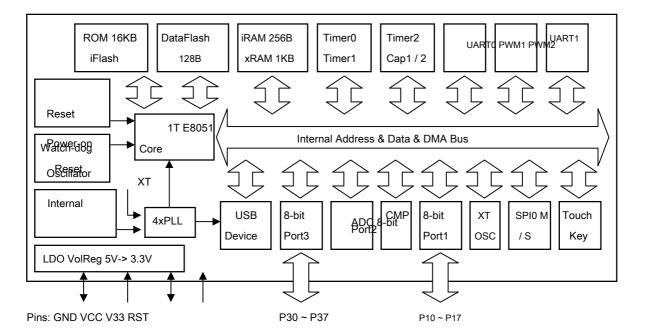
8 Enhanced USB single-chip CH552, CH551

Manual

Version: 1

http://wch.cn

1 Overview


CH552 chip is a microcontroller core E8051 compatible MCS51 enhanced instruction set that 79% of single-byte instructions are single cycle instructions, instruction average velocity MCS51 8 to 15 times faster than the standard.

CH552 system supports up to 32MHz frequency, built 16K bytes of program memory ROM and 256 bytes of internal iRAM 1K and the inner sheet xRAM, xRAM supports direct memory access DMA.

CH552 built ADC analog to digital converter, a capacitance detection touch key, group 3 and the PWM signal acquisition and timers, dual asynchronous serial interface. SPI, USB full-speed device controller and transceiver function modules.

CH551 to CH552 is a simplified version, only program memory ROM 10K, the sheet xRAM only 512 bytes, only asynchronous serial UART0 provided, only SOP16 package, and removes the ADC analog to digital conversion module and a USB type-C module in addition addition to the above difference with the same CH552, CH552 direct reference manuals and information.

The following is an internal block diagram CH552 for reference purposes only.

2. Features

I Core: Enhanced E8051 core MCS51 compatible instruction set which 79% of single-byte instructions are single cycle instructions, instruction average

Faster than standard MCS51 8 ~ 15 times, specific data XRAM fast copy instruction, dual DPTR pointer.

I ROM: 16KB capacity reprogrammable non-volatile memory ROM, may all be used to program memory space; or may be divided

And a program storage area for the 2KB 14KB boot code BootLoader / ISP program area.

I DataFlash: 128 bytes of data can be repeatedly rewritable nonvolatile memory, support rewriting data in bytes.

I RAM: 256 bytes of internal iRAM, can be used for temporary storage and fast data stack; 1KB inner sheet xRAM, may be used in large amounts

According to scratch and DMA Direct Memory Access.

I. USB: Embedded. USB transceiver and the . USB controller support the . USB-Device device mode, supports. USB type-C master-slave detection, and . USB type-C master-slave detection, and . USB type-C master-slave detection, . USB t

Support USB 2.0 full-speed 12Mbps or low-speed 1.5Mbps. Supports up to 64-byte packets, the FIFO built, support DMA.

I Timer: 3 sets a timer, T0 / T1 / T2 standard MCS51 timer.

I Capture: Timer T2 extended to support 2-channel signal capture.

I PWM: PWM outputs 2, PWM1 / PWM2 2 8-bit PWM output.

I UART: 2 groups of asynchronous serial ports, support higher baud rate, UART0 standard MCS51 serial port.

I SPI: SPI controller built-in the FIFO, up to half the clock frequency of the system frequency Fsys with serial data input and output

Simplex multiplexing, supports Master / Slave mode from the master.

I ADC: 4 channel 8-bit A / D analog-digital converter, a voltage comparator support.

I Touch-Key: 6-channel capacitive sensing, supports up to 15 touch keys, support independent timer interrupt.

I GPIO: GPIO pins support up to 17 (inclusive XI / XO and RST signal pins and USB).

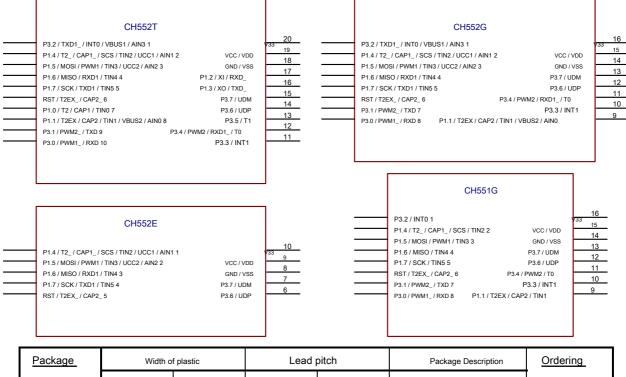
I Interrupt: Support group interrupt signal source 14, including a standard group 6 MCS51 compatible interrupt (INT0, T0, INT1, T1,

UART0, T2), and an extended set of 8 interrupt (SPI0, TKEY, USB, ADC, UART1, PWMX, GPIO, WDOG), wherein the GPIO interrupts may be selected from seven pins.

I Watch-Dog: 8-bit watchdog timer preset WDOG, support the timer interrupt.

I Reset: reset signal supports four source, and internal power-on reset, reset and watchdog timeout support software reset, optional outer pin

Reset input unit.


I Clock: Built 24MHz clock source, may be supported by multiplexing GPIO pin external crystal.

I Power: low-dropout voltage regulator 5V to 3.3V, 3.3V, or even support 2.8V 5V supply voltage. Support low power

Loss of sleep, support for USB, UART0, UART1, SPI0 as well as some external GPIO wake.

I Chip built a unique ID number.

3, the package

<u>Package</u>	Width of plastic		Lead pitch		Package Description	<u>Ordering</u>
TSSOP-20	<u>4.40mm</u> 173mil		0.65mm	25mil thin o	ompact 20-pin SMD CH552T	
SOP-16	3.9mm	150mil	1.27mm	50mil	Standard 16-pin SMD	CH552G
MSOP-10	3.0mm 118mil		0.50mm	19.7mil Minia	ture 10-pin SMD CH552E	
SOP-16	3.9mm	<u>150mil</u>	<u>1.27mm</u>	50mil	Standard 16-pin SMD	CH551G

lead <u>Pin number</u>			Pin	Other features Name	
TSSOP20 SC	P16 MSOP	10	<u>name</u>	(Left function priority)	Other Functional Description
19	15	9	<u>vcc</u> v	DD	Power input, requires an external power supply decoupling capacitor 0.1uF.
					USB internal regulator power output and the internal USB power input, when the power
20	16	10	V33		supply is connected the VCC input voltage is less than 3.6V external power supply,
					external power supply decoupling capacitor 0.1uF when the supply voltage is greater than 3
18	14	8	<u>GND</u> V	ss	Common ground.
6	6	5	RST RS	T / T2EX_ / CAP2_ Suffix unde	rlined pin mapping of the same name is not underlined pins.
7	-	-	<u>P1.0</u> T2	/ CAP1 / TIN0	RST pin pull-down resistor; other GPIO default pull-up resistor. RST
	•		Ì		reset input.
8	9	-	P1.1 12	EX / CAP2 / TIN1 / VBUS2 / AIN0	T2: timer / counter external count input / output 2 clocks. T2EX: timer / counter
17	-	-	<u>P1.2</u> XI	/ RXD_	reload 2 / capture input. CAP1, CAP2: timer / counter 1 input 2 capture. TIN0 ~
16	-	-	<u>P1.3</u> X0	/ TXD_	TIN5: 0 # ~ 5 # capacitance detection touch key input channel. AIN0 ~ AIN3:
					#~3# channel ADC analog signal input. UCC1, UCC2: USB type-C two-way
2	2	1	P1.4 T2	_ / CAP1_ / SCS <u>/ TIN2 / UCC1 / AIN1</u>	channel configuration. VBUS1, VBUS2: USB type-C bus voltage sense input.
					XI, XO: external crystal oscillator input terminal, an inverting output terminal.
3	3	2	P1.5 M	DSI / PWM1 / TIN3 / UCC2 / AIN2	RXD, TXD: UART0 serial data input and serial data output. SCS, MOSI, MISO,
4	4	3	P1.6 MI	SO / RXD1 / TIN4	SCK: SPI0 interfaces, SCS is the chip select input, MOSI output host / slave
5	5	4	P1.7 SC	K / TXD1 / TIN5	input, MISO host input / output slave, SCK is a serial clock. PWM1, PWM2:
10	8	-	<u>P3.0</u> PV	/M1_ / RXD	PWM1 output, PWM2 output. RXD1, TXD1: UART1 serial data input and serial
9	7	-	P3.1 PV	/M2_ / TXD	data output. INT0, INT1: External Interrupt 0, external interrupt 1 input. T0, T1
			. ——		timer 0, timer 1 external input. UDM, UDP: D-, D + signal terminal of the USB
1	1	-	P3.2 T	XD1_ / INT0 / VBUS1 / AIN3	device. Note: P3.6 and P3.7 V33 as the internal I / O power supply, the high
11	10	-	P3.3 IN	IT1	level only to the input and output voltage V33 does not support 5V
12	11	-		/M2 / RXD1_ / T0_	
13	-	_	<u>P3.5</u> T	-	
14	12	6	P3.6 U		
15	13	7	P3.7 U		

3

5, the SFR

In this manual <u>The register is described</u> The following abbreviations may be used later when:

abbreviation	description
RO	It represents the type of access: Read-only
WO	Represents Access Type: Write-only, read values are invalid
RW	It represents Access Type: readable and
writable H	Its end represents a hexadecimal number B
	Its end represents a binary number

About 5.1 SFR and address distribution

CH552 using the SFR control, management device, and set the operating mode.

80h-FFh occupied SFR address range of the internal data memory space, accessible only via a direct address instruction mode. Wherein the address register x0h or x8h is bit addressable, so as to avoid access to a specific bit value of bits sometimes modify other; other non-multiple of 8 address registers can only be accessed by byte.

Data can be written only SFR portion in safe mode, while in non-secure mode is read-only status, for example: GLOBAL_CFG, CLOCK_CFG, WAKE_CTRL.

SFR portion having one or more aliases, for example: SPI0_CK_SE / SPI0_S_PRE. Part of the address corresponding to a plurality of individual SFR, for example: SAFE_MOD / CHIP_ID, ROM_CTRL / ROM_STATUS. CH552 comprising standard SFR registers 8051, while increasing the other control registers. Specific SFR in the table below.

table 5<u>.1 Special Function</u> can Register Table

<u>SFR</u>	0,8	1,9	2, A	3, B	4, C	5, D	6, E	7, F
0xF8 S	PI0_STAT	SPI0_DATA	SPI0_CTRL	SPI0_CK_SE SP SPI0_SETUP	0_S_PRE		RESET_KEEP WD	OG_COUNT
<u>0xF0</u>	В							
<u>0xE8</u>	IE_EX	IP_EX	UEP4_1_MOD UI	EP2_3_MOD UEP0	DMA_L UEP0_DM	A_H UEP1_DMA_L	UEP1_DMA_H	
<u>0xE0</u>	ACC	USB_INT_EN	USB_CTRL	USB_DEV_AD UI	EP2_DMA_L UEP2_	DMA_H UEP3_DM	A_L UEP3_DMA_H	
0xD8 U	SB_INT_FG USB_II	NT_ST USB_MIS_S	T USB_RX_LEN		UEP0_CTRL	UEP0_T_LEN	UEP4_CTRL	UEP4_T_LEN
<u>0xD0</u>	PSW	UDEV_CTRL	UEP1_CTRL	UEP1_T_LEN	UEP2_CTRL	UEP2_T_LEN	UEP3_CTRL	UEP3_T_LEN
<u>0xC8</u>	T2CON	T2MOD	RCAP2L	RCAP2L	TL2	TH2	T2CAP1L	T2CAP1H
<u>0xC0</u>	SCON1	SBUF1	SBAUD1	TKEY_CTRL	TKEY_DATL	TKEY_DATH	PIN_FUNC	GPIO_IE
<u>0xB8</u>	IP	CLOCK_CFG						
<u>0xB0</u>	P3	GLOBAL_CFG						
<u>0xA8</u>	IE	WAKE_CTRL						
0xA0	P2	SAFE_MOD CHIP_ID	XBUS_AUX					
<u>0x98</u>	SCON	SBUF	ADC_CFG	PWM_DATA2	PWM_DATA1	PWM_CTRL	PWM_CK_SE	ADC_DATA
<u>0x90</u>	P1	USB_C_CTRL	P1_MOD_OC	P1_DIR_PU			P3_MOD_OC	P3_DIR_PU
<u>0x88</u>	TCON	TMOD	TL0	TL1	TH0	TH1	ROM_DATA_L RO	M_DATA_H
0x80 A[C_CTRL	SP	DPL	DPH	ROM_ADDR_L RO	M_ADDR_H	ROM_CTRL ROM_STATUS	PCON

 $Remarks: \underbrace{(1), red\ text}\ Representative\ bit\ addressable; (2), the\ following\ is\ a\ description\ corresponding\ to\ the\ color\ box$

ADC register address register associated SPI0					
relevant register Touch-Key USB registers					
relevant register associated timer / counter					
register 2 associated port registers associated					
PWM1 and PWM2 associated registers					
relevant register UART1 associated registers					
Flash-ROM					

5.2 SFR reset values and classification

Table 5.2 SFR and reset values described

Functional Classifica	ion name	address	description	Reset value			
System Settings	В	F0h	B register	0000 0000b			
Related register	ACC	E0h_accu	nulator	0000 0000b			

	PSW	D0h Prod	am Status Register	0000 0000b
	-	9	Global configuration register (the bootstrap state CH552)	1010 0000b
			Global configuration register (the application state CH552)	1000 0000b
	GLOBAL_CFG	B1h	Global configuration register (CH551 guided program status)	1110 0000b
			Global configuration register (the application state CH551)	1100 0000b
			CH552 chip identification code ID (read only)	0101 0010b
	CHIP_ID	A1h	CH551 chip identification code ID (read only)	0101 0001b
	SAFE_MOD	A1h Secu	rity Mode Control Register (write only)	0000 0000b
	DPH	83h Data	Address Pointer High 8	0000 0000b
	DPL	82h Data	Address Pointer Low 8	0000 0000b
	DPTR	<u>82h</u>	DPL and DPH composed of 16 SFR	0000h
	SP	81h Stad	k Pointer	0000 0111b
	WDOG_COUNT	<u>FFh</u> Wat	hdog Count Register	0000 0000b
Clock, sleep and	RESET_KEEP	<u>FEh</u> Rese	t the holding registers (the power-on reset state)	0000 0000b
power control	CLOCK_CFG	B9h Syste	m clock configuration register	1000 0011b
associated registers	WAKE_CTRL	A9h Slee	p wakeup control register	0000 0000b
	PCON	<u>87h</u> Pow	er control register (on the lower reset state)	0001 0000b
	IP_EX	E9h Exte	ded Interrupt Priority Control Register	0000 0000b
	IE_EX	E8h_Exte	ded Interrupt Enable Register	0000 0000b
Related interrupt	GPIO_IE	C7h	GPIO interrupt enable register	0000 0000b
control register	IP	B8h Inter	upt Priority Control Register	0000 0000b
	IE	<u>A8h</u> Inter	upt enable register	0000 0000b
	ROM_DATA_H	<u>8Fh</u>	flash-ROM data register high byte	xxxx xxxxb
	ROM_DATA_L	8Eh	flash-ROM Data Register Low Byte	xxxx xxxxb
	ROM_DATA	8Eh	ROM_DATA_L and ROM_DATA_H composed of 16 SFR	xxxxh
Flash-ROM	ROM_STATUS	<u>86h</u>	flash-ROM status register (read only)	0000 0000b
associated registers	ROM_CTRL	<u>86h</u>	flash-ROM control register (write only)	0000 0000b
	ROM_ADDR_H	<u>85h</u>	flash-ROM Address Register High Byte	xxxx xxxxb
	ROM_ADDR_L	<u>84h</u>	flash-ROM Address Register Low Byte	xxxx xxxxb
	ROM_ADDR	<u>84h</u>	ROM_ADDR_L and ROM_ADDR_H composed of 16 SFR	xxxxh
	PIN_FUNC	<u>C6h</u> Pin	function Select Register	1000 0000b
	XBUS_AUX	<u>A2h</u> Auxi	ary external bus setting register	0000 0000b
	P3_DIR_PU	<u>97h</u>	P3 port direction control and the pullup enable register	<u>1111 1111b</u>
Port-related	P3_MOD_OC	<u>96h</u>	Port P3 output mode register	<u>1111 1111b</u>
registers	P1_DIR_PU	<u>93h</u>	P1 and pull-directional control port enable register	<u>1111 1111b</u>
3 2	P1_MOD_OC	<u>92h</u>	Port output mode register P1	<u>1111 1111b</u>
	P3	<u>B0h</u>	Register input and output ports P3	<u>1111 1111b</u>
	P2	<u>A0h</u>	P2 port output register	<u>1111 1111b</u>
	P1	<u>90h</u>	Input and output ports P1 register	<u>1111 1111b</u>
Timer / Counter	TH1	8Dh	Timer1 high byte count	xxxx xxxxb
Associated	TH0	8Ch	Timer0 high byte count	xxxx xxxxb
registers 0 and 1	TL1	8Bh	Timer1 counter low byte	xxxx xxxxb
-	TL0	8Ah	Low byte count Timer0	xxxx xxxxb

