

CH8438

Video Multiplexer with Source Control

Features

- Triple 8-bit DAC and buffers support 1280 x 1024 display resolution
- High-speed multiplexing between digital and analog RGB signals
- 24-bit digital RGB interface supports up to 16.7 million colors
- Supports CCIR601 4:2:2 YCrCb input formats
- Built in YUV-to-RGB color space conversion
- Analog auxiliary inputs with programmable input attenuation
- 2's complement input capability on Red and Blue channels, supporting 4:4:4 YUV format with analog YUV outputs
- Programmable brightness, contrast, and hue attributes for the digital input signals
- Programmable switching delay
- Two-wire serial programming
- Enhanced replacement of STV8438
- CMOS technology in 44-pin PQFP
- 5V supply

Description

Chrontel's CH8438 combines a 24-bit digital video interface, YUV to RGB converter, three 8-bit DACs, a high-speed analog multiplexer, an analog input attenuator, and three video buffers in one integrated circuit.

The CH8438's high-speed analog multiplexer allows simultaneous display of video (digital RGB) with graphics (analog RGB), making CH8438 ideal for video games, editing, PC video, and for applications requiring picture-in-picture capability.

CH8438 provides a 24-bit digital pixel bus interface, which supports RGB, 4:4:4 YUV and 4:2:2 YCrCb input formats. With the 4:2:2 YCrCb input format, a built-in color space converter translates YUV video information to RGB before muxing with the analog graphics input, while the 4:4:4 YUV format accepts 2's complement Red and Blue data, and provides analog YUV outputs.

CH8438 has seven 4-bit control registers which are programmable with the serial interface pins. The programmable functions include digital input formats; video attributes of contrast, hue, and brightness; analog input attenuation; and switching delay.

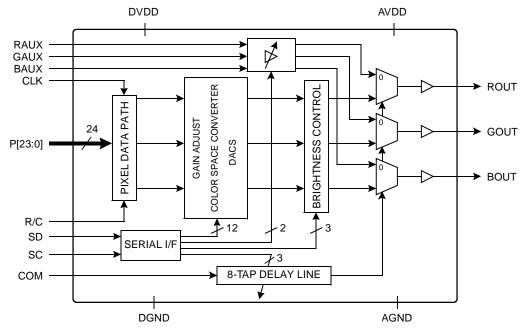


Figure 1: CH8438 Block Diagram

Table 1 • Pin Description

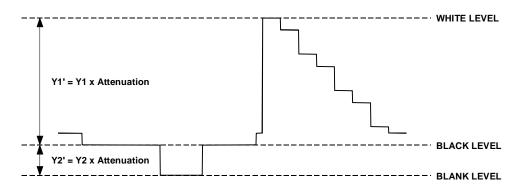
Pin	Туре	Symbol	Description
1 – 12, 29 – 36, 41 – 44	In	P11 - P0, P23 – P16, P15 – P12	Pixel Data Input. Digital video interface supports the following input formats: RGB, 4:4:4 YCrCb, and four 4:2:2 YCrCb modes.
13, 15, 26	Power	AVDD	Analog 5V Supply
14, 16, 20, 23	Power	AGND	Analog Ground
17	In	SC	Serial Clock. This input clocks Serial Data for loading the control registers. Serial input has an internal pull-up.
18	Out	ROUT	Analog Output, channel R
19	In	RAUX	Auxiliary Analog Input, channel R
21	Out	GOUT	Analog Output, channel G
22	In	GAUX	Auxiliary Analog Input, channel G
24	Out	BOUT	Analog Output, channel B
25	In	BAUX	Auxiliary Analog Input, channel B
27	Power	DGND	Digital Ground
28	Power	DVDD	Digital 5V Supply
37	In	R/C (HREF)	Refer to "Digital Input Format" on page 9 and "Display Modes" on page 10 for more information. R/C input has an internal pull-up.
38	In	CLK	Clock Input. The digital inputs are sampled on the rising edge of this input.
39	In	SD	Serial Data. Refer to "Serial Port Programming" on page 11 for more information. Serial Data input has an internal pull-up.
40	40 In COM		Multiplexer Control Input. This input controls the multiplexer to pass the auxiliary analog inputs or the internal digital channel to the output buffers.COM = 0 connects auxiliary analog input to output buffer COM = 1 connects internal digital channel to output buffer

General Description (continued)


Analog Outputs

The analog RGB or YUV outputs consist of low impedance, wide-band output buffers designed to drive 75 Ω transmission lines and 75 Ω -terminated color monitors, as shown in **Figure 11** on page 20. The default and maximum voltage levels at these outputs are shown in **Table 2** below.

