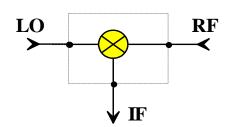


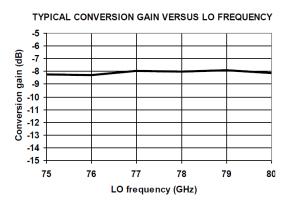
W-band Mixer

GaAs Monolithic Microwave IC


Description

The CHM2179b98F is a monolithic single channel mixer, which integrates high quality Schottky diodes that produces low conversion loss and very low 1/f noise.

The circuit is designed for sensors system at W-band, such as automotive long range radar and industrial sensors.


The circuit is manufactured with a Schottky diode MMIC process, 1µm gate length, via holes through the substrate, air bridges and stepper lithography.

It is available in chip form.

Main Features

- W-band LO and RF frequency range
- Low conversion loss
- IF from DC to >100MHz
- High LO/RF isolation
- High LO/AM Noise rejection
- Very low IF noise
- Low LO input power
- Automatic assembled oriented
- BCB layer protection
- Small chip size 1.53 x 1.17 x 0.10mm

Main Electrical Characteristics

Tamb.= +25°C

14115 120 0					
Symbol	Parameter	Min	Тур	Max	Unit
F_lo, F_rf	LO, RF frequency	76		79	GHz
F_if	IF frequency range	[DC;100]			MHz
Lc	Conversion loss		8		dB
I_lo/rf	LO/RF isolation		22		dB
N_if	IF noise @ 100kHz		-162		dBm/Hz

Ref.: DSCHM2179b98F3246 - 03 Sep 13

Specifications subject to change without notice

1/8

Electrical Characteristics

Tamb.= +25°C.

Symbol	Parameter	Min	Тур	Max	Unit
F_lo, F_rf	LO, RF frequency	76 79		GHz	
F_if	IF frequency range	[DC;100]		MHz	
Lc	Conversion loss		8		dB
P_lo	LO input power	power 3 5 8		dBm	
P_RF_1dB	RF input power at 1 dB	-3	0		dBm
VSWR_lo	LO port VSWR (50Ω) (1)		2:1	2.5:1	
VSWR_rf	RF port VSWR (50Ω) (1)		2:1	2.5:1	
IMP_if	IF load impedance (2)		200		Ω
L_lo/rf	LO/RF isolation		23		dB
R_lo_am	LO AM noise rejection (SSB)		27		dB
	Noise figure for IF=1KHz (3)		35		dB
NF	Noise figure for IF=10KHz (3)		29		dB
INF	Noise figure for IF=100KHz (3)		21.5		dB
	Noise figure for IF=200KHz (3)		18		dB
+V	Positive supply voltage (4)		4.5		V
+1	Positive supply current (4)		1	2.5	mA
Тор	Operating temperature range	-40		+100	°C

⁽¹⁾ An external matching network is required (see section "Recommended assembly plan")

Absolute Maximum Ratings (1)

Tamb.= +25°C

Symbol	Parameter	Values	Unit
+l	Supply current (2)	2.5	mA
P_lo	Maximum peak input power overdrive at LO port (3)	9	dBm
P_rf_cw	Maximum input power at RF port (4)	3	dBm
Tj	Junction temperature	175	°C
Тор	Operating temperature range	-40 to +100	°C
Tstg	Storage temperature range	-55 to +150	°C

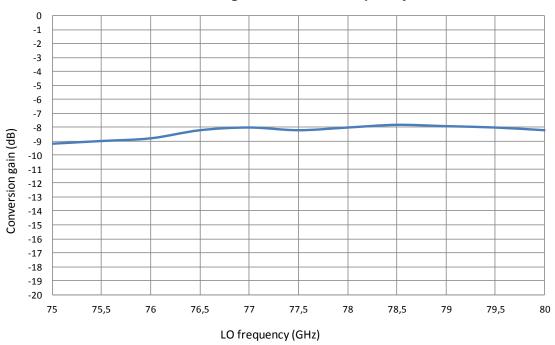
⁽¹⁾ Operation of this device above anyone of these parameters may cause permanent damage.

⁽²⁾ The IF optimum load for conversion loss is 200Ω. For minimum noise figure this load can be lower, the best results have been obtained on 50Ω .

 $^{^{(3)}}$ Measured on 200 Ω IF impedance.