	TMOD	89h	Timer0 / 1 mode register	0000 0000b
	TCON	88h	Timer0 / 1 Control Register	0000 0000b
UART0	SBUF	99h	UART0 data register	xxxx xxxxb
Related register	SCON	98h	Control Register UART0	0000 0000b
-	T2CAP1H	CFh	Timer2 capture a high byte data (read-only)	xxxx xxxxb
	T2CAP1L	<u>CEh</u>	Timer2 capture a low-byte data (read only)	xxxx xxxxb
	T2CAP1	CEh	T2CAP1L and T2CAP1H composed of 16 SFR	xxxxh
	TH2	CDh	Timer2 counter high byte	0000 0000b
	TL2	CCh	Timer2 Counter Low	0000 0000b
Timer / Counter related	T2COUNT	CCh	TL2 and TH2 composed of 16 SFR	0000h
registers 2	RCAP2H	CBh Rele	ad count / capture data register 2 high byte	0000 0000Ь
	RCAP2L	CAh Rel	ad count / capture data register 2 low byte	0000 0000Ь
	RCAP2	CAh	RCAP2L and RCAP2H composed of 16 SFR	0000h
	T2MOD	<u>C9h</u>	Timer2 mode register	0000 0000b
	T2CON	C8h	Timer2 Control Register	0000 0000b
	PWM_CK_SE	<u>9Eh</u>	Clock Divider PWM setting register	0000 0000b
PWM1 and PWM2	PWM_CTRL	9Dh	PWM Control Register	0000 0010b
associated registers	PWM_DATA1	9Ch	PWM1 data register	xxxx xxxxb
	PWM_DATA2	<u>9Bh</u>	PWM2 data register	xxxx xxxxb
	SPI0_SETUP	FCh	SPI0 setting register	0000 0000Ь
	SPI0_S_PRE	FBh	SPI0 slave mode preset data register	0010 0000b
SPI0 relevant	SPI0_CK_SE	<u>FBh</u>	SPI0 clock divider setting register	0010 0000b
register	SPI0_CTRL	FAh	Control Register SPI0	0000 0010b
	SPI0_DATA	<u>F9h</u>	SPI0 data transceiver register	xxxx xxxxb
	SPI0_STAT	F8h	Status Register SPI0	0000 1000b
	SBAUD1	C2h	UART1 baud rate setting register	xxxx xxxxb
UART1	SBUF1	<u>C1h</u>	UART1 data register	xxxx xxxxb
associated registers	SCON1	<u>C0h</u>	Control Register UART1	0100 0000b
	ADC_DATA	<u>9Fh</u>	ADC data register	xxxx xxxxb
ADC relevant	ADC_CFG	<u>9Ah</u>	ADC configuration register	0000 0000b
register	ADC_CTRL	<u>80h</u>	ADC Control Register	x000 0000b
	TKEY_DATH	<u>C5h</u>	Touch-Key high byte data (read-only)	0000 0000b
Touch-Key	TKEY_DATL	C4h	Touch-Key low-byte data (read only)	xxxx xxxxb
associated registers	TKEY_DAT	C4h	TKEY_DATL and TKEY_DATH composed of 16 SFR	00xxh
	TKEY_CTRL	C3h	Touch-Key Control Register	x000 0000b
	UEP1_DMA_H	<u>EFh</u> End	point 1 buffer start address high byte	0000 00xxb
	UEP1_DMA_L	EEh End	point 1 buffer start address low byte	xxxx xxxxb
	UEP1_DMA	<u>EEh</u>	UEP1_DMA_L and UEP1_DMA_H composed of 16 SFR	0xxxh
USB related	UEP0_DMA_H	EDh End	point 0 and 4 buffer start address high byte	0000 00xxb
registers	UEP0_DMA_L	ECh End	point 0 and 4 buffer start address low byte	xxxx xxxxb
	UEP0_DMA	<u>ECh</u>	UEP0_DMA_L and UEP0_DMA_H composed of 16 SFR	0xxxh
	UEP2_3_MOD	EBh End	point mode control register 3	0000 0000b
	UEP4_1_MOD	EAh End	point Control Register Mode 4	0000 0000b

UEP3_DN	<u>1A_H E7h_</u> End	point buffer start address high byte 3	0000 00xxb
UEP3_DM	MA_L <u>E6h</u> End	point buffer start address low byte 3	xxxx xxxxb
UEP3_DN	1A <u>E6h</u>	UEP3_DMA_L and UEP3_DMA_H composed of 16 SFR	0xxxh
UEP2_DN	1 <u>A_H</u> <u>E5h_</u> End	point buffer start address high byte	0000 00xxb
UEP2_DM	MA_L <u>E4h</u> End	point 2 buffer start address low byte	xxxx xxxxb
UEP2_DN	1A <u>E4h</u>	UEP2_DMA_L and UEP2_DMA_H composed of 16 SFR	0xxxh
USB_DE\	<u>/_AD</u> <u>E3h</u>	USB Device Address Register	0000 0000b
USB_CTF	RL <u>E2h</u>	USB control register	0000 0110b
USB_INT	<u>EN</u> <u>E1h</u>	USB interrupt enable register	0000 0000b
UEP4_T_	LEN <u>DFh</u> Endp	oint transmit length register 4	0xxx xxxxb
UEP4_C7	RL <u>DEh</u> End	point Control register 4	0000 0000b
UEP0_T_	LEN <u>DDh</u> End	oint transmit length register 0	0xxx xxxxb
UEP0_C1	RL <u>DCh</u> End	oint Control Register 0	0000 0000b
USB_RX	LEN DBh	Receiving USB length register (read only)	0xxx xxxxb
USB_MIS	S_STDAh_	Miscellaneous USB status register (read only)	xx10 1000b
USB_INT	_ST D9h	USB Interrupt Status Register (read only)	00xx xxxxb
USB_INT	FG D8h	USB interrupt flag register	0010 0000b
UEP3_T_	LEN <u>D7h</u> Endp	oint transmit length register 3	0xxx xxxxb
UEP3_C1	RL <u>D6h</u> Endp	oint Control Register 3	0000 0000b
UEP2_T_	LEN <u>D5h</u> Endp	oint transmit length register 2	0000 0000b
UEP2_C1	RL <u>D4h</u> Endp	oint Control Register 2	0000 0000b
UEP1_T	LEN <u>D3h</u> Endp	oint 1 transmits length register	0xxx xxxxb
UEP1_C1	RL <u>D2h</u> End _l	oint Control register 1	0000 0000b
UDEV_C	TRL <u>D1h</u>	USB device port control register	10xx 0000b
USB_C_0	<u>91h</u>	USB type-C channel control registers configured	0000 0000b

5.3 General registers 8051

Table 5.3.1 general register list 8051

name	address	description	Reset value
В	<u>F0h</u> B r	egister	00h
A, ACC	E0h_accu	mulator	00h
PSW	<u>D0h</u> Prog	ram Status Register	00h
		Global configuration register (the bootstrap state CH552)	A0h
	Date	Global configuration register (the application state CH552)	80h
GLOBAL_CFG	GLOBAL_CFG B1h	Global configuration register (CH551 guided program status)	E0h
		Global configuration register (the application state CH551)	C0h
OLUB ID			52h
CHIP_ID	A1h CH5	52 chip identification code ID (read only) CH551 chip identification code ID (read only)	51h
SAFE_MOD	A1h Secu	rity Mode Control Register (write only)	00h
PCON	87h Pow	er control register (on the lower reset state)	10h
DPH	83h Data	Address Pointer High 8	00h
DPL	82h Data	Address Pointer Low 8	00h
DPTR	82h DPL	and DPH composed of 16 SFR	0000h

SP	81h Stadk Pointer	07h
OI .	81h Stack Pointer	0/11

B register (B):

Bit Nam	Bit Name access		description	Reset value
[7: 0]	В	RW arith	metic registers, mainly for multiplication and division, can be bit addressing	00h

A accumulator (A, ACC):

Bit Nan	e <u>access</u>		description	Reset value
[7: 0]	A / ACC	RW accu	mulator arithmetic operation, bit addressing can be	00h

program shape State Storage Device (PSW):

	anapa <u>Otate Ot</u>			
Bit N	lame Access	<u>, </u>	description	Reset value
7	CY	RW	Carry flag: when performing arithmetic and logic operation instruction for recording the most significant bit carry or borrow bit; when 8-bit adder, the Most Significant bit, the bit is cleared otherwise; 8-bit subtraction when If the borrow bit, the bit is cleared otherwise; logic instructions may cause the position or cleared	0
6	AC	RW auxi	liary carry flag: addition or subtraction recording, lower 4 bits to the high 4 there is a carry or borrow Position, AC set, otherwise cleared	0
<u>5</u>	F0	RW purp	ose flag bit addressing can be 0: Users can define their own, may be set or cleared by software	0
<u>4</u>	RS1	RW upp	er register bank select bits	0
<u>3</u>	RS0	RW low	er register bank select bits	0
2	OV	RW over	flow flag: when addition or subtraction, the calculation result exceeds 8-bit binary numbers, the set OV 1, the overflow flag, otherwise cleared	0
1_	F1	GM flag	1 bit addressing can be RW: Users can define their own, may be set or cleared by software	0
0	Р	RO Pari	ty Flag: recording the instruction is executed in the accumulator A of a parity, an odd P Set, an even number of clearing the P	0

State of the processor status register is stored in the PSW, PSW bit addressing support. Status word includes a carry flag, an auxiliary carry flag BCD code processing, the parity flag, overflow flag, and RS0 and RS1 for the selected register bank. Region where the register bank can be accessed directly or indirectly.

Table 5.3.2 RS1 and RS0 RS1 register bank selection table

	RS0	Working Register Group
0	0	Group 0 (00h-07h)
0	1	Group 1 (08h-0Fh)
1	0	Group 2 (10h-17h)
1	1	Group 3 (18h-1Fh)

table 5. 1.3 impact mark Mark Bit operating (X Flag represents versus Operating Results turn off)

	table 5. 1.3 Impact mark Mark Bit Operating (X Flag represents versus Operating Results turn off)								
operating	CY	OV	AC	operating	CY	OV	AC		
ADD	Х	Х	Х	SETB C	1				
ADDC	Х	Х	Х	CLR C	0				
SUBB	Х	Х	Х	CPL C	Х				
MUL	0	Х		MOV C, bit	Х				
DIV	0	Х		ANL C, bit	Х				
DA A	Х			ANL C, / bit	Х				

RRC A	Х		ORL C, bit	Х	
RLC A	Х		ORL C, / bit	Х	
CJNE	Х				

$\underline{\text{Address data}} \ \mathsf{Finger} \underline{\text{Needle (DPTR)}} :$

Place	name access		description	Reset value
[7: 0]	DPL	Low By	te Data Pointer RW	00h
[7: 0]	DPH	High By	te Data Pointer RW	00h

DPL and DPH composed of 16-bit data pointer DPTR, for accessing xRAM data memory or program memory, 16-bit data corresponding to the actual DPTR pointer on the two physical DPTR1 DPTR0 and by the DPS XBUS_AUX dynamically selected.

Stack Pointer (SP):

Place	name access	_	description	Reset value
<u>[7: 0]</u>	SP	RW Stac	k Pointer, mainly for calls and interrupt calls and data in and out of the stack	07h

Stack specific function: to protect endpoints and protect the scene, managed according to the principle of first in, last out. When SP stack pointer is automatically incremented by 1, or data stored breakpoint information; SP pointers to data taken when the stack unit, SP pointer is decremented. SP is reset at the initial value after 07h, stack stores corresponding default start 08h.

5.4 unique register

Global Configuration send Register (GLOBAL _ CFG), Can only be written in Safe Mode:

Place	name	access	description	Reset value
[7: 6]	Retention	RO to	CH552, a fixed value 10	10b
[7: 6]	Retention	RO to	CH551, a fixed value 11	11b
5	bBOOT_LOAD	RO	Boot loader status bit for distinguishing ISP bootstrap status or an application status: set the power is on, software reset cleared. For chip ISP boot program, the bit is reset to a software had never been described, usually ISP boot program after power run state; 0 indicates the bit is reset through software has usually application state	1
4	bSW_RESET	RW soft	vare reset control bit: 1 cause a software reset is set, the hardware automatically cleared	0
3	bCODE_WE	RW	Flash-ROM and write permit bits DataFlash: the write protect bit is 0; as a Flash-ROM and rewritable Data	0
2	bDATA_WE	RW	DataFlash region Flash-ROM write enable bit: This bit is 0, the write protection; DataFlash region is a rewritable	0
1	bLDO3V3_OFF	RW	USB power LDO regulator disable control bits: Bit 0 allows the LDO, may be generated by USB 5V supply voltage for the 3.3V and the internal clock oscillator; To disable an LDO, V33 pin must be input 3.3V power supply	0
0	bWDOG_EN	RW wat	chdog reset enable bit: This bit is used only for the watchdog timer 0; this bit Watchdog reset is generated when a timer overflow to allow	0

Chip identification ID_Do not code (CHIP_I D_):

Place	name access		description	Reset value
[7: 0]	CHIP_ID	RO to 0	CH552, is a fixed value 52h, for identifying a chip	52h

I	[7: 0]	CHIP ID	RO to CH551, is a fixed value 51h, for identifying a chip	51h
	[7:0]	CHIP_ID	RO to \mathtt{C} H551, is a fixed value 51h, for identifying a chip	5111

Safe Mode control Register system (S A FE MOD): Bit

	name access		description	Reset value
[7: 0]	SAFE_MOD	WO sat	e mode for entering or terminate	00h

Data can be written only part of SFR in safe mode, but in non-secure mode is always read-only. Step into safe mode: (1), write to this register 55h; (2), followed by an AAh this register;

(3), after about 13-23 cycles the system frequency in a safe mode, the period can be rewritten within one or more security classes SFR SFR or normal;

(4), beyond the above period after the security mode automatically terminated; (5), or any value register write again the safe mode can be terminated early.

6, the memory structure

6.1 memory space

CH552 address space is divided into program memory space, the internal data memory space, the external data memory space.

Figure 6.1 the memory structure of FIG.

	Upper 128 bytes internal RAM (indirect		SFR (Direct	
80H	indfieldressings from R1)	address	sing)	
7FH	Lower 128 bytes internal RAM (direct or			
00H			Address Space	
			Reserved area	FFFFH C100H
			Data Flash	C0FFH
			DATA_FLASH_ADDR	С000Н
			Reserved area Program	BFFFH 4000H
			Configuration information	3FFFH
Extern	nal Data Address Space FFFFH		ROM_CFG_ADDR	3FF8H
			Boot Loader Code Flash	3FF7H
	Reserved area @xdata		BOOT_LOAD_ADDR	3800H
400H				37FFH
3FFH				
	1KB on-chip expanded xRAM @xdata (indirect addressing by MOVX)		Application Code Flash	
000H				0000H

64KB altogether program memory space, shown in Figure 6.1, wherein a 16KB ROM, including Code Flash Configuration Information area and configuration information region for storing instruction codes.

Code Flash application comprises program code and boot code region of the high address lower address region, these two regions may also be combined to hold a single application code.

For the application code area CH551, Code Flash only 10KB. ROM is iFlash ™ Process for the finished blank after the official ROM package, may be about 200 times programmed 5V supply. Data Flash address range to C0FFH .The to C000h (only even address is valid, there is actually a byte of every other storage unit), only support a single byte (8 bits) read and write operations, the data remain unchanged after the chip is powered down. Data Flash support about 1 million Write.

Configuration Information configuration information comprises four sets of 16-bit data to 3FFFH 3FF8H address, the read-only three units, to provide a chip ID.

Located 3FF8H address configuration data set as desired by the programmer, with reference to Table 6.2.

