, F_{in}/32, F_{in}/256 and F_{in}/512
- Programmable output driver:
 - High impedance
 - 8mA/16mA drive capability
- Programmable crystal drive
- Built-in capacitors (10pF and/or 20pF)
- Available in bare die and in hermetically sealed Ceramic TDFP16 package
- Validated at 225°C for 1000 hours (and still on-going)

Applications

 Clock buffer & clock generation in downhole tools, aerospace, defense and HiRel applications



Functional Block Diagram

Package and Pin Description

Pin # (TDFP16)	Pin Name	Description	
1	VDD_BUF	Output buffer power supply terminal. ¹	
2	DRO	Selection digital input pin for the output buffer strength: DRO=0 \rightarrow 16mA buffer; DRO=1 \rightarrow 8mA buffer. Features a built-in pull-down resistor (50k Ω Typ.)	
3	XTALDR_1	Selection digital input pin for the crystal drive circuitry (including the selection between internal and external clock). Refer to the text and truth table for use. Features an internal pull-down resistor (50k Ω Typ.).	
4	XTALDR_0	Selection digital input pin for the crystal drive circuitry (including the selection between internal and external clock). Refer to the text and truth table for use. Features an internal pull-up resistor ($50k\Omega$ Typ.).	
5	OEB	Output Enable digital input: When driven LOW, output is enabled, When driven HIGH, output is at high impedance. Features a built-in pull-down resistor ($50k\Omega$ Typ.)	
6	X1	Input of crystal driver. <u>Built-in 10pF capacitor (C1_10pF) hard-wired connected to this pin.</u>	
7	VDD	Circuit core power supply terminal ¹ .	
8	vss	Circuit core ground terminal ¹ .	
9	X2	Output of crystal driver	
10	C2_10pF	Optional built-in 10pF capacitor with a common terminal connected to VSS.	
11	EXTCLK_IN	Input for an external clock source. Features an internal pull-down resistor (50k Ω Typ.).	
12	DIV_2	Selection bit of the frequency division factor - digital input - MSB	
13	DIV_1	Selection bit of the frequency division factor - digital input.	
14	DIV_0	Selection bit of the frequency division factor - digital input - LSB Note: Each DIV_n input pin features a built-in pull-down resistor (50k Ω Typ.) setting the frequency division rate to Fin:1 by default when DIV_n pins are left unconnected	
15	VSS_BUF	Output buffer ground terminal ¹ .	
16	FOUT	Output signal.	
NA	R2	Optional built-in 200 ohms resistance with a common terminal connected to X2. Not available in TDFP16.	
NA	C2_20pF	Optional built-in 20pF capacitor with a common terminal connected to VSS. Not available in TDFP16.	
NA	C1_20pF	Optional built-in 20pF capacitor with a common terminal connected to VSS. Not available in TDFP16.	
NA	C1_10pF	Optional built-in 10pF capacitor with a common terminal connected to VSS. Connected to X1 pin in TDFP16.	

¹ VDD_BUF and VDD are internally connected; VSS_BUF and VSS are internally connected. Vertical large package leads and package heatsink (exposed pad) are internally connected to VSS

-

Configuration Examples & Minimum Connections

Pin Name	Minimum configura- tion: 16mA Buffer; div rate=1; crystal mode with Ron=400Ω	Ext Clock configuration	8 mA Buffer with 512 div. rate config- uration crystal mode with Ron=400Ω	
VDD_BUF	Conn	ected to positive power s	supply	
VSS_BUF	Conne	ected to negative power	supply	
VDD	Conn	ected to positive power s	supply	
VSS	Conne	ected to negative power	supply	
X1		Connected to crystal		
X2		Connected to crystal		
FOUT		Clock output		
C2_10pF	Connected to crystal			
DIV_0 DIV_1 DIV_2	Left unconnected	: Division rate = 1	Connected to power supply	
DRO	Left unconnected: Bu	Left unconnected: Buffer strength = 16mA		
XTALDR_0	Left unconnected:	Connected to ground	Left unconnected:	
XTALDR_1	Crystal mode ena- bled with min crystal driver strength ²	Left unconnected	Crystal mode ena- bled with min crystal driver strength ²	
OEB	Left unconnected: Output enabled			
EXTCLK_IN	Left unconnected	Connected to exter- nal clock	Left unconnected	
Total nbr of connected pins	8	10	12	

PUBLIC

Doc. DS-121206 V1.6 WWW.CISSOID.COM 4 of 12

² Add 1 or 2 more connections if a different crystal drive is required

Absolute Maximum Ratings

Operating Conditions

Supply Voltage V_{DD} to GND Voltage on any Pin to GND

-0.5 to 6.0V -0.5 to V_{DD} +0.3V

Supply Voltage V_{DD} to GND Junction temperature

3.3V to 5V -55°C to +225°C

ESD Rating

Human Body Model

CLASS 2 (>2KV)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Frequent or extended exposure to absolute maximum rating conditions or above may affect device reliability.