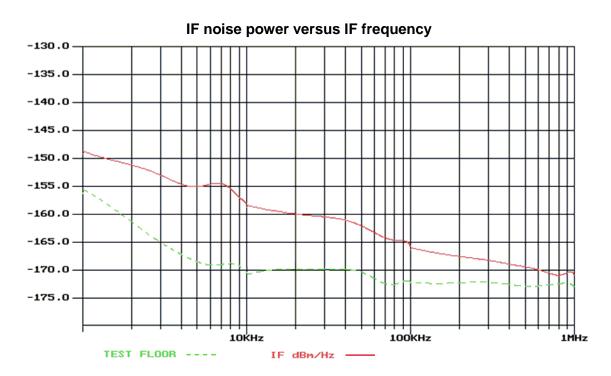
⁽⁴⁾ An external resistor controls the bias current (see section "Typical bias and IF Configuration")

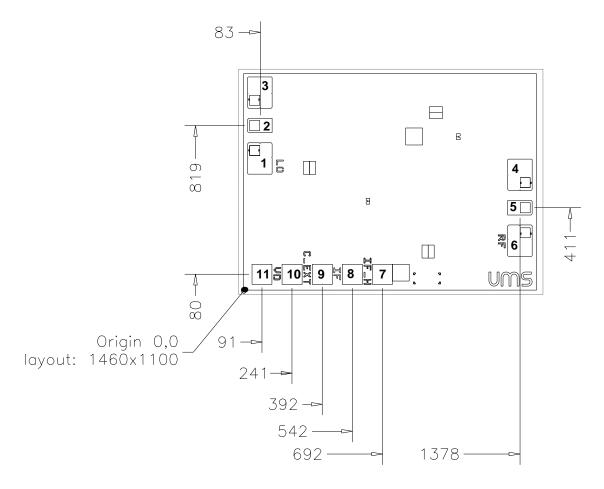
⁽²⁾ An external resistor controls the bias current (see section "Typical bias and IF Configuration").


⁽³⁾ Duration < 1s.

⁽⁴⁾ Continuous wave mode.

Typical conversion gain


Measured on 200Ω IF load


Typical IF noise power

Measured on 50Ω IF load

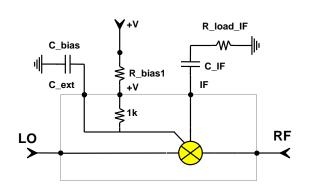
Mechanical data

Chip thickness: 100µm. Chip size: 1530x1170 ±35µm

HF Pads (2,5) = 105 X 86 (BCB opening) DC/IF Pads = 86 x 83 (BCB opening) All dimensions are in micrometers

Pin number	Pin name	Description
1,3,4,6		On chip Ground: Not connected (1)
2	LO	LO input
5	RF	RF input
7	GND	Ground (optional)
8		Not connected
9	IF	IF output
10	C_ext	Bias decoupling
11	+V	Positive supply voltage

⁽¹⁾ If required, please ask for more information.


united monolithic semiconductors

Typical Bias and IF Configuration

Several external configurations are possible for bias and IF. The objective is to give flexibility for the integration.

As this component is mainly dedicated to low IF use, there are several possibilities for interfacing with low noise IF amplifier. The optimum IF load for conversion loss is 200Ω , however depending on the IF amplifier noise characteristic this load can be modified in order to optimise the noise figure. A series capacitor, between IF output and the load is recommended.

Due to high sensitivity to electrical discharges an integrated resistance is used and two ports are available for biasing. One is for the connection of a decoupling capacitor (C_ext) and the other one is for the supply voltage connection through an external series resistance (+V port). However, in order to keep the compatibility with the CHM2179b98F, only the "C_ext" port can be used.