Table 6.2 flash-ROM configuration described

Bit address	Bit Name	Explanation	suggested valu
15	Code_Protect flash-F	ROM code and data protection mode: 0- inhibit programming read out, program secrecy; 1- permissible reading	0/1
14	No_Boot_Load	BootLoader boot code enabling startup mode: 0 from an application start address 0000h; 1- boot program from the boot address 3800h	1
13	En_Long_Reset the addition	nal delay can be reset during power-on reset: 0- standard short reset; 1- wide reset, the reset time additional 44mS	0
12	En RST RESET RST pin	is enabled as a manual reset input pin: 0- disabled; 1 - enables RST	0
[11:10]	Retention	(As required by the programmer automatically set to 00)	00
9	Must_1	(As required by the programmer automatically set to 1)	1
8	Must_0	(As required by the programmer automatically set to 0)	0
[7: 0]	All_1	(Automatically set by the programmer needed to FFh)	FFh

6.3 Data storage space

Internal data memory space 256 bytes shown in Figure 6.1, and have been used in SFR iRAM, wherein iRAM for temporary data stack and fast, can be subdivided as working registers R0-R7, BDATA variable bits, bytes variable data, idata and so on.

64KB altogether external data memory, shown in Figure 6.1, the expansion part for the 1KB xRAM sheet, the remaining area is reserved. For CH551, only 512 bytes xRAM expansion chip.

6.4 flash-ROM register

Table 6.4 Register list operations flash-ROM

name	address	description	Reset value
ROM_DATA_H	8Fh	flash-ROM data register high byte	xxh
ROM_DATA_L	8Eh	flash-ROM Data Register Low Byte	xxh
ROM_DATA	8Eh	ROM_DATA_L and ROM_DATA_H composed of 16 SFR	xxxxh
ROM_STATUS	86h	flash-ROM status register (read only)	00h
ROM_CTRL	86h	flash-ROM control register (write only)	00h
ROM_ADDR_H	85h	flash-ROM Address Register High Byte	xxh
ROM_ADDR_L	84h	flash-ROM Address Register Low Byte	xxh
ROM_ADDR	84h	ROM_ADDR_L and ROM_ADDR_H composed of 16 SFR	xxxxh

Place	name	access	description	Reset value
[7: 0]	ROM_ADDR_H	RW	flash-ROM address high byte	xxh
[7: 0]	ROM_ADDR_L	RW	flash-ROM address low byte, supports only even address for Data Flash, the actual offset must be left address 00H-7FH becomes an even address 00H / 02H / 04H ~ FEH and then placed	xxh

12

flash-RO M Data register (ROM _ DATA):

Place	name	access	description	Reset value	
[7: 0]	ROM_DATA_H	RW	flash-ROM data to be written high byte	xxh	
[7, 0]	DOM DATA I	DIA	flash-ROM low byte of data to be written,	you de	
[7: 0]	ROM_DATA_L RW	RW	For DataFlash, data byte is to be written or read out data bytes	xxh	

$\underline{\mathsf{flash}\text{-RO}}\;\mathsf{M}\;\underline{\mathsf{Control}\;\mathsf{Register}\;(\mathsf{ROM}\;\underline{\;\;}\mathsf{CTRL})}\;:$

Place	name	access	description	Reset value
[7: 0]	ROM_CTRL	WO	flash-ROM control register	00h

flash-RO M Status Register (ROM STATUS): Bit

masi-rvo in otatus register (rvom _oraroo). Dit					
	name	access	description	Reset value	
7	Retention	RO res	erved.	0	
6	bROM_ADDR_OK	RO	flash-ROM write address is valid status bit: This bit indicates an invalid parameter 0; 1 indicates the effective address	0	
[5: 2]	Retention	RO res	erved.	<u>0000b</u>	
1	bROM_CMD_ERR	RO	flash-ROM Operation Command Error Status Bit: This bit is a 0 indicates a valid command; 1 indicates the command is unknown	0	
0	Retention	RO res	erved.	0	

6.5 flash-ROM Procedure

1, flash-ROM write code region, double-byte data is written to the target address: (1), if the flash-ROM need to write the code, you must select the 5V supply voltage; (2), the security mode is enabled,

SAFE_MOD = 55h; SAFE_MOD = 0AAh;

(3), the configuration register to set the global write enable GLOBAL_CFG opening (bCODE_WE bDATA_WE or the corresponding code or data); (4), provided the ROM_ADDR address registers, write 16-bit target address (the least significant bit is always 0); (5), data register settings ROM_DATA, 16-bit write data to be written, step (4), (5) the sequence may be reversed; (6), provided for the operation control register ROM_CTRL 09Ah, a write operation, during the operation of automatically pauses; (7), the program resumes after the operation is completed, then check the status register ROM_STATUS can view the operating status; if

A plurality of write data, the loop (4), (5), (6), (7) a step; (8), re-enter the safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (9), set the global configuration register GLOBAL_CFG open write-protected (bCODE_WE = 0, bDATA_WE = 0).

2, the write data area Data Flash, single byte data is written to the target address: (1), the security mode is enabled, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (2), set the global configuration register GLOBAL_CFG Open Write Enable (bDATA_WE corresponding to data); (3), provided the ROM_ADDR address registers, write 16-bit target address, address 00H-7FH actual offset must be changed to a left

(4), the data register settings ROM_DATA_L, write 8-bit data to be written, step (3), (4) sequence can be reversed; (5), provided for the operation control register ROM_CTRL 09Ah, a write operation, during the operation of the program automatically suspended operation; (6), the program resumes after the operation is completed, then check the status register ROM_STATUS can view the operating status; if

A plurality of write data, the loop (3), (4), (5), (6) a step; (7), re-enter the safe mode, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (8), set the global configuration register GLOBAL_CFG open write-protected (bCODE_WE = 0, bDATA_WE = 0).

- 3, the read data area Data Flash, single byte data read from the target address:
- (1), provided the ROM_ADDR address registers, write 16-bit target address, address 00H-7FH actual offset must be changed to a left

Even address, followed by a final address C000H / C002H / C004 ...;

(2), provided for the operation control register ROM_CTRL 08Eh, read operation is performed automatically during operation pauses; (3), the program resumes the operation is completed, the status register ROM_STATUS case the query can view this bROM_CMD_ERR

Secondary operating state; if the command is valid, then the 8-bit data stored in the read data register ROM_DATA_L; and (4), if a plurality of data to be read, the loop (1), (2), (3) step.

4, reads flash-ROM:

MOVC instruction directly, or through a pointer points to the memory space, or code data read destination address.

6.6 On-board programming and ISP download

When the configuration information Code_Protect = 1, the data in the flash-ROM chip CH552 code and Data Flash may be by an external programmer by a synchronous serial interface to read; = 0 when the configuration information Code_Protect, flash-ROM code and data in the data Flash is protected and can not read, but can be erased and re-power after erasing code protection is canceled.

When CH552 chip is preset BootLoader boot program, CH552 can support multiple USB ISP to download an asynchronous serial interface, or loading an application; however, in no case where the boot program, CH552 can be written by a programmer external dedicated boot program or an application. In order to support on-board programming, it must be temporarily 5V supply voltage, to be reserved and the circuit 4 is connected between the pin CH552 programmer, is the minimum necessary connection pin 3: P1.4, P1.6, P1.7.

Pin	GPIO	Pin Description
RST	RST reset in	the programmed state control pin, allowing access to high programmed state SCS
	Chip select	input pin (required), the default high, active low SCK in the programmed state P1.4
	Clock Input	Pins P1.7 programmed state (necessary) the MISO
	Data output	pins (if necessary) in a programmed state P1.6

Table 6.6.1 and the connection pins between the programmer

Note: Whether or on-board programming through the serial port or USB download, must be temporarily used 5V supply voltage.

6.7 chip unique ID number

Each MCU has a unique ID number at the factory, that is, the chip identification number. The ID data of 5 bytes, is stored in the address information arranged 3FFAH to 3FFFH Configuration Information area. Wherein 3FFBH address holding unit, and 8-bit data 3FFCH 3FFEH two 16-bit addresses and data 40 combined 3FFAH address bit chip ID data.

Program Space Address	ID Data Description
3FFAh, 3FFBh	Last word ID data, 40 is the highest order byte ID number, a reserved byte
3FFCh, 3FFDh	ID data first word, followed by the least significant byte ID number, the second lowest byte
3FFEh, 3FFFh	ID data sub-word, followed by high byte, high-byte ID number

The ID data can be acquired by reading Code Flash manner. ID numbers can be downloaded with the program means for encrypting the target, the general application, just before the use of 32-bit ID number, i.e., 8-bit data can be ignored 3FFAH address.

7, power management, sleep and reset

External power input 7.1

CH552-chip low dropout voltage regulator 5V to 3.3V, 3.3V, or even support external 2.8V 5V supply voltage input

The two supply voltage input Mode into the following table.

External power supply voltage	VCC pin voltage: 3V ~ 5V external voltage	V33 pin voltage: 3.3V internal voltage
Comprising less than	External 3.3V voltage input to the voltage regulator, must be	External input 3.3V as the internal power supply, must be
3.6V 3.3V or 3V	connected to no less than 0.1uF decoupling capacitance	connected to the decoupling capacitance not less than 0.1uF
Is greater than 5V 3.6V comprising	Input 5V voltage to a voltage regulator, must be connected to no less than 0.1uF decoupling capacitance	The internal voltage regulator 3.3V and 3.3V output internal working power input must be connected to no less than 0.1uF decoupling capacitance

After the power supply or system reset, CH552 default is running. Under the premise to meet the requirements of performance, due to lower system frequency can reduce power consumption during operation. When CH552 completely without running, can be provided in the PD PCON enter the sleep state, the sleep state can be selected by an external wake USB, UART0, UART1, SPI0 and some GPIO.

7.2 Power and Sleep Control Register

Table 7.2.1 Power and Sleep Control Register List

name	address	description	Reset value
WDOG_COUNT	FFh wate	chdog count register	00h
RESET_KEEP	FEh reset	the holding registers	00h
WAKE_CTRL	A9h sleep	wakeup control register	00h
PCON	Power co	ontrol register 87h	10h

$\underline{\text{Watchdog meter}} \ \text{number} \underline{\text{Register (the WDOG}} \ \underline{\text{COUNT)}} :$

Place	name	access	description	Reset value
[7: 0]	WDOG_COUNT	RW wat	chdog current count, overflow expiration 0FFh steering 00h, overflow from Automatically sets the interrupt flag bWDOG_IF_TO 1	00h

Reset Hold send Register (RESET_ K EEP):

	Place	name	access	description	Reset value
[7	7 : 0]	RESET_KEEP	RW rese	t the holding register values can be artificially modified, in addition to power-on reset may be Than it is cleared, any other reset does not affect the value	00h

$\underline{\textbf{Sleeping}} \; \textbf{Call} \; \underline{\textbf{Wake up control register (WA K_E_CTRL_)}, \; \textbf{Can be written only in safe mode:} \\$

Place	name	access	description	Reset value
<u>7</u>	bWAK_BY_USB	RW	N Enable USB Wake event, this bit disables wake 0	
6	bWAK_RXD1_LO	RW	UART1 receiving wake-up enable input low, the wake-up prohibition bit is 0. The bUART1_PIN_X = 0/1 to select or RXD1_ pin RXD1	0
<u>5</u>	bWAK_P1_5_LO	RW	P1.5 low wakeup enable, 0 to disable wake	0
<u>4</u>	bWAK_P1_4_LO	RW	P1.4 low wakeup enable, 0 to disable wake	0
3	bWAK_P1_3_LO	RW	P1.3 low wakeup enable, 0 to disable wake	0
2	bWAK_RST_HI	RW	RST high wakeup enable, 0 to disable wake	0
<u>1</u>	bWAK_P3_2E_3L	RW	P3.2 and P3.3 low edge transition enable wake, wake-up is prohibited 0	0
<u>0</u>	bWAK_RXD0_LO	RW	UART0 receiving wake-up enable input low, 0 to disable wake.	0

The select pin RXD0 or RXD0_bUART0_PIN_X = 0/1	
The select pin RXD0 or RXD0_ bUART0_PIN_X = 0/1	

power supply control System register (PCON):

Place	name	access	description	Reset value
7	SMOD	When R	W is generated when UART0 baud rate timer 1, a mode selection UART0, 2,3 baud rate: 0 slow mode; 1- Quick mode	0
<u>6</u>	Retention	RO res	erved.	0
<u>5</u>	bRST_FLAG1	R0 chi	p last reset flag high	0
<u>4</u>	bRST_FLAG0	R0 chi	p low last reset flag	1
<u>3</u>	GF1	RW purp	oose flag 1: Users can define their own, can be set or cleared by software	0
2	GF0	RW com	mon flag 0: Users can define their own, can be set or cleared by software	0
1_	PD	RW slee	p mode is enabled, set after sleep, the hardware is automatically cleared after wake	0
<u>o</u>	Retention	RO res	erved.	0

Table 7.2.2 chip reset flag described in a recent

bRST_FLAG1 bRST_FLAG0		Reset flag description
0 0		Software reset, Source: bSW_RESET = 1 and (bBOOT_LOAD = 0 or bWDOG_EN = 1)
0	1	Power reset on power sources: VCC pin voltage is below the detection level
1	0	Watchdog reset, Source: bWDOG_EN = 1 and the watchdog timeout
1	1	External reset pin manually, Source: En_RST_RESET = 1 and the RST input high

7.3 Reset Control

CH552 has four sources of reset: power-on reset, external reset, software reset, a watchdog reset, three belonging to the warm reset.

7.3.1 Power-On Reset

POR power-on reset is generated by on-chip voltage detecting circuit. POR circuit continuously monitors the power supply voltage VCC pin, a power-on reset VPOT below the detection level, automatic delay Tpor by hardware to maintain the reset state, after the operation delay CH552.

Only power-on reset only the CH552 reload the configuration information and clear RESET_KEEP, warm reset does not affect the other.

7.3.2 External reset

Applied to a high level by the external reset pin RST is generated. When configuration information En_RST_RESET 1, and the duration of the high level on the reset procedure is triggered when the RST pin is greater than Trst. When the high level signal is applied to withdraw, automatic delay Trdl hardware to maintain the reset state, CH552 When the time delay started from the 0 address.

7.3.3 Software Reset

CH552 supports internal software reset, so that no external intervention initiative to reset the CPU state and rerun. GLOBAL_CFG set global configuration register is bSW_RESET 1, the software can be reset and the automatic delay Trdl to maintain the reset state, CH552 When the time delay started from the address 0, bSW_RESET bit is automatically cleared by hardware.

When bSW_RESET set to 1, if bBOOT_LOAD = 0 or bWDOG_EN = 1, then the reset bRST_FLAG1 / 0 indicating a software reset; if 1, if bBOOT_LOAD = 1 and bWDOG_EN = 0, then bRST_FLAG1 / 0 will not generate bSW_RESET set new the reset flag, once reset flag before but remains unchanged.

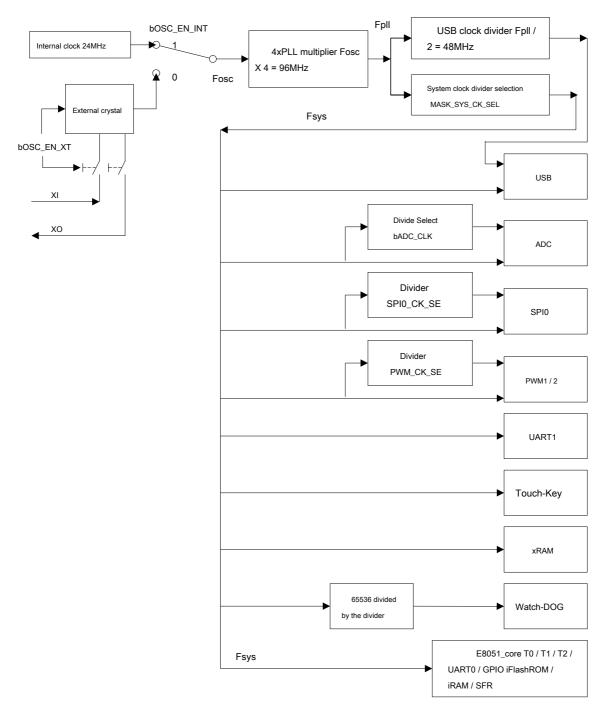
For the latter with a power-on reset chip ISP boot program, the power to run the boot program, the software program needed to reset the chip to switch the state of the application, the software reset only cause bBOOT_LOAD cleared state does not affect bRST_FLAG1 / 0 of (Since the pre-reset bBOOT_LOAD = 1), when the state is switched to the application, bRST_FLAG1 / 0 is still indicated as POR state.