PUBLIC Doc. DS-121206 V1.6

WWW.CISSOID.COM

5 of 12

DC Electrical Characteristics

Unless otherwise stated: $V_{DD}=5V$, $T_j=25^{\circ}C$. **Bold underlined** values indicate values over the whole temperature range (-55 $^{\circ}C$ < T j < +225 $^{\circ}C$).

Parameter	Condition	Min	Тур	Max	Units
Supply voltage V _{DD}		<u>2.97</u>		<u>5.5</u>	V
	V_{DD} = 3.3V, F_{IN} = 10MHz, C_L = 0pF OEB = LOW, DRO = LOW			<u>0.82</u>	
	V_{DD} = 3.3V, F_{IN} = 16MHz, C_L = 0pF OEB = LOW, DRO = LOW			<u>1.25</u>	
	V_{DD} = 3.3V, F_{IN} = 20MHz, C_L = 0pF OEB = LOW, DRO = LOW			<u>1.51</u>	
Current consumption	V_{DD} = 3.3V, F_{IN} = 20MHz, C_L = 22pF OEB = LOW, DRO = LOW			<u>3.47</u>	
Idd (XTALDR_0=1,	$F_{IN} = 16MHz$, $C_L = 0pF$ OEB = LOW, DRO = LOW			<u>2.2</u>	mA
XTALDR_1=0)	$F_{IN} = 27MHz$, $C_L = 0pF$ OEB = LOW, DRO = LOW			<u>3.51</u>	
	$F_{IN} = 40MHz$, $C_L = 0pF$ OEB = LOW, DRO = LOW			<u>5.04</u>	
	$F_{IN} = 40MHz$, $C_L = 22pF$ OEB = LOW, DRO = LOW			<u>9.5</u>	
	F _{IN} = 27MHz, OEB = HIGH			<u>0.67</u>	
Minimum HIGH level output voltage \mathbf{V}_{OH}	Isource=16mA	<u>4.67</u>			V
Maximum LOW level output voltage V _{oL}	Isink=16mA			0.30	V
Minimum HIGH level input voltage V _{IH} (EXTCLK_IN pin)		<u>3.15</u>			V
Maximum LOW level input voltage V _{IL} (EXTCLK_IN pin)				<u>1.35</u>	V
Xtal driver On-Resistance	XTALDR_0=1, XTALDR_1=0		740		Ω
	XTALDR_0=0, XTALDR_1=1		380		Ω
	XTALDR_0=1, XTALDR_1=1		200		Ω
Internal capacitors					.
Initial accuracy			17		%
Temperature drift	$\Delta T = 225^{\circ}C - 25^{\circ}C$		0.6		%
TC1	$C(T) = C(T_0) [1+TC1.(T-T_0)+$		0.023		10 ⁻³ /K
TC2	$TC2.(T-T_0)^2$		0.013		10 ⁻⁶ /K ²

AC Electrical Characteristics

Unless otherwise stated: V_{DD}=5V, T_i=25°C. **Bold underlined** values indicate values over the whole temperature range (-55°C < T j < +225°C).