C_bias R_bias2 R_bias2 C_IF IF RF

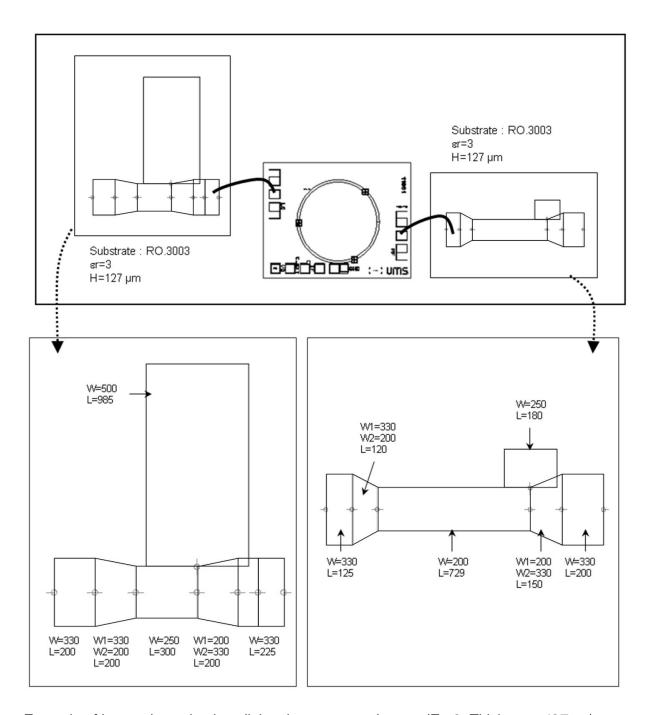
Recommended external bias and IF configuration

Other possible configuration (compatible with the previous version)

The recommended values for external components are:

C_bias	R_bias x C >> 1/F_IF
R_bias1	$2.9k\Omega$ for 1mA current consumption (V = 4.5V, typical LO power)
R_bias2	$R_{bias2} = R_{bias1} + 1k\Omega$
R_load_IF	From 50 to 200Ω

Notes:

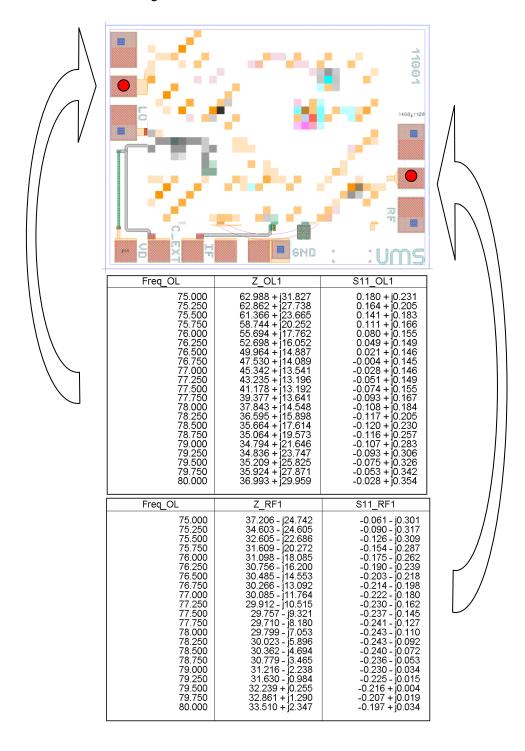

 $^{(1)}$ R_bias = R_bias1 + 1k Ω when "+V" port is used, otherwise R_bias = R_bias2. R_bias can be adjusted if necessary; this allows optimizing the performances when some parameters are different from recommended ones (Supply voltage, LO power ...). However maximum ratings for the current have to be taken into account.

⁽²⁾ A series capacitor at IF outputs is recommended for DC decoupling.

Recommended assembly plan

In order to use acceptable wire bonding length, compatible with automatic pick and place and wire bonding equipment, an external matching network is proposed on low dielectric constant substrate for 76-77GHz band.

Example of integration using low dielectric constant substrate (Er=3, Thickness=127µm)


All dimensions are in micrometers


Ref.: DSCHM2179b98F3246 - 03 Sep 13

RF and LO ports impedance

For use at frequency band outside 76 to 77GHz range, and for custom assembly configuration, the typical RF and LO ports impedance versus frequency are given below in the bond pad centre plan. This can be used to design external matching network for compensation of wire bonding.

Recommended ESD management

Refer to the application note AN0020 available at http://www.ums-gaas.com for ESD sensitivity and handling recommendations for the UMS products.

Recommended environmental management

UMS products are compliant with the regulation in particular with the directives RoHS N°2011/65 and REACh N°1907/2006. More environmental data are available in the application note AN0019 also available at http://www.ums-gaas.com.

Ordering Information

Chip form: CHM2179b98F/00

Information furnished is believed to be accurate and reliable. However **United Monolithic Semiconductors S.A.S.** assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of **United Monolithic Semiconductors S.A.S.**. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. **United Monolithic Semiconductors S.A.S.** products are not authorized for use as critical components in life support devices or systems without express written approval from **United Monolithic Semiconductors S.A.S.**.

8/8

Ref.: DSCHM2179b98F3246 - 03 Sep 13