7.3.4 Watchdog Reset

The watchdog reset occurs from the watchdog timer timeout. The watchdog timer is an 8-bit counter, which counts the clock frequency of the system frequency Fsys / 65536, an overflow signal when the count is full 0FFh steering 00h.

Watchdog timer overflow signal triggers the interrupt flag bWDOG_IF_TO to 1, the interrupt flag when reloaded WDOG_COUNT or enter the corresponding is automatically cleared when the interrupt service routine.

By writing an initial value to the different counting WDOG_COUNT, in order to achieve different timing periods Twdc. In frequency 6MHz, watchdog timing cycle time of writing 00h Twdc about 2.8 seconds, about 1.4 seconds writing 80h. While halved 12MHz clock speed.


If the watchdog timer overflow bWDOG_EN = 1, then the watchdog reset is generated, and the automatic delay Trdl to maintain the reset state, CH552 When the time delay started from the 0 address.

When bWDOG_EN = 1 In order to avoid a watchdog reset, reset must be timely WDOG_COUNT, avoid overflow.

8, the system clock

8.1 a block diagram of a clock

And FIG clock system configuration diagram 8.1.1

Internal or external clock as a second election after Fosc original clock, generating the high frequency clock and then after Fpll 4xPLL frequency, and finally through two clock divider respectively Fsys Fusb4x system clock and the USB module. The system clock is directly supplied to each module Fsys of CH552.

8.2 Register Description

Clock Control Register List Table 8.2.1

name	address	description	Reset value
CLOCK_CFG	B9h system	clock configuration register	83h

$\underline{\textbf{System Clock}} \ \textbf{Match} \underline{\textbf{Configuration registers (CLOCK}} \ \ \textbf{C}\underline{\textbf{FG)}}, \ \textbf{Can only be written in Safe Mode} :$

Place name <u>access</u> description <u>Reset va</u>
--

7	bOSC_EN_INT	RW	The internal clock oscillator is enabled, this bit enables the internal clock oscillator 1 and the internal clock selection; selection of the external crystal oscillator provides a clock bit is turned off and the internal clock oscillator 0	1
6	bOSC_EN_XT	RW	External crystal oscillator is enabled, the bit is 1 P1.2 / P1.3 pin as XI / XO and enable the oscillator, an external quartz crystal or ceramic resonator between the XO and XI; the bit is 0 Close external oscillator	0
5	bWDOG_IF_TO	RO	Watchdog timer interrupt flag bit, which is 1 means interrupt, triggered by a timer overflow signal; the bit is 0 for no interruptions. When the bit count register WDOG_COUNT watchdog reloaded into the respective automatically cleared or the interrupt service routine	0
4	bROM_CLK_FAST	RW	flash-ROM reference clock frequency selection: 0-normal (if Fosc> = 16MHz); 1- accelerate (if Fosc <16MHz)	0
3	bRST	R0	RST bit input pin state	0
[2: 0] MASK_SYS_CK_SEL		RW sele	ct the system clock frequency, the reference to Table 8.2.2	<u>011b</u>

Table 8.2.2 system frequency selection table

MASK SYS CK SEL Fsys the sy	stem frequency when the crysta	frequency Fosc Fsys 24MHz Fxt relations	hip when =
000	Fpll / 512	Fxt / 128	187.5KHz
001	Fpll / 128	Fxt / 32	750KHz
010	Fpll / 32	Fxt / 8	3MHz
011	Fpll / 16	Fxt / 4	6MHz
100	Fpll / 8	Fxt / 2	12MHz
101	Fpll / 6	Fxt / 1.5	16MHz
110	Fpll / 4	Fxt / 1	24MHz
111	Fpll / 3	Fxt / 0.75	32MHz

8.3 Configuration Clock

After power on CH552 default using the internal clock, the internal clock frequency is 24MHz. May be selected internal clock or external clock by a crystal oscillator CLOCK_CFG, if you turn off the external crystal oscillator, the XO and XI pins P1.2 and P1.3 can be used as normal I / O port. If an external crystal oscillator clock, you should jumper crystal, and XO and XI respectively to GND pin capacitance connected between the pin XO and XI; if the input clock signal directly from the outside, it should lead from XI pin input, XO pin floating.

Original clock frequency Fosc = bOSC_EN_INT 24MHz:? Fxt PLL frequency Fpll = Fosc * 4 = 96MHz USB clock frequency Fusb4x = Fpll / 2 = 48MHz system frequency reference table 8.2.2 Fsys by the frequency-dividing Fpll

The default state after reset, Fosc = 24MHz, FpII = 96MHz, Fusb4x = 48MHz, Fsys = 6MHz.

To switch to an external crystal oscillator clock as follows:

(1), into safe mode, a step SAFE_MOD = 55h; Step two SAFE_MOD = AAh;

(2), using "bit or" operation set bOSC_EN_XT CLOCK_CFG 1, the other bits are left unchanged, a crystal oscillator is enabled; (3), the number of milliseconds delay, typically 5mS ~ 10mS, waiting for a stable crystal oscillator; (4), re-enter the safe mode, a step SAFE_MOD = 55h; step two SAFE_MOD = AAh; (5), with "bits and" operation in bOSC_EN_INT CLOCK_CFG cleared, other bits remain unchanged from the external clock;

(6), the safety off mode, an arbitrary value is written to the secure mode SAFE_MOD early termination.

The step of modifying the system frequency is as follows:

- (1), into safe mode, a step SAFE_MOD = 55h; Step two SAFE_MOD = AAh; (2), to write the new value CLOCK_CFG;
- (3), the safety off mode, an arbitrary value is written to the secure mode SAFE_MOD early termination.

Remarks:

- (1), if the USB module, it must be Fusb4x 48MHz; and when full speed USB, not lower than the system frequency Fsys
 6MHz; at low speed USB, the system frequency Fsys not less than 1.5MHz.
- (2), a lower priority to the Fsys system clock frequency, thereby reducing the dynamic power system, and the operating temperature range is widened. (3), the internal clock oscillator of the power supply V33, the voltage V33 so that the low voltage variations will affect the particular internal clock frequency.

9, interrupted

CH552 chip supports 14 set of interrupt signal sources, including standard MCS51 compatible 6 set of interrupt: INT0, T0, INT1, T1, UART0, T2, and 8 groups interrupted extension: SPI0, TKEY, USB, ADC, UART1, PWMX, GPI0, WDOG, wherein the GPIO interrupts may be selected from seven I / O pins.

9.1 Register Description

Table 9.1.1 Interrupt Vector Table

Interrupt Source	Entry address inte	rupt number	description	The default priority order
INT_NO_INT0	0x0003	0	External Interrupt 0	High priority
INT_NO_TMR0	0x000B	1	Timer 0 interrupt	Trigit priority
INT_NO_INT1	0x0013	2	External interrupt 1	.
INT_NO_TMR1	0x001B	3	Timer 1 interrupt	↓
INT_NO_UART0	0x0023	4	UART0 interrupt	\downarrow
INT_NO_TMR2	0x002B	5	Timer 2 interrupt	↓
INT_NO_SPI0	0x0033	6	SPI0 interrupt	\downarrow
INT_NO_TKEY	0x003B	7	Touch Key timer interrupt	\downarrow
INT_NO_USB	0x0043	8	USB interrupt	↓
INT_NO_ADC	0x004B	9	ADC interrupt	↓
INT_NO_UART1_	0x0053	10	UART1 interrupt	↓
INT_NO_PWMX	0x005B	11	PWM1 / PWM2 interrupt	ţ
INT_NO_GPIO	0x0063	12	GPIO interrupt	↓
INT_NO_WDOG	0x006B	13 Wate	chdog Timer	Low Priority

Table 9.1.2 Interrupt related register list

name	address	description	Reset value
IP_EX	E9h	Extended Interrupt Priority Control Register	00h
IE_EX	E8h	Extended Interrupt Enable Register	00h
GPIO_IE	C7h	GPIO interrupt enable register	00h
IP	B8h	Interrupt Priority Control Register	00h
IE	A8h	Interrupt enable register	00h

Interrupt Make Register (IE): Bit name

acce	ss_		description	Reset value
7	EA	RW glo	bal interrupt enable control bit, the bit is 1 and 0 to allow interrupt E_DIS; the Bit 0 mask all interrupt requests	0
6	E_DIS	RW	Global interrupt disable control bit, the bit is a mask all interrupt requests; the EA bit is 0 and 1 allows to interrupt. It is typically used to temporarily disable interrupts during operation of the flash-ROM bit	0
<u>5</u>	ET2	RW tim	er 2 interrupt enable bit, which allows the T2 interrupt is 1; 0 shield	0
<u>4</u>	ES	0 RW as	ynchronous serial port interrupt enable bit, this bit to 1 to allow UART0 interrupt; 0 shield	0
<u>3</u>	ET1	RW tim	er 1 interrupt enable bit, this bit to 1 to allow T1 interrupt; 0 shield	0
<u>2</u>	EX1	Externa	interrupt enable bit RW 1, this bit to 1 to allow interrupt INT1; 0 shield	0
1	ET0	RW tim	er 0 interrupt enable bit, this bit to 1 to allow T0 interrupt; 0 shield	0
<u>o</u>	EX0	Externa	Interrupt 0 RW enable bit, this bit to 1 to allow INT0 interrupt; 0 shield	0

$\underline{\textbf{Spread}} \text{ in } \underline{\textbf{Enable send-off}} \text{ Deposit} \underline{\textbf{Is (IE}} \underline{\textbf{EX)}} \text{:}$

Place name access			description			
<u>7</u>	IE_WDOG	RW wat	chdog timer interrupt enable bit, this bit to 1 to allow WDOG interrupt; 0 shield	0		
6	IE_GPIO	RW	GPIO interrupt enable bit, this bit allows the interrupts enabled in GPIO_IE 1; 0 masking all interrupts GPIO_IE			
5	IE_PWMX	RW	RW PWM1 / PWM2 interrupt enable bit, this bit to 1 to allow PWM1 / 2 interrupt; 0 shield			
4 IE_UART1		RW 1 as	ynchronous serial port interrupt enable bit, this bit to 1 to allow UART1 interrupt; 0 shield	0		
<u>3</u>	IE_ADC	RW	ADC analog to digital conversion interrupt enable bit, this bit to 1 to allow ADC interrupt; 0 shield	0		
<u>2</u>	IE_USB	RW	USB interrupt enable bit, this bit to 1 to allow a USB interrupt; 0 shield	0		
<u>1</u>	IE_TKEY	RW ke	RW key touch timer interrupt enable bit, this bit allows a timer interrupt; 0 shield			
<u>0</u>	IE_SPI0	RW	SPI0 interrupt enable bit, this bit to 1 to allow interrupt SPI0; 0 shield	0		

GPIO Interrupt enable register (GPIO_I E):

Place	name	access	description	Reset value
7	bIE_IO_EDGE	RW	GPIO edge interrupt mode enable: The bit selection level 0 interrupt mode, GPIO pin bIO_INT_ACT to the active level 1 and has an interrupt request, GPIO bIO_INT_ACT invalid input level is 0 and cancels the interrupt request; The 1 bit is selected edge interrupt mode, an interrupt request and the interrupt flag bIO_INT_ACT GPIO pin valid edge, the software interrupt flag is not cleared, or reset only when level interrupt mode or into the corresponding interrupt service routine when it is automatically cleared	0
6	bIE_RXD1_LO	RW	This bit to 1 enables UART1 receive interrupt pin (active low level mode, falling edge active mode); the bit 0 is prohibited. The bUART1_PIN_X = 0/1 to select or RXD1_ pin RXD1	0
5	bIE_P1_5_LO	RW This	bit is set to 1 to enable interrupts P1.5 active low (level pattern, edge patterns Falling edge active); the bit is 0 prohibition	0
4	bIE_P1_4_LO	RW This	bit is set to 1 to enable interrupts P1.4 active low (level pattern, edge patterns Falling edge active); the bit is 0 prohibition	0

CH552 manual twenty one

3	bIE_P1_3_LO	RW This	bit is set to 1 to enable interrupts P1.3 active low (level pattern, edge patterns Falling edge active); the bit is 0 prohibition	0
2	ble_RST_HI	RW This	s bit is a 1 on the RST interrupt enable (active high level mode, edge pattern Rising edge active); the bit is 0 prohibition	0
1	bIE_P3_1_LO	RW This	bit is set to 1 to enable interrupts P3.1 active low (level pattern, edge patterns Falling edge active); the bit is 0 prohibition	0
0	bIE_RXD0_LO	RW	This bit to 1 enables an interrupt UART0 receive pin (active low level mode, falling edge active mode); the bit 0 is prohibited. The select pin RXD0 or RXD0_bUART0_PIN_X = 0/1	0

$\underline{\textbf{Interrupt}} \ \textbf{excellent} \underline{\textbf{Priority control register}} \ \textbf{Device} \underline{\textbf{(IP)}} :$

Place	name	access	description	Reset value
<u>7</u>	PH_FLAG	RO hig	h priority interrupt executing flag	0
<u>6</u>	PL_FLAG	RO is p	erforming low-priority interrupt flag	0
<u>5</u>	PT2	RW Tin	ner 2 interrupt priority control bits	0
<u>4</u>	PS	RW	UART0 interrupt priority control bits	0
<u>3</u>	PT1	RW Tin	ner 1 interrupt priority control bits	0
2	PX1	RW Ex	tternal Interrupt 1 Priority Control	0
<u>1</u>	PT0	RW Tin	ner 0 interrupt priority control bits	0
<u>0</u>	PX0	RW Exte	ernal Interrupt 0 interrupt priority control bits	0

Spread in Interrupt priority control send Register (IP_EX):

Place	name	access	description	Reset value
7	bIP_LEVEL	RO nest	ing level of the current interrupt flag bit, which is 0 for no interruption or nesting Level 2 interrupt; the bit is 1, it indicates the current nesting level 1 interrupts	0
6	bIP_GPIO	RW	GPIO interrupt priority control bits	0
<u>5</u>	bIP_PWMX	RW	PWM1 / PWM2 interrupt priority control bits	0
<u>4</u>	bIP_UART1	RW	UART1 interrupt priority control bits	0
<u>3</u>	bIP_ADC	RW	ADC interrupt priority control bits	0
2	bIP_USB	RW	USB interrupt priority control bits	0
<u>1</u>	bIP_TKEY	RW tou	ch button timer interrupt priority control bits	0
<u>0</u>	bIP_SPI0	RW	SPI0 interrupt priority control bits	0

IP_EX and IP registers for setting the interrupt priority level, if a bit is set, the corresponding interrupt source is set to a high priority; if a bit is cleared, the corresponding interrupt source is set to a low priority. For the same level interrupt sources, the system has a default priority order, the default order of priority electrode as shown in Table 9.1.1. Which PH_ELAG and PL_FLAG combination indicates the priority of the current interrupt.

Table 9.1.3 Current Interrupt priority status indication

PH_FLAG	PL_FLAG	The current interrupt priority status
0	0	There are currently no interruption
0	1	Currently performing low-priority interrupt
1	0	Currently executing high priority interrupt
1	1	Unexpected state, unknown error

CH552 manual twenty two

10, I / O ports

About 10.1 GPIO

CH552 provides up to 17 I / O pins, some pins having multiplexed functions. Wherein the input and output ports P1 and P3 are bit addressable.

Port P2 is an internal port, only with R0 or R1 when p is selected xRAM MOVX access.

If the pin is not configured to multiplex function, the default is the general purpose I / O pin state. As a general purpose digital I / O Usage, all I / O ports have true "reading - modification - writing" function, support SETB or CLR bit operation instructions and the like independently changing the direction of some of the pin or the port electrically equal.

10.2 GPIO register

This section and all bits of the registers in general form: lower case "n" represents the port number (n = 1 or 3), while the number of the lowercase "x" represents the bit number (x = 0,1,2,3, 4,5,6,7).

Table 10.2.1 GPIO register list

name	address	description	Reset value	
P1	90h	Input and output ports P1 register	FFh	
P1_MOD_OC	92h	Port output mode register P1	FFh	
P1_DIR_PU	93h	P1 and pull-directional control port enable register	FFh	
P2	A0h	P2 port output register	FFh	
P3	B0h	Register input and output ports P3	FFh	
P3_MOD_OC	96h	Port P3 output mode register	FFh	
P3_DIR_PU	97h	P3 port direction control and the pullup enable register	FFh	
PIN_FUNC	C6h	Pin Function Select Register	80h	
XBUS_AUX	A2h	Auxiliary bus setting register	00h	

Pn output port The output register (Pn): Bit

	name	access	description	Reset value
[7: 0]	Pn.0 ~ Pn.7	RW	Pn.x input and data output pin state bits, bit addressable	FFh

Pn output port_A mode register (Pn __MOD_OC): Bit

Ī		name	access	description	Reset value
ĺ	[7: 0]	Pn_MOD_OC	RW	Pn.x pin output mode setting: 0 pull output; open drain output 1-	FFh

Pn port side So that the control and pull can register (Pn_DIR_PU):

Place	name	access	description	Reset value
[7: 0]	Pn_DIR_PU	RW is	Pn.x pin direction is controlled in push-pull mode:	FFh
			0- input; 1- outputs;	
			In the open drain output mode is Pn.x pull pin resistor enable: 0- pullup disabled;	
			1 - enables pull-up resistor	

A Pn_MOD_OC [x] and Pn_DIR_PU [x] Related Pn port combination thereof, as follows.