Table 2 • Analog Output of Digital RGB Signal


Color/Level	Default Value (V)	Max Setting (V)†
White	0.66	0.970
Blank/Black	0.00	0.164

Note: † Digital input gain and brightness control registers are set at maximum settings

4(a) Auxiliary Analog Input with blank pedestal

4(b) Analog Output

Digital Input Format

CH8438 supports six different digital input formats (modes) summarized in **Table 3** below. The six modes include 24-bit True-Color RGB format (RGB output), 4:4:4 YCrCb format (YUV output) and four 4:2:2 YCrCb formats (with color space conversion to provide RGB output).

MODE	FORMAT	Register R6 (DIF[3:0])	R/C	Number of Pipeline Clock Cycles \dagger
0	RGB	0000	1	0
1	4:4:4	0000 0001	0 X	0
2	4:2:2	0010	HREF	5
3	4:2:2	0011	HREF	5
4	4:2:2	0100	HREF	5
5	4:2:2	0101	HREF	5

Note: † See Figure 7 on page 18 for an example of the on-chip DAC inputs transition after five pipeline clock cycles

The function of pin R/C changes in modes 2 - 5, becoming the input pin for the signal HREF. In modes 2 - 5, HREF and P[23:0] are clocked by the rising edge of CLK. When HREF (pin R/C) is set high, the rising edge of CLK clocks in the first 16 bits [Y0 and U0(Cb)] of the YUV 4:2:2 data. The output is blanked when HREF = 0 is clocked in. For more detailed information, please refer to **Figure 9** on page 19.

In mode 1, the U-data path is identical to the V-data path, therefore, P[23:16] can be used as the "V" inputs and P[7:0] can be used as the "U" inputs, as shown in **Table 4** below.

MODE				P[23	B:16]							P[15	:8]							P[7	':0]			
	P23	P22	P21	P20	P19	P18	P17	P16	P15	P14	P13	P12	P11	P10	Р9	P8	P7	P6	P5	P4	P 3	P2	P1	P0
0	B7	B6	B5	B4	B3	B2	B1	B0	G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0
1	U7	U6	U5	U4	U3	U2	U1	U0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	V7	V6	V5	V4	V3	V2	V1	V0
2	Y7	Y6	Y5	Y4	Y3				Y2	Y1	Y0	C7	C6	C5			C4	C3	C2	C1	C0			
3	C7	C6	C5	C4	C3				C2	C1	C0	Y7	Y6	Y5			Y4	Y3	Y2	Y1	Y0			
4	C4	C3	C2	C1	C0			Y7	Y1	Y0	C7	C6	C5				Y6	Y5	Y4	Y3	Y2			
5									Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	C7	C6	C5	C4	C3	C2	C1	C0

Table 4 • Pixel Data Organization

Serial Port Programming

The CH8438 control registers can be downloaded through the two-wire serial port. This is a write only port with the transfer protocol shown in **Figure 10** on page 19. Each data packet consists of a start, a 3-bit address followed by a "0," 4 bits of data, and a stop.

The transfer sequence is initiated when a high-to-low transition of serial data ("SD") occurs while serial clock ("SC") is high. Similarly, the transfer sequence is terminated when a low-to-high transition of SD occurs while SC is high. The transitions of the address and data bits can only occur when SC is in a low state.

SC and SD can be connected to a microcontroller or a video controller's programmable I/O pins. For more information, refer to Application Note 18 (AN-18) "Programming the CH8438".

Control Registers

CH8438 contains seven 4-bit control registers which provide access to basic video attribute control functions. These registers are accessible via the address bits, A[2:0]. The following sections describe the functions and the controls available through these registers.

Register	Default Value	Address			Description
R0	0H	0	0	0	Multiplexer Delay control register
R1	0H	0	0	1	Digital Video Brightness control register
R2	8H	0	1	0	Red or V Digital Input Gain control register
R3	8H	0	1	1	Green or Y Digital Input Gain control register
R4	8H	1	0	0	Blue or U Digital Input Gain control register
R5	0H	1	0	1	Analog Input Attenuation control register
R6	0H	1	1	0	Digital Input Format control register
RTEST	0H	1	1	1	Reserved

Table 7 • Register Map

Table 8 • Con	trol Register	Summary	

		Address			Regist	er Data	
Register	A2	A1	A0	D3	D2	D1	D0
R0	0	0	0	0	MDS2	MDS1	MDS0
R1	0	0	1	PS	DVB2	DVB1	DVB0
R2	0	1	0	RV_G3	RV_G2	RV_G1	RV_G0
R3	0	1	1	GY_G3	GY_G2	GY_G1	GY_G0
R4	1	0	0	BU_G3	BU_G2	BU_G1	BU_G0
R5	1	0	1	0	0	AA1	AA0
R6	1	1	0	COM_INV	DIF2	DIF1	DIF0
RTEST	1	1	1	0	0	0	0

Note: All "0" values of register data D[3:0] shown in table above must be programmed to "0" for proper operation of the device.