Parameter	Condition	Min	Тур	Max	Units
Frequency range	$V_{DD} = 5V$ $V_{DD} = 3.3V$	1 ³ 1 ³		<u>50</u> 30	MHz
	F_{IN} =1MHz, V_{DD} = 5V		50/50		
Duty cycle @ 50% V _{DD}	F_{IN} =27MHz, V_{DD} = 5V		51.7/48.3		%
	F_{IN} =35MHz, V_{DD} = 5V		52/48		
Output rise time ⁶ 10% to 90% V _{DD}	DRO=0, $Z_{LOAD} = 1M\Omega // 22pF$		2.3		ns
t _r	DRO=0, $Z_{LOAD} = 600\Omega // 15pF$		1.9		115
Output fall time ⁶ 10% to 90% V _{DD}	DRO=0, $Z_{LOAD} = 1M\Omega // 22pF$		2.2		no
t _f	DRO=0, $Z_{LOAD} = 600\Omega // 15pF$		1.8		ns
Oscillation established after V _{DD} goes high ⁷ t _{power-on}	V _{DD} from 0 to 5V		1.9		ms
Oscillation established after XTALDR_n goes HIGH ⁷ t _{start-up}	V _{DD} = 5V XTALDR_n from LOW to HIGH		0.4		ms
Equivalent capacitance at driver input (X1) ⁸ C _{X1}	Freq= 1MHz		0.72		pF
Equivalent capacitance at driver output $(X2)^8$ C_{X2}	Freq= 1MHz		0.71		pF
Equivalent capacitance at limiting resistor (R2) ⁸ C _{R2}	Freq= 1MHz		0.6		pF

³ CG50LP also supports 32.768kHz crystal operation; refer to Circuit Functionality section for info about crystal network

⁴ Duty cycle is measured with a unitary division factor and $Z_{LOAD} = 1050\Omega$ // 22pF.

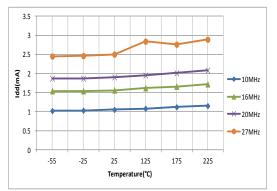
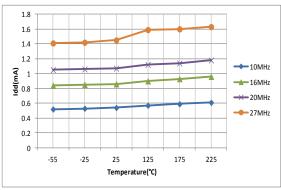
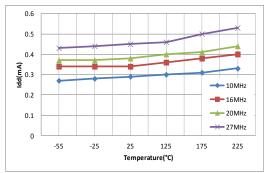
⁵ Depends on crystal characteristics and on $R2_{EXT}$ value.

⁶ Depends on load conditions and **DRO** setting.

⁷ Depends on used crystal and **XTALDR_0**, **XTALDR_1** settings.

⁸ Valid for die version

Typical Performance Characteristics

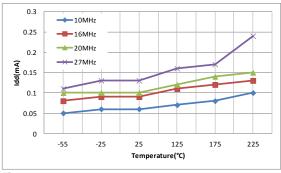

Figure 1: Current consumption ($V_{DD} = 5V$, OEB = LOW, $C_L = 0$ pF, XTALDR_0=1, XTALDR_1=0)

Figure 2: Current consumption (V_{DD} = 3.3V, OEB = LOW, C_L = 0pF, XTALDR_0=1, XTALDR_1=0)

Figure 3: Current consumption (VDD = 5V, OEB = HIGH, XTALDR_0=1, XTALDR_1=0)

Figure 4: Current consumption (VDD = 3.3V, OEB = HIGH, XTALDR_0=1, XTALDR_1=0)

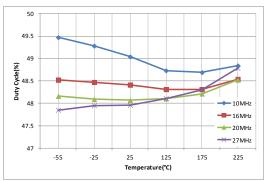


Figure 5: Duty cycle (V_{DD}=5V)

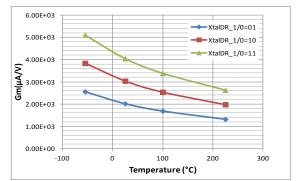


Figure 6: Crystal driver transconductance (V_{DD} =5V)

Circuit Functionality

Operating conditions

The CHT-CG-50LP is qualified for supply voltages ranging from 3.0V up to 5.5V.

The operating temperature range extends from -55°C to +225°C.

Crystal driver

The pins XTALDR_0 and XTALDR _1 allow to set-up the crystal driver strength or to select the external input clock

XTALDR_0	XTALDR _1	Internal State
0 0 abled. Ext		Crystal driver dis- abled. External clock used.
1 (standard mode)	0 (standard mode)	$\begin{array}{ll} \text{Min crystal drive} \\ (\text{Ron} \cong 740\Omega) \end{array}$
0	1	Medium crystal drive (Ron \cong 380 Ω)
1	1	Max crystal drive (Ron \cong 200Ω)

XTALDR_0 is internally pulled up ($50k\Omega$ Typ.) and XTALDR_1 internally pulled down ($50k\Omega$ Typ.).

Reducing the drive strength of the crystal driver will help reducing the current consumption of the device

Frequency divider

Eight division factors (1, 2, 4, 8, 16, 32, 256 and 512) can be selected through the digital control lines **DIV_0**, **DIV_1** and **DIV_2**.