Table 10.2.2 compositions port configuration register

Pn_MOD_OC	Pn_DIR_PU	Operating modes are described
0	0	High impedance input mode, pins does not pull
0	1	Push-pull mode with a symmetrical drive capability, output, or can absorb a large current

CH552 manual twenty three

1	0	Open drain, high impedance input support pin does not pull
4	4	Quasi-bidirectional mode (standard 8051), open-drain output, input support pin pull-up resistor, a high level when the
'	'	output from the low rotation automatically driven high for two clock cycles to speed up the conversion

P1 and P3 input ports support a pure or quasi-push-pull output and bidirectional modes. Pull-up resistor inside each pin has freely controlled, and the protection diode are connected to the VCC and GND.

FIG 10.2.1 P1.x is equivalent diagram pins P1 port, after removing the AIN may be adapted to the port P3. FIG V33 to VCC after suitable P3.6 and P3.7, P3.6 and P3.7 i.e. the pull or only to the input or the output high voltage V33.

P3.6 and P3.7 optionally standard pull-up resistor (to V33), 15KΩ pull-down resistor, in which a pin, or providing a strong pull-up resistor 1.5KΩ (to V33).

Standard pull-up resistor that is only bUSB_IO_EN = 0 GPIO mode active, controlled by bits 7 6 P3_DIR_PU; a pull-down resistor when the bUD_PD_DIS

bUC_RESET_SIE = 0 control, regardless of bUSB_IO_EN; pull-up resistor to the pull-down resistor 1.5KΩ precedence strong, in bUC_DEV_PU_EN bUC_RESET_SIE = 0 when the control, regardless of bUSB_IO_EN.

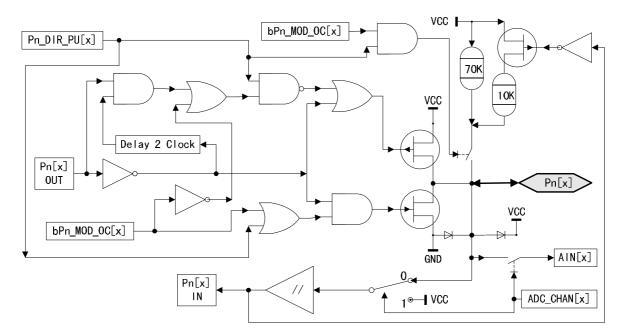


FIG 10.2.1 I / O Pin Equivalent Schematic

10.4 GPIO multiplexing and mapping

CH552 portion I / O pins having multiplexed functions after power-on default are general-purpose I / O pins, after enabling different functional modules, the respective pins are configured as respective functions of the function corresponding to the module pins.

Pin Gong Can select register (PIN_FU NC):

Place	name	access	description	Reset value
7	bUSB_IO_EN	RW	USB UDP / UDM pin enable bit, this bit is 0 P3.6 / P3.7 to the GPIO, pull-up resistor control P3_DIR_PU support, support P3_MOD_OC; this bit is 1, P3.6 / P3.7 for UDP / UDM, controlled by the USB module, P3_DIR_PU and P3_MOD_OC its invalid	1
6	bIO_INT_ACT	R0	GPIO interrupt request active: When blE_IO_EDGE = 0, the bit is 1, the GPIO input active level, the interrupt request as a level 0 indicates that the input is invalid; when blE_IO_EDGE = 1, the interrupt flag bit as an edge, showing the subject 1 Measured valid edge, the bit can not be cleared by software, only when the level of the reset or	0

CH552 manual twenty four

			Off mode, or enter the corresponding is automatically cleared when the interrupt service routine	
5 bl	JART1_PIN_X	RW	Pin Mapping UART1 enable bit, this bit is 0 RXD1 / TXD1 use P1.6 / P1.7; the bit is a RXD1 / TXD1 use P3.4 / P3.2	0
4 bl	JART0_PIN_X	RW	UART0 Pin Mapping enable bit, this bit using P3.0 / P3.1 is 0 RXD0 / TXD0; the bit is a RXD0 / TXD0 use P1.2 / P1.3	0
3	bPWM2_PIN_X	RW	Pin Mapping PWM2 enable bit, this bit is 0 PWM2 used on P3.4; the bit is 1 P3.1 using PWM2	0
2	bPWM1_PIN_X	RW	Pin Mapping PWM1 enable bit, this bit is 0 PWM1 use P1.5; PWM1 this bit is 1, use P3.0	0
1	bT2EX_PIN_X	RW	T2EX / CAP2 Pin Mapping Enable bit, which is used P1.1 0 T2EX / CAP2; using the RST bit of a T2EX / CAP2	0
0	bT2_PIN_X	RW	T2 / CAP1 Pin Mapping Enable bit, which is used P1.0 0 T2 / CAP1; this bit is 1, T2 / CAP1 use P1.4	0

Table 10.4.1 GPIO pin multiplexing function list

GPIO	Other features: the priority order from left to right
RST	RST, bT2EX_, bCAP2_, bRST
P1 [0]	T2 / bT2, CAP1 / bCAP1, TIN0, P1.0
P1 [1]	T2EX / bT2EX, CAP2 / bCAP2, TIN1, VBUS2, AIN0, P1.1
P1 [2]	XI, RXD_ / bRXD_, P1.2
P1 [3]	XO, TXD_ / bTXD_, P1.3
P1 [4]	T2_/bT2_, CAP1_/bCAP1_, SCS/bSCS, TIN2, UCC1, AIN1, P1.4
P1 [5]	MOSI / bMOSI, PWM1 / bPWM1, TIN3, UCC2, AIN2, P1.5
P1 [6]	MISO / bMISO, RXD1 / bRXD1, TIN4, P1.6
P1 [7]	SCK / bSCK, TXD1 / bTXD1, TIN5, P1.7
P3 [0]	PWM1_ / bPWM1_, RXD / bRXD, P3.0
P3 [1]	PWM2_/ bPWM2_, TXD / bTXD, P3.1
P3 [2]	TXD1_ / bTXD1_, INT0 / bINT0, VBUS1, AIN3, P3.2
P3 [3]	INT1 / bINT1, P3.3
P3 [4]	PWM2 / bPWM2, RXD1_ / bRXD1_, T0 / bT0, P3.4
P3 [5]	T1 / bT1, P3.5
P3 [6]	UDP / bUDP, P3.6
P3 [7]	UDM / bUDM, P3.7

On the table from left to right in order of priority, it refers to the order of precedence when a plurality of functional modules compete for the GPIO. For example, when the TXD serial transmission time for P3.1, P3.0 still be used for higher priority PWM1 output.

11, external bus

CH552 chip bus is not available to the external signal, the external bus is not supported, but can be accessed xRAM normal chip.

external total Auxiliary line setting register Device (XBUS_AUX):

Place	name	access	description	Reset value
<u>7</u>	bUART0_TX	R0 UAR	T0 transmission status indication, and 1 represents the process of being sent	0
<u>6</u>	bUART0_RX	R0 UAR	T0 indicating reception status of 1 indicates the process of being received	0

<u>5</u>	bSAFE_MOD_ACT	R0 indic	ates the state security mode, 1 indicates the current mode is safe	0
<u>4</u>	Retention	RO res	erved.	0
<u>3</u>	GF2	RW GM	flag 2: Users can define their own, can be set or cleared by software	0
2	bDPTR_AUTO_INC	Enable a	utomatic DPTR RW 1 after the completion of the instruction MOVX_@ DPTR	0
<u>1</u>	Retention	RO res	erved.	0
0	DPS	RW du	al data pointer DPTR select bit: This bit is 0 DPTR0 is selected; the selected bit is 1 DPTR1	0

12, timer Timer

12.1 Timer0 / 1

Timer0 / 1 is a two 16-bit timer / counter, and is configured by TCON TMOD Timer0 and the Timer1, TCON for timer / counters T0 and T1 of the start control and the external interrupt control overflow interrupt. Each timer is timing unit 16 consists of two 8-bit registers thereof. Timer 0 is the high byte of the counter TH0, TL0 is the low byte; high byte of the timer counter 1 is TH1, the low byte is TL1. Timer 1 can also be used as UART0 baud rate generator.

Table 10.1.1	Time a=0 /	liation the		
Table 12.1.1	Timeru /	i iistina tne	reievani	realster

name	address	description	Reset value
TH1	8Dh	Timer1 high byte count	xxh
TH0	8Ch	Timer0 high byte count	xxh
TL1	8Bh	Timer1 counter low byte	xxh
TL0	8Ah	Low byte count Timer0	xxh
TMOD	89h	Timer0 / 1 mode register	00h
TCON	88h	Timer0 / 1 Control Register	00h

timing / Counter control 0/1 Storage system Unit (TCON):

Place	name <u>access</u>		description	Reset value
7	TF1	RW	Timer1 overflow interrupt flag is automatically cleared after entering the timer interrupt 1	0
<u>6</u>	TR1	RW	Timer1 start / stop bits, set to start, set or cleared by software	0
<u>5</u>	TF0	RW	Automatically cleared after Timer0 overflow interrupt flag, the timer 0 interrupt	0
<u>4</u>	TR0	RW	Timer0 start / stop bits, set to start, set or cleared by software	0
<u>3</u>	IE1	RW	INT1 external interrupt 1 request flag is automatically cleared after entering the interrupt	0
2	IT1	RW	INT1 external interrupt trigger control bit 1, bit 0 of the external interrupts is level-triggered; the bit is 1 External interrupt falling edge triggered	0
1_	IE0	RW	0 INT0 external interrupt request flag bit is automatically cleared after entering the interrupt	0
0	IT0	RW	External Interrupt 0 INT0 trigger mode control bit, the bit is 0 is level-triggered external interrupts; the bit is 1 External interrupt falling edge triggered	0

timing / Counter 0/1 square Type Storage Device (TMOD):

Place	name access		description	Reset value
7	bT1_GATE	RW	Gate Enable bit, control Timer1 start if affected by external interrupt signal INT1 is. This bit is 0 timer / counter 1 is started and regardless of INT1; this bit is 1 only INT1 pin is high and TR1 to start to 1:00	0
6	bT1_CT	RW timi	ng or counting mode selection bit, which is operating in a timing mode 0; the bit is 1 Falling edge of the count mode, used as a clock pin T1	0

<u>5</u>	bT1_M1	RW tim	er / counter 1 selects high mode	0	
4_	bT1_M0	RW tim	RW timer / counter 1 Mode Select Low		
3	bT0_GATE	RW	Gate Enable bit, start Timer0 control whether affected by external interrupt signal INT0 is. This bit is 0 Timer / counter 0 regardless of whether to initiate the INT0; this bit is 1 only INT0 pin is high and TR0 is set to 1 to start	0	
2	bT0_CT	RW timii	ng or counting mode selection bit, which is operating in a timing mode 0; the bit is 1 Falling edge of the count mode, using the pin as a clock T0	0	
<u>1</u>	bT0_M1	RW tim	ner / counter 0 select high mode	0	
0	bT0_M0	RW tim	er / counter 0 Mode Select Low	0	

Table 12.1.2 bTn_M1 bTn_M0 and operating mode selection Timern (n = 0,1)

bTn_M1 b	Гп_М0_	Timern operating mode (n = 0,1)
0	0	0:13 mode bit timer / counter n, the lower 5 bits of the counting unit and TLn THn composition of three high TLn invalid. Becomes 0 when the count is full, the TFn overflow flag is set, and needs to be reset from the initial value 13 all 1
0	1	1:16 mode bit timer / counter n, a counting unit and TLn THn composition. Becomes 0 when the count is full, the TFn overflow flag is set, and needs to be reset from the initial values are all 16-bit 1
1	0	Mode 2: 8-bit reload timer / counter n, using the counting unit TLn, THn counting unit as a heavy load. Count is changed from 1 to 8 full full 0, the TFn overflow flag is set, and automatically loads the initial value THn from
1	1	Mode 3: If a timer / counter 0, the timer / counter 0 is divided into two parts TL0 and TH0, TL0 as an 8-bit timer / counter, occupies all of the control bits of Timer0; TH0 and do another 8-bit timer use, occupation Timer1 of TR1, TF1 and interrupt resources, and this time Timer1 still available, but can not use the control bit TR1 and overflow flag TF1. If timer / counter 1, then enter mode 3 will stop the timer / counter 1.

Timern meter The low byte (TL n_i) (N = 0,1):

Place	name access		description	Reset value
[7: 0]	TLn	RW	Low byte count Timern	xxh

Timern meter <u>High byte number (TH n) (N = 0</u>,1):

Place	name access		description	Reset value
<u>[7: 0]</u>	THn	RW	High Byte count Timern	xxh

12.2 Timer2

Timer2 is 16-bit auto-reload timer / counter, and configured through T2CON T2MOD register, the timer counter high byte 2 is TH2, the low byte is TL2. Timer2 as UART0 baud rate generator further includes a two-way signal level capture, the capture count is stored in register RCAP2 and T2CAP1.

Table 12.2.1 Timer2 relevant register list

name	address	description	Reset value
TH2	CDh	Timer2 counter high byte	00h
TL2	CCh	Timer2 Counter Low	00h
T2COUNT	CCh	TL2 and TH2 composed of 16 SFR	0000h
T2CAP1H	CFh	Timer2 capture a high byte data (read-only)	xxh
T2CAP1L	CEh	Timer2 capture a low-byte data (read only)	xxh
T2CAP1	CEh	T2CAP1L and T2CAP1H composed of 16 SFR	xxxxh

RCAP2H	CBh reloa	ad count / capture data register 2 high byte	00h
RCAP2L	CAh reloa	ad count / capture data register 2 low byte	00h
RCAP2	CAh	RCAP2L and RCAP2H composed of 16 SFR	0000h
T2MOD	C9h	Timer2 mode register	00h
T2CON	C8h	Timer2 Control Register	00h

$\underline{\text{timing}} \text{ / Counter control register 2} \underline{\text{Register (}} \text{ T2CON)} :$

Place	name	access	description	Reset value
7	TF2	RW	When bT2_CAP1_EN = 0, Timer2 overflow interrupt flag is, when the count becomes Timer2 from 16 to 1:00 full, the overflow flag is set to 1, the software needs to be cleared is full; when RCLK = 1 or TCLK = 1 when this bit will not be set	0
7	CAP1F	RW Wh	en bT2_CAP1_EN = 1, an interrupt flag is Timer2 capture, by the effective T2 Edge trigger, the software needs to be cleared	0
6	EXF2	RW	Timer2 external trigger flag, when the valid edge EXEN2 = 1 T2EX triggered by the set, the software needs to be cleared	0
5	RCLK	RW	UART0 receive clock selection, the selected bit is 0 Timer1 overflow pulse generating baud rate; it is 1 for Timer2 overflow pulses generated baud	0
4	TCLK	RW	UART0 transmit clock selection, the selected bit is 0 Timer1 overflow pulse generating baud rate; it is 1 for Timer2 overflow pulses generated baud	0
3	EXEN2	RW	T2EX trigger enable bit, this bit is ignored T2EX 0; bit to 1 enables the trigger active edge overloaded or when capturing T2EX	0
2	TR2	RW	Timer2 start / stop bits, set to start, set or cleared by software	0
1	C_T2	RW	Timer2 clock source select bit, the bit is 0 using the internal clock; the bit is 1 based falling edge pin count T2	0
0	CP_RL2	RW	Timer2 function select bit, if RCLK or TCLK is 1, the bit should be forced to zero. This bit is 0 Timer2 timer / event counter, and automatically reload the initial count value when the counter overflows or T2EX level change; this bit to 1 enables capture of Timer2 2 functions to capture the valid edge T2EX	0

timing / 2 mode Send Counter Register (T2MOD):

timing / 2 mode Sena Counter Register (12MOD):						
Place	name	access	description	Reset value		
7	bTMR_CLK	RW	Selected fast clock T0 / T1 / T2 timer mode enable fastest clock, the bit is a system using frequency division Fsys not as a count clock; the bit is 0, use frequency-divided clock. This bit has no effect on the selection criteria clock timer	0		
6	bT2_CLK	RW	Timer2 internal clock select bit, the bit is 0 is selected from the standard clock, timer / counter mode Fsys / 12, UART0 clock mode Fsys / 4; bit = 1, selected from fast clock, timer / counter mode Fsys / 4 (bTMR_CLK = 0) or Fsys (bTMR_CLK = 1), UART0 clock mode Fsys / 2 (bTMR_CLK = 0) or Fsys (bTMR_CLK = 1)	0		
5	bT1_CLK	RW	Timer1 internal clock frequency selection bit, which is selected from 0 standard clock Fsys / 12; 1 is selected from the fast clock Fsys / 4 (bTMR_CLK = 0) or Fsys (bTMR_CLK = 1)	0		
4	bT0_CLK	RW	Timer0 internal clock frequency selection bit, which is selected from 0 standard clock Fsys / 12; 1 is selected from the fast clock Fsys / 4 (bTMR_CLK = 0) or Fsys (bTMR_CLK = 1)	0		