Register Descriptions (continued)

R2: Red or V Digital Input Gain Control Register

D3	D2	D1	D0
RV_G3	RV_G2	RV_G1	RV_G0

The initial value of this register upon power-up is 1000

RV_G[3:0] = Digital Input Gain

Mode 0: These bits select the gain applied to the digital red input **Modes**

1, 2, 3, 4, 5: These bits select the gain applied to the digital V inputs

For detailed information, please refer to Table 9 on page 15.

R3: Green or Y Digital Input Gain Control Register

D3	D2	D1	D0		
GY_G3	GY_G2	GY_G1	GY_G0		

The initial value of this register upon power-up is 1000

GY_G[3:0] = Digital Input Gain

Mode 0:These bits select the gain applied to the digital green inputModes

1, 2, 3, 4, 5: These bits select the gain applied to the digital Y inputs

For detailed information, please refer to Table 9 on page 15.

R4: Blue or U Digital Input Gain Control Register

D3	D2	D1	D0		
BU_G3	BU_G2	BU_G1	BU_G0		

The initial value of this register upon power-up is 1000

BU_G[3:0] = Digital Input Gain

Mode 0: These bits select the gain applied to the digital blue input **Modes**

1, 2, 3, 4, 5: These bits select the gain applied to the digital U inputs

For detailed information, please refer to **Table 9** on page 15.

G3	G2	G1	G0	Full-Scale Output Voltage (Volts) †
0	0	0	0	0.66 – 25%
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	0.66
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	0.66 + 22%

Table 9 • Digital Input Gain Control

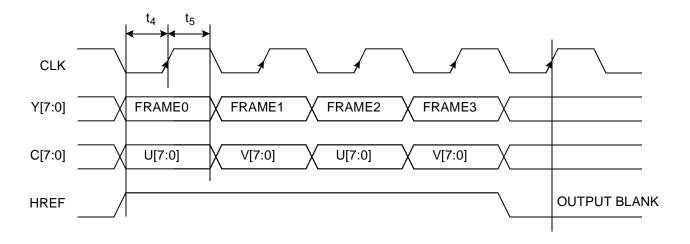
Note: \dagger Assumes 75 Ω -terminated color monitor

Electrical Specifications (continued)

Table 14 • Analog Outputs (Operating Conditions: $T_A = 0^{\circ}C - 70^{\circ}C$, $V_{DD} = 5V \pm 5\%$)

Symbol	Description	Test Condition @ TA = 25°C	Min	Тур	Max	Units
PSRR	Power supply rejection ratio				0.5	% / % Vdd

Table 15 • AC Characteristics


Symbol	Description	Min	Тур	Max	Units
t ₁	CLK to COM relative timing			5	ns
t ₂	CLK to DAC output delay	6.5		17	ns
t ₃	CLK to Analog Mux Switch Control delay ¹	5.5		18.5	ns
t ₄	CLK to pixel data setup requirement	3			ns
t ₅	CLK to pixel data hold requirement	2.5			ns
t ₆	SD transition to SC falling edge	5			ns
t ₇	SD data setup time	5			ns
t ₈	SD hold time from SC falling edge	5			ns
t ₉	SD transition from SC rising edge	5			ns
T _{sc}	SC serial clock period	50			ns
IDD	V _{DD} supply current		135	180	mA
I _{DD_PS}	Power Saver V _{DD} supply current		2 ²		mA

Note: 1 These limits are for multiplexer delay control register R0[2:0] = 000. For other R0 settings, the limits are obtained by adding the difference in nominal multiplexer delay to the limits for R0[2:0] = 000.

Note: 2 This value is untested

Test
Conditions:Unless otherwise specified, the testing conditions are the same as in Table 11, "Recommended Operating
Conditions," on page 16. TTL input values are 0 – 3V, with input rise / fall times < 3 ns, measured between the VIL
and VIH. Timing reference points at 50% for non-TTL inputs and outputs. TTL reference points at 1.5V for inputs and
outputs. Analog output load < 10 pF.</th>

Timing Diagrams (continued)

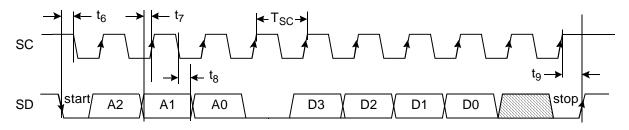


Figure 10: Serial Port Transfer Protocol

ORDERING INFORMATION							
Part number	Package type	Number of pins	Voltage supply				
CH8438-QA	PQFP 10 x 10 mm	44	5V				
CH8438-QB	PQFP 14 x 14 mm	44	5V				

Note: For new designs, use the 10 x 10 mm package part. The 14 x 14 mm package will be phased out.

Chrontel

2210 O'Toole Avenue San Jose, CA 95131-1326 Tel: (408) 383-9328 Fax: (408) 383-9338 http://www.chrontel.com E-mail: sales@chrontel.com

©1997 Chrontel, Inc. All Rights Reserved.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no liability for errors contained in this document. Printed in the U.S.A.