DIV_0	DIV_1	DIV_2	Division rate
0	0	0	1
1	0	0	2
0	1	0	4
1	1	0	8
0	0	1	16
1	0	1	32
0	1	1	256
1	1	1	512

The 3 digital inputs pins are internally pulled down, enabling a frequency division rate of 1 by default when the pins are left unconnected (internally pulled down (50k Ω Typ.).

Output buffer

The output buffer has dedicated power supply terminals, allowing the system designer to properly decouple them

The output buffer features 2 fixed output strengths of 8mA and 16mA which can be selected from the digital input pin DRO. This enables the CHT-CG-50-LP to optimize the output signal integrity depending on the type of output load. The default output strength is 16mA when DRO is left unconnected (internally pulled down, $50k\Omega$ Typ.). When HIGH (connected to VDD), the output strength is 8mA.

The output buffer can be set in highimpedance by setting OEB pin to HIGH.

32 KHz operation

The figure below illustrates the recommended configuration for CG50LP operation with a 32KHz crystal

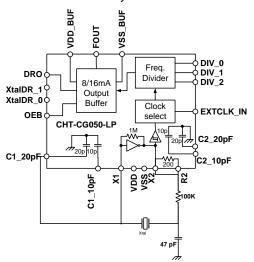


Figure 7. Configuration for 32KHz operation

Typical application

The CHT-CG-50LP offers the final user several possible configurations depending upon the characteristics of the target application.

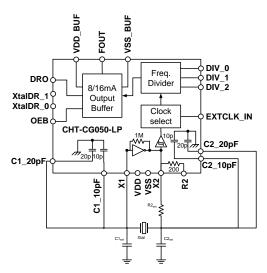


Figure 8. Full configuration.

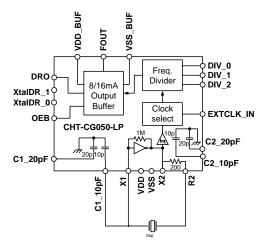
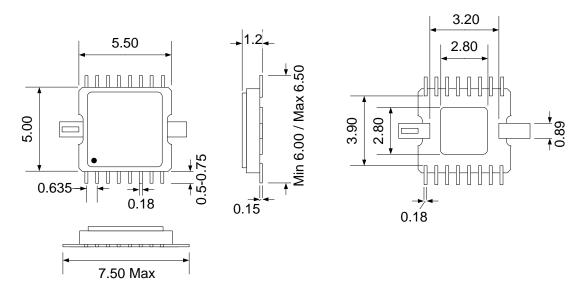


Figure 9. Minimal configuration.

Output impedance matching


The CHT-CG50LP is able to provide an output signal with very short transition times (<10ns). During this transition periods, the output signal must be seen as a signal with a frequency above 100MHz. Under this assumption, PCB traces or cables connected to the output represent inductors or even transmission lines.

Signal integrity good practices must be considered when driving PCB traces or cables with the CHT-CG50LP output. PCB traces or cables can induce ringing and even reflections back to the output buffer. Too much reflection onto the output buffer may cause overshoots and undershoots on the CHT-CG50LP terminals exceeding the Absolute Maximum Ratings of the device leading to permanent damage.

To reduce or avoid ringing or signal reflection, impedance matching considerations must be taken into account. To do so, adapt the CHT-CG50LP output drives strength (DRO) to the final application load conditions, place capacitive loads as close as possible of the CHT-CG50LP output, keep traces and cables as short as possible and, when driving long traces or cables cannot be avoided, place a resistor in series with the output as close to it as possible in order to match the trace or cable impedance. This resistor, generally in the range from 10Ω to 100Ω must be experimentally determined given the final application load conditions.

Package Dimensions (TDFP16)

Physical dimensions (mm +/- 10%)

Ordering Information

Product Name	Ordering Reference	Package Marking	
CHT-CG50LP	CHT-PUL9560A-TDFP16-T	TDFP16	CHT-PUL9560A

Contact

Headquarters and contact EMEA:	CISSOID S.A. – Rue Francqui, 3 – 1435 Mont Saint Guibert - Belgium T : +32 10 48 92 10 - F: +32 10 88 98 75 Email: sales@cissoid.com
Sales Representatives:	Visit our website: http://www.cissoid.com

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.

PUBLIC