3	bT2_CAP_M1	RW	High Timer2 capture mode Capture	mode selection: X0: 01 from falling edge to falling edge: from any direction to an	0
2	bT2_CAP_M0	RW	Timer2 Capture mode Low	arbitrary direction, i.e. the level change 11: from a rising edge to rising edge	0
1	T2OE	RW	Timer2 clock output enable bit, which output pin T2, Timer2 overflow rate	th disables the output is 0; bit 1 of the half clock enable frequency	0
0 b	T2_CAP1_EN	RW		ctive edge of a T2; the bit is disabled 0 1 Capture	0

Count overloading / Data Capture 2 Deposit Device (RCAP2):

Bit Nam	ie <u>access</u>		description	Reset value
[7: 0]	RCAP2H	RW is th	e high byte of the reload value in the timer / counter mode; is in the capture mode CAP2 captured timer high byte	00h
[7: 0]	RCAP2L	RW is th	e low byte of the reload value in the timer / counter mode; is in the capture mode CAP2 captured timer low byte	00h

Timer2 count Number of device (T2CO U NT):

Bit Name access			description	
[7: 0]	TH2	RW cur	rent counter high byte	00h
<u>[7: 0]</u>	TL2	RW cui	rrent counter low byte	00h

1 Timer2 capture data (T2CAP1): Bit

Name access		description	Reset value
[7: 0] T2CAP1H	RO	CAP1 captured timer high byte	xxh
[7: 0] T2CAP1L	RO	CAP1 captured timer low byte	xxh

12.3 PWM function

CH552 provides two 8-bit PWM, PWM can select the default output is low or high polarity, can be dynamically modified PWM output duty cycle is, by integrating a simple RC low-pass filtering the resistor capacitor can obtaining various output voltages, corresponding to the low speed digital to analog converter DAC.

$Output\ duty = PWM1\ PWM_DATA1\ /\ 256,\ supports\ a\ range\ of\ 0\%\ to\ 99.6\%.\ PWM2\ output\ duty = PWM_DATA2\ /\ 256,$

supports a range of 0% to 99.6%. In practice, it is recommended to allow PWM output pin PWM output pin and arranged push-pull mode.

12.3.1 PWM1 and PWM2

Table 12.3.1 PWM1 and PWM2 relevant register lists

name	<u>address</u>	description	Reset value
PWM_CK_SE	9Eh	Clock Divider PWM setting register	00h
PWM_CTRL	9Dh	PWM Control Register	02h
PWM_DATA1	9Ch	PWM1 data register	xxh
PWM_DATA2	9Bh	PWM2 data register	xxh

PWM2 data Register (PWM_DAT A2):

Place	name	access	description	Reset value
[7: 0]	PWM_DATA2	RW PV	/M2 current data storage, PWM2 output active level duty ratio = PWM_DATA2 / 256	xxh

PWM1 data Register (PWM_DAT A1):

Place	name	access	description	Reset value
[7: 0]	PWM_DATA1	RW PV	/M1 current data storage, PWM1 output active level duty ratio = PWM_DATA1 / 256	xxh

PWM control System register (PWM_CTR L): Bit

	name	access	description	Reset value
<u>7</u>	bPWM_IE_END	RW This	bit is 1 so that the end of the PWM cycle or buffer empty interrupt MFM	0
6	bPWM2_POLAR	The RW	control PWM2 output polarity, the bit is 0, the default low, there is a high level Effect; the bit is a default high, active low	0
5	bPWM1_POLAR	The RW	control PWM1 output polarity, the bit is 0, the default low, there is a high level Effect; the bit is a default high, active low	0
4	bPWM_IF_END	RW	Clear the PWM cycle end interrupt flag bit, which is 1 means interrupt, write 1 to clear or reload the data PWM_DATA1	0
3	bPWM2_OUT_EN	RW	PWM2 output enabled, this bit to 1 enables PWM2 output	0
2	bPWM1_OUT_EN	RW	PWM1 output enabled, this bit to 1 enables the output PWM1	0
1	bPWM_CLR_ALL	RW This	bit is cleared to a count PWM1 and PWM2 and FIFO, the software needs to be cleared	1
<u>0</u>	Retention	RO res	erved.	0

PWM clock divided Frequency setting register (PWM C K_SE):

I	Place	name	access	description	Reset value
	[7: 0]	PWM_CK_SE	Set RW	PWM clock divider divisor	00h

12.4 Timer Function

12.4.1 Timer0 / 1

(1) Timer setting T2MOD selected internal clock frequency, if bTn_CLK (n = 0/1) clock corresponding to 0, then the Timer0 / 1

Is Fsys / 12; if bTn_CLK is 1, or a bTMR_CLK = 0 1 Select Fsys / 4 or Fsys as the clock. (2), the working mode setting TMOD the Timer.

0:13 mode bit timer / counter

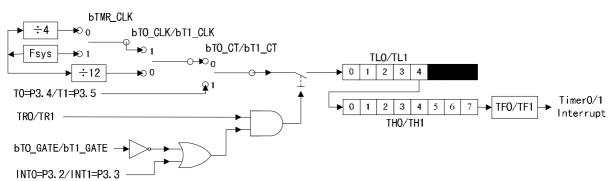


FIG 12.4.1.1 Timer0 / 1 Mode 0

1:16 mode bit timer / counter

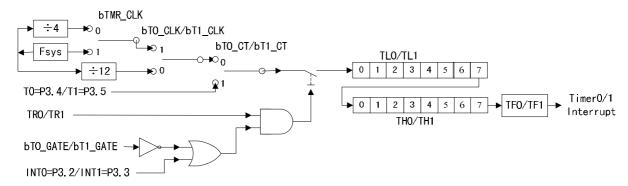


FIG 12.4.1.2 Timer0 / 1 Mode 1

Mode 2: 8 auto-reload timer / counter

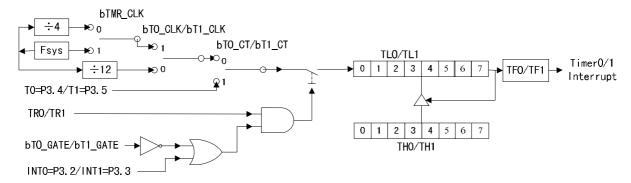


FIG 12.4.1.3 Timer0 / 1 Mode 2

Mode 3: Timer0 into two separate 8-bit Timer / counter, borrow and control bits of Timer1 TR1; TR1 Timer1 replaced by control bits are borrowed whether to activate the mode 3, mode 3 enters Timer1 Timer1 is stopped.

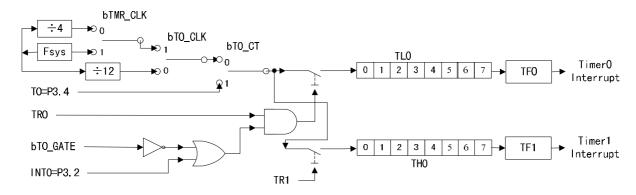


FIG 12.4.1.4 Timer0 mode 3

- (3), set the timer / counter and the initial value TLn THn (n = 0/1).
- (4) is provided in the TCON bits TRn (n = 0/1) on or stop timer / counter can be (n = 0/1), or inquiry by bit through TFn Through the interrupt is detected.

12.4.2 Timer2

Timer2 16-bit reload timer / counter mode:

(1), set the bit in the RCLK and TCLK T2CON are 0, the non-selected baud rate generator mode. (2), provided in T2CON C_T2 bit 0 is selected using the internal clock, go to step (3); 1 can also be set to select the falling edge of pin T2

As the count clock, skip step (3).

(3), provided T2MOD select Timer internal clock frequency, if bT2_CLK is 0, then the clock Timer2 Fsys / 12; such as

If bT2_CLK is 1, then a 1 or bTMR_CLK = 0 Select Fsys / 4 or Fsys as the clock. (4), provided T2CON CP_RL2 bit to 0 to select the 16-bit reload timer Timer2 / counter functions. (5), and RCAP2H RCAP2L set to reload the timer overflow value is set as the value of the timer TL2 and TH2 (generally with

RCAP2L and RCAP2H same), to a set TR2, open Timer2. (6), or by querying the timer 2 interrupt TF2 can obtain the current timer / counter status.

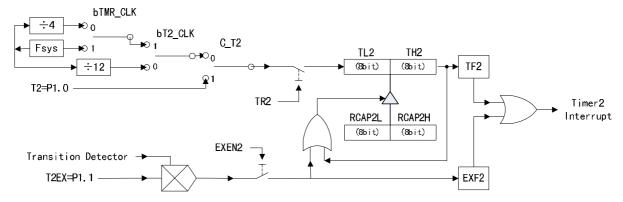


FIG 12.4.2.1 Timer2 16-bit reload timer / counter

Timer2 clock output mode:

Reference 16-bit reload timer / counter mode, and then set the bit in T2OE T2MOD is 1, so that from the output pin T2 TF2 clock frequency divided by two.

Timer2 serial baud rate generator mode 0:

(1), is provided in T2CON C_T2 0 to select the internal clock may be set to 1 to select the falling edge of the clock pin T2, root

It needs to be set in T2CON TCLK and RCLK is one bit or 1 1 wherein selecting the baud rate generator mode. (2), provided T2MOD select Timer internal clock frequency, if bT2_CLK is 0, then the clock Timer2 Fsys / 4; as

If bT2_CLK is 1, then a 1 or bTMR_CLK = 0 Select Fsys / 2 or Fsys clock. (3), and RCAP2H RCAP2L set value for the reload timer overflows, 1 is set TR2, open Timer2.

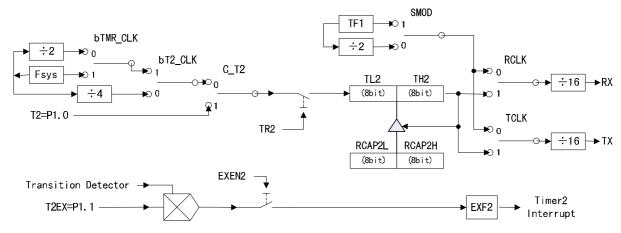


FIG 12.4.2.2 Timer2 UART0 Baud Rate Generator

Timer2 dual channel capture mode:

(1), set the bit in the RCLK and TCLK T2CON are 0, the non-selected baud rate generator mode.

- (2), provided in T2CON C_T2 bit 0 is selected using the internal clock, go to step (3); can also be set to select a pin drop T2 Edge as the count clock, skip step (3).
- (3), provided T2MOD select Timer internal clock frequency, if bT2_CLK is 0, then the clock Timer2 Fsys / 12; such as

 If bT2_CLK is 1, then a 1 or bTMR_CLK = 0 Select Fsys / 4 or Fsys as the clock. (4), and provided T2MOD

 bT2_CAP_M1 bT2_CAP_M0 selected bit corresponding edge capture mode. (5), a set, selection of T2EX pin Timer2

 capture function is CP_RL2 T2CON bit. (6), TL2 and TH2 is set for the value of the timer, set to 1 TR2, open Timer2.
- (7), when the capture is completed CAP2, RCAP2L RCAP2H saved time and the count value of TL2 and TH2, and EXF2 set, causing

 Interrupt, the difference between the next capture and RCAP2H RCAP2L with the last captured RCAP2L and RCAP2H, signal width is between two valid edges.
- (8), if the bit C_T2 T2CON is 0, and the bit bT2_CAP1_EN T2MOD is 1, then the command enables Timer2

 Capture of the pin T2, when the CAP1 capturing is complete, T2CAP1L T2CAP1H saved and then the count value TL2 and TH2, and CAP1F set, an interrupt is generated.

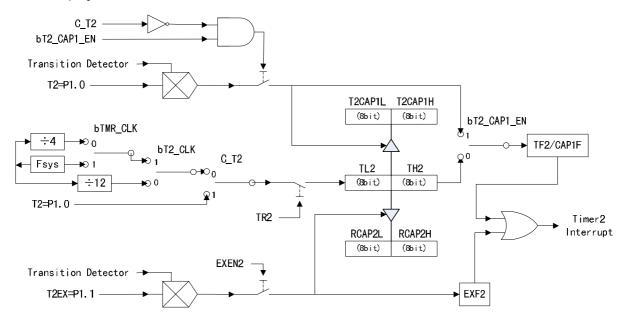


FIG 12.4.2.3 Timer2 capture mode

13, UART Universal Asynchronous Receiver Transmitter

13.1 UART Profile

CH552 chip provides two serial asynchronous full duplex: UART0 and UART1. CH551 provide UART0 only. MCS51 UART0 standard serial port, which is transmitted and received data access SBUF physically separated by receiving / receive register achieve. SBUF loads the transmit data register is written, for SBUF read operation corresponding to the receive buffer register.

MCS51 serial UART1 is simplified, which receive and send data access SBUF1 are physically separated by receiving / receive register achieve. SBUF1 transmission data write register is loaded, to SBUF1 read operation corresponding to the receive buffer register. Compared UART0 UART1 multiprocessor removed and fixed baud rate communication mode, independent UART1 baud rate generator.

13.2 UART Registers

Table 13.2.1 UART-related registers list

name	address	description	Reset value
SCON	98h	Control Register UART0	00h
SBUF	99h	UART0 data register	xxh

SCON1	C0h	Control Register UART1	40h
SBUF1	C1h	UART1 data register	xxh
SBAUD1	C2h	UART1 baud rate setting register	xxh

13.2.1 UART0 Register Description

UART 0 Control register Deposit Device (SC ON):

Bit N	lame Access	<u>.</u>	description	Reset value
7	SM0	RW	UART0 operating mode select bit 0, this bit selects 8-bit data is 0 asynchronous communication; the 9-bit data bit asynchronous communication 1	0
6	SM1	RW	UART0 operating mode selection bit 1, bit 0 is set to the fixed baud rate; the 1-bit variable baud rate is set, generated by the timer T1 or T2	0
5	SM2	RW	UART0 Multiprocessor communication control bits: When Modes 2 and 3 receive data, when 1 SM2 =, if RB8 is 0, then RI is not set, the received valid; if RB8 is 1, then RI is set, the reception is valid; SM2 = 0, regardless RB8 is 0 or 1, are set to receive data bits RI, receiving active; when a mode 1, if SM2 = 1, then only receives a valid stop bit, the reception is valid; When mode 0, SM2 bit must be set to 0	0
<u>4</u>	REN	RW	UART0 allowed to receive a control bit, which is 0 receive disabled; 1 to this bit allows the receiver	0
3	TB8	RW	9th bit transmission data in Mode 2 and 3, TB8 for writing the 9th bit transmission data, a parity bit may be; in a multi-machine communication, is used to represent the host address byte sent or data bytes, TB8 = 0 data, TB8 = 1 address	0
2	RB8	RW	9th bit received data, and the mode 2. 3, 9th bit RB8 for storing received data; when the mode 1, if SM2 = 0, then the RB8 for storing the received stop bit; In Mode 0 do not use RB8	0
1	TI	RW tran	smit interrupt flag, a data byte is sent after the set by hardware, software needs to clear zero	0
0	RI	RW rec	eive interrupt flag bit, a byte of data received valid set by hardware, software needed Clear	0

Table 13.2.1.1 UART0 mode selection

<u>SM0</u>	SM1	description
0	0 0 mc	de, the shift register mode, the baud rate is fixed Fsys / 12 0
	1, 8-bit	asynchronous communication mode, baud rate variable, generated by the timer T1 or T2 1
	2,9 0-bi	t asynchronous communication mode, the baud rate is Fsys / 128 (SMOD = 0) or Fsys / 32 (SMOD = 1) 1
	3,9 1-bi	t asynchronous communication mode, baud rate variable, generated by the timer T1 or T2

In mode 1 and 3, when RCLK = 0 and when TCLK = 0, the UART0 baud rate is generated by the timer T1. T1 should be set to Mode 2 8 with automatic reload timer mode, bT1_CT bT1_GATE and must both be 0, the following categories clock case.

table 13.2.1.2 Generating calculated by T1 UART0 baud

_		<u></u>	
bTMR_CLK	bT1_CLK	SMOD	description
1	1	0	TH1 = 256 - Fsys / 32 / baud
1	1	1	TH1 = 256 - Fsys / 16 / baud
0	1	0	TH1 = 256 - Fsys / 4/32 / baud
0	1	1	TH1 = 256 - Fsys / 4/16 / baud

Х	0	0	TH1 = 256 - Fsys / 12/32 / baud
X	0	1	TH1 = 256 - Fsys / 12/16 / baud

In mode 1 and 3, when RCLK = 1 or TCLK = 1, UART0 baud rate is generated by the timer T2. T2 should be set to 16-bit baud rate generator auto-reload mode, C_T2 CP_RL2 and must both be 0, the following categories clock case.

Table 13.2.1.3 UART0 baud rate is generated by the formula T2

bTMR_CLK	bT2_CLK	description
1	1	RCAP2 = 65536 - Fsys / 16 / baud
0	1	RCAP2 = 65536 - Fsys / 2/16 / baud
X	0	RCAP2 = 65536 - Fsys / 4/16 / baud

UART0 data Register (SBU F): Bit

	name access		description	Reset value
[7: 0]	SBUF	RW	UART0 data register, including sending and receiving on two physically separate register. Transmitting data corresponding to the write data register to SBUF; SBUF corresponding to read	xxh
			data from the receive data register	

13.2.2 UART1 Register Description

<u>UART 1 Control register</u> Deposit <u>Device (SC</u> ON1):

Bit N	lame Access	<u>.</u>	description	Reset value
7	U1SM0	RW	UART1 operating mode selection bit, which selects 8-bit asynchronous communication of data is 0; bit selects the 9-bit data of asynchronous communication 1	0
6 Re	eserved RO re	eserved.		1
<u>5 U</u>	1SMOD	RW Se	elect UART1 baud rate: 0 slow mode; 1- Quick mode	0
<u>4</u>	<u>U1REN</u>	RW	Allow UART1 receive control bit, the bit is 0 receive disabled; 1 to this bit allows the receiver	0
3	U1TB8	RW ninth	bit transmission data, when the 9-bit data patterns, TB8 for writing the first data transmission 9, may be a parity bit; in the 8-bit mode, ignoring TB8	0
2	U1RB8	RW 9th	bit of the received data, in the 9-bit mode, RB8 for storing a first received data 9; when 8-bit mode, RB8 for storing the received stop bit	0
1	U1TI	RW tran	smit interrupt flag, a data byte is sent after the set by hardware, software needs to clear zero	0
0	U1RI	RW rec	eive interrupt flag bit, a byte of data received valid set by hardware, software needed Clear	0

UART1 baud rate is set by SBAUD1 generated, divided into two types according to U1SMOD selection:

When U1SMOD = 0 when, SBAUD1 = 256 - Fsys / 32 / baud; when U1SMOD = 1, SBAUD1 = 256 - Fsys / $\frac{1}{2}$

16 / baud rate.

UART1 data Register (SBU F 1):

Place	name access		description	Reset value
[7: 0]	SBUF1	RW	UART1 data register, including sending and receiving on two physically separate register. SBUF1 corresponding to write data to the transmit data register; SBUF1 corresponding to read data from the receive data register	xxh

13.3 UART applications

UART0 Application:

- (1) Select UART0 baud rate generator may be selected from the timer T1 or T2, and configure counter. (2), starts a timer T1 or T2.
- (3), provided the SCON SM0, SM1, SM2 select the operating mode of the serial port 0. REN set to 1, enables the UART0 reception. (4), you can set the serial port interrupt or visit RI and TI interrupt status.
- (5), read SBUF achieve serial data transceiver, allowing serial receive baud rate error signal is less than 2%.

UART1 Application:

- (1) The baud rate and set the selected U1SMOD SBAUD1.
- (2), provided the U1SM0 SCON1 port 1 mode selection. U1REN set to 1, enables the UART1 reception. (3), you can set the serial port 1 interrupt or visit U1RI and U1TI interrupt status.
- (4), a reader SBUF1 achieve serial data transceiver, allowing serial receive baud rate error signal is less than 2%.

14, a synchronous serial interface SPI

14.1 SPI Introduction

CH552 chip provides SPI interface for high-speed synchronous data transfer between peripherals. (1), supports the master mode and the slave master slave mode; (2), and a support mode 0 mode clock mode 3; (3), an optional wire 3 wire full-duplex or half-duplex mode 2; (4), Alternatively transmitted MSB first or LSB lower upper first transmission; (5), the clock frequency is adjustable up to nearly half the system frequency; and (6), built 1 byte 1 byte receive FIFO and transmit FIFO;

(7), from the first byte of the machine support mode preload data for the host to get the first byte of data is returned immediately.

14.2 SPI register

Table 14.2.1 SPI associated register list

name	address	description	Reset value
SPI0_SETUP	FCh	SPI0 setting register	00h
SPI0_S_PRE	FBh	SPI0 slave mode preset data register	20h
SPI0_CK_SE	FBh	SPI0 clock divider setting register	20h
SPI0_CTRL	FAh	Control Register SPI0	02h
SPI0_DATA	F9h	SPI0 data transceiver register	xxh
SPI0_STAT	F8h	Status Register SPI0	08h

$\underline{\mathsf{SPI0}}\ \mathsf{Setting}\ \mathsf{register}\ (\mathsf{SPI0_S}\ \mathsf{E}\ \underline{\mathsf{TUP}}):$

Place	name	access	description	Reset value
7	bS0_MODE_SLV	RW	SPI0 master-slave mode selection bit, which is 0 SPI0 master mode; SPI0 this bit is a mode of machine / device mode from	0
6	bS0_IE_FIFO_OV	RW sla	ve mode FIFO overflow interrupt enable bit, this bit to 1 enables FIFO Overflow Interrupt; bit is 0 the FIFO overflow interrupt is not generated	0
5	bS0_IE_FIRST	RW	Receiving the first byte of the slave mode complete interrupt enable bit, an interrupt is triggered when the first data byte received from the slave mode to the 1 bit; does not generate an interrupt when this bit 0 is the first byte of the received	0

4	bS0_IE_BYTE	RW data	byte transfer complete interrupt enable bit, this bit allows complete transmission of 1 byte To interrupt; the bit is 0 byte transfer completion interrupt is not generated	0
3	bS0_BIT_ORDER	RW bit	data byte timing control bits, the MSB bit is 0 the previous high; the bit LSB least significant bit first to a	0
2	Retention	RO res	erved.	0
1	bS0_SLV_SELT	R0 is sel	ected from the slave mode leaves active state bit, which is 0 indicates that no selected ; This bit is 1, the current state is selected	0
0 bs	\$0_SLV_PRELOAD	R0 Pre-l	pading of data from the slave mode status bit, which is 1 indicates that the current in the sheet After the pre-loaded state before the selected valid data has not been transmitted	0

$SPI0\ clock \underline{\textit{Frequency division setting register}}\ Device \underline{\textit{(SPI0}}\ _CK_SE):$

Place	name	access	description	Reset value
[7: 0]	SPI0_CK_SE	Setting t	ne division ratio of the clock SPI0 RW Host mode	20h

${\sf SPI0 \ slave} \underline{\sf Mode \ preset \ data} \ {\sf send} \underline{\sf Register \ (} \ {\sf SPI0_S_PRE}):$

Place	name	access	description	Reset value
[7: 0]	SPI0_S_PRE	RW prel	oaded data transmitted from the first slave mode	20h

SPI0 Control Register (SPI0_C T RL): Bit

	name	access	description	Reset value
7	bS0_MISO_OE	RW	SPI0 the MISO output enable control bit, which allows the output to 1; 0 disables the output of the bit	0
6	bS0_MOSI_OE	RW	SPI0 the MOSI output enable control bit, which allows the output to 1; 0 disables the output of the bit	0
5	bS0_SCK_OE	RW	SPI0 The SCK output enable control bit, which allows the output to 1; 0 disables the output of the bit	0
4	bS0_DATA_DIR	RW	SPI0 direction control bit data, the output data bit is 0, as only the write FIFO effective operation, starting a SPI transfer; an input data bit to the write or read FIFO are as active, start a SPI transfer	0
3	bS0_MST_CLK	RW	SPI0 master clock mode control bit, bit 0 of the mode 0, the default idle SCK low level; this bit. 3 is a mode, the default high SCK	0
2	bS0_2_WIRE	RW	SPI0 2-wire half duplex mode enable bit, this bit is 0 3 wire full-duplex mode, including SCK, MOSI, MISO; the bit is a 2-wire half-duplex mode, including SCK, MISO	0
1_	bS0_CLR_ALL	RW This	bit is cleared SPI0 1 interrupt flag and FIFO, need to be cleared by software	1
0	bS0_AUTO_IF	RW	Allow the byte enable bit is automatically cleared reception completion interrupt flag by FIFO efficient operation, this bit is automatically cleared one byte received when the FIFO is valid write Complete Interrupt Flag S0_IF_BYTE	0

SPI0 data A transceiver register (SP I 0_DAT A): Bit

or to data Artifaction of the Transport					
	name	access	description	Reset value	
[7: 0]	SPI0_DATA	FIFO RV	Vincludes two physically separate transmitting and receiving, the read operation corresponding to the The FIFO receive data; transmission data corresponding to the write FIFO, the effective read and w		

SPI can initiate a transfer	

SPI0 Status Register (SPI0_S T_AT): Bit

	name	access	description	Reset value
<u>7</u>	S0_FST_ACT	R0 repre	sents the current state bit is 1, the first byte is received from the slave mode to complete	0
6	S0_IF_OV	RW	Slave mode FIFO overflow flag bit, which is 1 indicates that the FIFO overflow interrupt; the bit is 0, no interrupt. Direct access bit is cleared or write 1 to clear. When bS0_DATA_DIR = 0 when the transmit FIFO empty interrupt trigger; bS0_DATA_DIR = 1 when the receive FIFO is full when triggered by an interrupt	0
5	S0_IF_FIRST	RW first	byte received from the slave mode to complete the interrupt flag bit, which is represented by a Receiving the first byte. Direct access bit is cleared or write 1 to clear	0
4	S0_IF_BYTE	RW	Data byte transfer complete interrupt flag bit, which is represented by a one byte transfer. Direct access bit is cleared by writing a 1 or cleared, or by clearing the FIFO bS0_AUTO_IF = 1 effective operation	0
3	S0_FREE	R0	SPI0 Idle flag bit, which is 1 indicates that no SPI shift, usually in a neutral period between data bytes	1
2	S0_T_FIFO	R0	SPI0 transmit FIFO count Valid values are 0 or 1	0
1_	Retention	R0 Res	erved	0
<u>o</u>	S0_R_FIFO	R0	SPI0 receive FIFO count Valid values are 0 or 1	0

14.3 SPI transport format

 $SPI\ Master\ Mode\ 0\ and\ Mode\ 3\ supports\ two\ transmission\ formats\ may\ be\ provided\ by\ the\ SPI\ control\ register\ select\ bit\ bSn_MST_CLK\ in$

 ${\sf SPIn_CTRL},\,{\sf CH552\,MISO}\,\, is\,\, always\,\, sampled\,\, at\,\, the\,\, rising\,\, edge\,\, {\sf CLK}.\,\, Data\,\, transfer\,\, format\,\, shown\,\, in\,\, {\sf FIG}.$

Mode 0: bSn_MST_CLK = 0

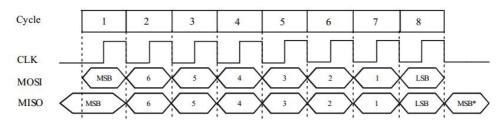


FIG 14.3.1 SPI timing diagram of Mode 0 $\,$

Mode 3: bSn_MST_CLK = 1

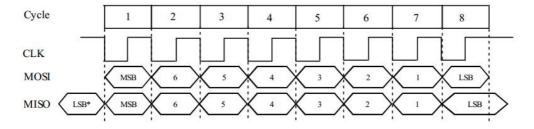


FIG 14.3.2 SPI timing diagram Mode 3

14.4 SPI configuration

14.4.1 SPI master mode configuration

The SPI master mode, SCK pin output serial clock, chip select output pins can be specified as any I / O pin.

SPI0 configuration steps

(1), provided SPI clock divider setting register SPI0_CK_SE, arranged SPI clock frequency. (2), provided bS0_MODE_SLV SPI register setting bit 0 SPI0_SETUP is configured to host mode. (3), provided the SPI control register bit bS0_MST_CLK SPI0_CTRL, according to the demand mode is set to 0 or 3. (4), provided the SPI control register bits bS0_SCK_OE SPI0_CTRL and bS0_MOSI_OE is 1, bS0_MISO_OE bit is 0,

Set the port P1 direction bSCK, bMOSI output, bMISO input, an output and a chip select pin.

Data transmission process:

(1), SPI0_DATA write register, write data to be transmitted to the FIFO, automatically starts a SPI transfer. (2) waits for the S0_FREE 1, a transmission is completed, may continue to send the next byte.

Data receiving process:

(1), a write register SPI0_DATA, arbitrary data is written into the FIFO for example 0FFh to initiate a SPI transfer. (2) waits for the S0_FREE 1, a reception completion, can be obtained SPI0_DATA read received data. (3), if previously bS0_DATA_DIR been set, the read operation will start the next SPI transfer, or otherwise disable.

14.4.2 SPI slave mode configuration

Only SPI0 supports slave mode, slave mode, SCK pin is the serial clock for the SPI master receiving connection. (1), provided SPI0 bS0_MODE_SLV register bit set to 1 SPI0_SETUP, configured as a slave mode. (2), provided SPI0 bS0_SCK_OE control register bits and bS0_MOSI_OE SPI0_CTRL 0, to set bS0_MISO_OE

1, a P1 port direction bSCK, bMOSI and bMISO pins and chip select input. When SCS chip select is active (low), MISO output is automatically enabled. Also recommended set MISO pin is high impedance input mode (P1_MOD_OC [6] = 0, P1_DIR_PU [6] = 0), that the MISO output during no chip select is invalid, to facilitate the shared SPI bus. (3), optionally, SPI slave mode setting preset data register SPI0_S_PRE, for the first time is automatically loaded into the chip select buffer

For external output. After eight serial clock, i.e., the first data byte transfer exchange was finished, CH552 external SPI sent by the host to obtain the first byte of data (command code may be), the external preset data obtained SPI master exchange SPI0_S_PRE (possibly a state value). SPI0_S_PRE 7-bit register will be automatically loaded during the low level after SCK SPI chip select to the MISO pin for SPI mode 0, if preset SPI0_S_PRE CH552 bit 7, then the host will be selected in the external SPI SPI chip but yet effective transmission of data, it is possible to obtain the preset value of bit 7 SPI0_S_PRE by querying the MISO pin, so that the value can be obtained by bit 7 SPI0_S_PRE only valid SPI chip select bit.

Data transmission process:

S0_IF_BYTE query or wait for an interrupt, the SPI data after each byte transfer, SPI0_DATA write register, write data to be transmitted to the FIFO. Or wait S0_FREE from 0 to 1, may continue to send the next byte.

Data receiving process:

S0_IF_BYTE query or wait for an interrupt, the SPI data after each byte transfer, SPI0_DATA read register, the received data obtained from the FIFO.

Queries S0_R_FIFO can know whether there are remaining byte FIFO.

15, analog to digital converter ADC and the voltage comparator (CH551 NA)

About 15.1 ADC

CH552 chip provides 8-bit analog-digital converter, comprising a voltage comparator and the ADC modules. The converter has four analog input channels, time-sharing can collect, support VCC 0 to the analog input voltage range.

15.2 ADC Register

Table 15.2.1 ADC relevant register list

name	address	description	Reset value
ADC_CTRL	80h	ADC Control Register	x0h
ADC_CFG	9AH	ADC configuration register	00h
ADC_DATA	9Fh	ADC data register	xxh

ADC control register Register (ADC_CTRL):

Place	name	access	description	Reset value
7	СМРО	RO	Voltage comparator result output bit, which is 0 indicates that voltage is lower than the inverting input voltage of the inverting input terminal; bit is one, the positive input	x
			voltage is higher than the voltage at the inverting input terminal	
6	CMP_IF	RW volta	ge comparator result change flag, which is a bit comparison shows voltage The result is a change, direct access bit is cleared	0
5	ADC_IF	RW	ADC conversion complete interrupt flag, the bit is 1 indicates an ADC conversion is complete, direct access bit is cleared	0
4	ADC_START	RW	ADC control start bit which is set to start an ADC conversion, the ADC bit is automatically cleared after the conversion is complete	0
3	CMP_CHAN	RW volta	ge comparator inverting input terminal selection: 0-AIN1; 1-AIN3	0
2	Retention	R0 Res	erved	0
1	ADC_CHAN1	RW volta	ge comparator inverting input terminal and ADC input channel high	0
0	ADC_CHAN0	RW volta	ge comparator inverting input terminal and ADC input channel low	0

And a ADC_CHAN1 ADC_CHAN0 selection voltage comparator and the positive input terminal of ADC channels.

	se_environinger_environment. Tenage compandion and the positive imparter initial environment.					
ADC_CHAN1	ADC_CHAN0	Selection voltage comparator inverting input terminal and ADC input channel				
0	0	AIN0 (P1.1)				
0	1	AIN1 (P1.4)				
1	0	AIN2 (P1.5)				
1	1	AIN3 (P3.2)				

ADC configuration register Register (ADC_CFG):

Place	name	access	description	Reset value
[7: 4]	Retention	R0 Res	erved	<u>0000b</u>
3	ADC_EN	RW	Power control bit ADC module, which indicates the power supply is turned off ADC module 0, go to sleep; 1 indicates the bit is turned on	0
2	CMP_EN	Power co	ontrol bits RW voltage comparator, which indicates a voltage close to 0 Power comparator, goes to sleep; 1 indicates the bit is turned on	0
1	Retention	R0 Res	erved	0
0	ADC_CLK	RW	ADC reference clock frequency selection bit, which is slow clock select 0, each ADC 384 need cycles Fosc; the fast clock selection bit is 1, each ADC needs 96 cycles Fosc	0

ADC data register $\underline{\text{Register (ADC_DATA}}$): Bit

	name	access	description	Reset value
--	------	--------	-------------	-------------

[7: 0]	ADC_DATA	RO	ADC data sampling results	xxh
17.01		110	7.5 o data damping rootile	AAH

15.3 ADC function

ADC sampling mode configuration steps:

- (1), provided ADC_EN ADC_CFG register bit is 1, the ADC module opening provided bADC_CLK selected frequency. (2), provided ADC_CTRL register ADC_CHAN1 / 0, to select the input channel.
- (3), optional, clear flag ADC_IF. Alternatively, if you are using interrupt mode, you also need this to enable interrupts. (4), provided ADC_CTRL register adc_start, start ADC conversion.
- (5), waiting ADC_START becomes 0, or ADC_IF is set (cleared if before), represents the ADC conversion, by

ADC_DATA read data. 255 aliquots of the data value of the input voltage with respect to the power source voltage VCC, e.g., the result data 47, the input voltage approaches described 47/255 VCC voltage. If the supply voltage VCC is not determined, the other can be a measured value determined by the reference voltage, then the calculated ratio of the measured value of the input voltage and the supply voltage VCC. (6), if you set once again at ADC_START ADC conversion can start

Voltage comparator mode configuration steps:

- (1), provided CMP_EN ADC_CFG register bit is 1, the turn-on voltage comparator module. (2), provided ADC_CTRL register ADC_CHAN1 / 0 and CMP_CHAN, selecting positive phase and the inverting input terminal. (3), optional, clear the flag CMP_IF.
- (4), any time you can query the status of CMPO bit to get results for the current comparator. (5), if CMP_IF becomes 1, the result of the comparator changes.

Said selected analog input channel, it must be set in the GPIO pins into high impedance mode, or open drain output mode and state output 1 (corresponding to high impedance input), Pn_DIR_PU [x] = 0, and recommendations pull-ups and pull-down resistors off.

16, USB controller

16.1 USB Controllers

CH552 embedded USB controller and a USB transceiver, the following characteristics:

(1), supports the USB Device device functions, supports USB 2.0 full speed or low speed 12Mbps 1.5Mbps; (2), supports USB control transfer, bulk transfer, interrupt transfer, synchronous / real-time transmission; (3), supports a maximum of 64 bytes packet, built-in FIFO, interrupt support, and DMA.

CH552 the USB-related registers divided into two parts: USB USB endpoint registers and global registers.

16.2 global register

Table 16.2.1 USB global register list (gray scale control by the reset bUC_RESET_SIE) Name

	<u>address</u>	description	Reset value
USB_C_CTRL	91h	USB type-C channel control registers configured	0000 0000b
USB_INT_FG	D8h	USB interrupt flag register	0010 0000b
USB_INT_ST	D9h	USB Interrupt Status Register (read only)	00xx xxxxb
USB_MIS_ST	DAh	Miscellaneous USB status register (read only)	xx10 1000b
USB_RX_LEN	DBh	Receiving USB length register (read only)	0xxx xxxxb
USB_INT_EN	E1h	USB interrupt enable register	0000 0000b
USB_CTRL	E2h	USB control register	0000 0110b
USB_DEV_AD	E3h	USB Device Address Register	0000 0000b

<u>USB_Channel configuration control type-C_Deposit</u> Device (USB_C_CTRL) :(CH551 NA)

Place	name	access	description	Reset value
<u>7</u>	bVBUS2_PD_EN	RW Thi	s bit is a 10K pull-down resistor internal to enable VBUS2 pin; 0 0 prohibition	
<u>6</u>	bUCC2_PD_EN	RW This	bit is a pull-down resistor 5.1K can make UCC2 internal pin; 0 prohibition	0
<u>5</u>	bUCC2_PU1_EN	A pull-up	resistor RW This bit controls the selection of the high internal pin UCC2	0
4	bUCC2_PU0_EN	RW This	bit is a pull-up resistor internal selection control pin low UCC2	0
<u>3</u>	bVBUS1_PD_EN	RW Thi	s bit is a 10K pull-down resistor internal to enable VBUS1 pin; 0 0 prohibition	
2	bUCC1_PD_EN	RW This	bit is a pull-down resistor 5.1K can make UCC1 internal pin; 0 prohibition	0
<u>1</u>	bUCC1_PU1_EN	RW This	bit is a pull-up resistor internal selection control pin high UCC1	0
<u>0</u>	bUCC1_PU0_EN	RW This	bit is a pull-up resistor internal selection control pin low UCC1	0

UCCn select the internal pin and by bUCCn_PU1_EN bUCCn_PU0_EN pull-up resistor.

bUCCn_PU1_EN bU0	Cn_PU0_EN_	Select the internal pull-up resistor pin UCCn
0	0	Disable the internal pull-up resistor
0	1	$56 \mathrm{K}\Omega$ internal pull-up resistors, the current representation provides default USB
1	0	Enables the internal pull-up resistor 22KΩ, the representation may be provided to 1.5A
1	1	10KΩ enables the internal pull-up resistor, can be provided to 3A represents

Pull-up resistor and said pull-down resistor is independent of the USB type-C Pn_DIR_PU port direction control and the pullup enable pullup port control register, when a pin is used for USB type-C, it should be prohibited corresponding to the pin pull-up resistor port, high impedance input mode is recommended to enable the pin (or output pin low to avoid the high level).

Details relating to the control and detecting input USB type-C refer to the channel configuration USB type-C Description and routines.

<u>USB</u> in <u>Interrupt flag register (U S B INT FG):</u>

Place	name	access	description	Reset value
7	U_IS_NAK	RO indic	ates that the current bit is a USB NAK transmission during a busy response is received; the Bit 0 indicates a non-received NAK response	0
6	U_TOG_OK	RO curre	ent USB transmission DATA0 / 1 matches the synchronization flag status bit is 1, the The sync data is valid; 0 indicates the bit is not synchronized, the data may be invalid	0
5	U_SIE_FREE	RO	USB protocol processor idle bit, which indicates the busy bit is 0, the USB transfer in progress; this bit is 1 indicates that the USB is idle	1
4	UIF_FIFO_OV	RW	USB FIFO overflow interrupt flag, the bit is 1 indicates FIFO overflow interrupt; the bit is 0 without interruption. Direct access bit is cleared or write 1 to clear	0
<u>3</u>	Retention	RO res	erved.	0
2	UIF_SUSPEND	RW	USB bus suspend or wake-up event interrupt flag bit, which is 1 means interrupt, the interrupt from the USB suspend event or wake-up event trigger; the bit is 0 for no interruptions. Direct access bit is cleared or write 1 to clear	0
1	UIF_TRANSFER	RW	USB transfer complete interrupt flag bit, which is 1 means interrupt, the interrupt is triggered by the completion of a USB transfer; the bit is 0 for no interruptions. Direct access bit is cleared or write 1 to clear	0
0	UIF_BUS_RST	RW	USB bus reset event interrupt flag bit, which is 1 means interrupt, the interrupt is triggered by the USB bus reset event; this bit is 0 for no interruptions. Direct access bit is cleared or write 1 to clear	0

Place	name	access	description	Reset value
7	bUIS_IS_NAK	RO indic	ates that the current bit is a USB NAK transmission during a busy response is received. With U_IS_NAK	0
6	bUIS_TOG_OK	RO curre	ent USB transmission DATA0 / 1 matches the synchronization flag state, the bit is 1 It indicates synchronization; 0 indicates the bit is not synchronized. With U_TOG_OK	0
5	bUIS_TOKEN1	RO curre	ent USB transfer transaction identifier token PID high	х
4	bUIS_TOKEN0	R0 cur	rent token PID identifies the USB affairs low	х
[3: 0]	MASK_UIS_ENDP	RO curre	ent endpoint number of the USB Affairs, 0000 indicating that the endpoint 0;; 1111 represents the end point 15	xxxxb

bUIS_TOKEN1 and bUIS_TOKEN0 composition MASK_UIS_TOKEN, identifies the current transaction of a USB token PID: 00 represents an OUT packet; represents SOF packet 01; 10 represents IN packet; 11 represents a SETUP packet.

USB Miscellaneous like $\underline{\mbox{The status register (USB_MIS}\ _\mbox{ST):}}$

Place	name	access	description	Reset value
[7: 6]	Retention	RO res	erved.	xxb
5	bUMS_SIE_FREE	RO	USB protocol processor idle bit, which indicates the busy bit is 0, the USB transfer in progress; this bit is 1 indicates that the USB is idle. With U_SIE_FREE	1
4	bUMS_R_FIFO_RDY	RO	USB receiver FIFO data ready status bit, bit 0 indicates that the receiver FIFO is empty; the bit is 1 Receive FIFO Not Empty	0
3	bUMS_BUS_RESET	RO	USB bus reset state bit, which is 0 indicates that no USB bus reset; the bit is 1, are in a USB bus reset	1
2	bUMS_SUSPEND	RO	USB Suspend status bit, bit 0 indicates the currently active USB; 1 indicates the bit is already some time USB activities, requests pending 0	not
[1: 0]	Retention	RO res	erved.	00b

USB receiver long Of the register (USB R \times LEN) :

1					
	Place	name	access	description	Reset value
	[7: 0]	bUSB_RX_LEN	RO curre	ent USB endpoint number of bytes of the received data	xxh

<u>USB</u> in <u>Interrupt Enable Register (USB _ INT_E</u> N):

Place	name	access	description	Reset value
<u>7</u>	bUIE_DEV_SOF	RW This	bit is a SOF packet receive interrupt enable; 0 prohibition	0
<u>6</u>	bUIE_DEV_NAK	RW This	bit is a NAK is received interrupt enable; 0 prohibition	0
<u>5</u>	Retention	RO res	erved.	0
<u>4</u>	bUIE_FIFO_OV	RW This	bit is a FIFO overflow interrupt enable; 0 Close to the enable bit	0
<u>3</u>	Retention	RO res	erved.	0
2	bUIE_SUSPEND	RW This	bit to 1 enables USB bus suspend or interrupt wake-up events; 0 to disable	0
<u>1</u>	bUIE_TRANSFER	RW Thi	s bit can complete interrupt 1 USB transfer so; the bit is 0 ban	0
<u>o</u>	bUIE_BUS_RST	RW Th	s bit is 1 Enable USB bus reset interrupt event; the bit is 0 ban	0

$\underline{\mathsf{USB}}\;\mathsf{control}\;\underline{\mathsf{System}}\;\mathsf{register}\;(\underline{\mathsf{USB}}\;\underline{\mathsf{CTR}}\;\underline{\mathsf{L}}\;\underline{\mathsf{)}}\!:\;\mathsf{Bit}$

name	access	description	Reset value

<u>7</u>	Retention	RO res	erved.	0
6	bUC_LOW_SPEED	RW	USB bus signal transmission rate selection bit, which is 0 for full 12Mbps; bit selects the low speed of 1.5Mbps 1	0
5	bUC_DEV_PU_EN	RW	USB devices, enable and internal pull control bit, which is a USB enabled device and enable transmission of the internal pullup	0
<u>5</u>	bUC_SYS_CTRL1	RW	USB system control high	0
<u>4</u>	bUC_SYS_CTRL0	RW	USB control system low	0
3	bUC_INT_BUSY	RW	USB transfer complete interrupt enable bit is automatically paused before the flag is not clear, this bit is an interrupt flag is automatically suspended before UIF_TRANSFER not cleared, it will automatically answer busy NAK; the bit is 0 and do not pause	0
2	bUC_RESET_SIE	RW	USB protocol processor software reset control bit, which is a forced reset and most USB USB protocol processor control registers need to be cleared by software	1
1_	bUC_CLR_ALL	RW This	bit is 1 Clear USB interrupt flag and FIFO, need to be cleared by software	1
<u>0</u>	bUC_DMA_EN	RW This	bit is a 1 to enable the USB interrupt and DMA DMA; 0 Enable Close	0

BUC_SYS_CTRL1 a USB system and control assembly bUC_SYS_CTRL0 composition:

bUC_SYS_CTRL1	bUC_SYS_CTRL0	USB control system description
0	0	Disable USB device function to close the internal pullup
0	1	USB enabled device function, the internal pull-off, the need to add external pullup
4	V	USB enabled device function is enabled internal pull-up resistor 1.5KΩ. The pull-up
1	X	resistor to the pull-down resistor precedence, GPIO mode can also be used

USB devices to Address Register (USB $\, \underline{D} \, \, \underline{E} \, \underline{V} \, \, \underline{AD})$:

Place	name	access	description	Reset value
7	bUDA_GP_BIT	RW	USB Universal flag: Users can customize the software can be set or cleared	0
[6: 0]	MASK_USB_ADDR	RW ad	dress the USB device	00h

16.3 endpoints register

CH552 provides bidirectional terminal endpoints 0,1,2,3,4 five groups, the maximum packet length of 64 bytes are all endpoints. Endpoint Endpoint 0 is the default, support control transmission, transmission and reception of a common 64-byte data buffer. Endpoint 1 and Endpoint 2, each terminal 3 comprises a sending endpoint and a receiving endpoint IN OUT, each have a separate transmission and reception of 64 byte or double byte data buffer 64, to support the control transfer, bulk transfer, interrupt transfer, and Real-time / synchronous transmission.

4 comprises a transmitting endpoint IN endpoint byte data buffer 64 and a receiving endpoint OUT, each have a separate transmitting and receiving support control transfer, bulk transfer, interrupt transfer, and real-time / synchronous transmission.

Each endpoint having a response and transmitting data of OUT transactions and IN transactions, and a control register UEPn_CTRL transmit length register UEPn_T_LEN (n = 0/1/2/3/4), used to set the trigger bits of the synchronization endpoint, the length and the like.

Pull-up resistor may be provided at any time by software as a USB device on the USB bus required is enabled, the USB control register is set when bUC_DEV_PU_EN USB_CTRL in 1, CH552 was the DP according bUD_LOW_SPEED pull pin or the pin connector of the USB bus inside the DM resistance, and enable the USB device functionality.

When the USB bus reset is detected, or suspend the USB bus wake-up event, or when the USB After successfully processing the received data transmission or data, USB protocol handler will set the corresponding interrupt request flag and generates an interrupt. The application can directly query or USB interrupt service routine queries and analysis interrupt flag register USB_INT_FG, the appropriate treatment according to UIF_BUS_RST and UIF_SUSPEND; and, if UIF_TRANSFER effective, you also need to continue to analyze the USB interrupt status register USB_INT_ST, based on the current endpoint number MASK_UIS_ENDP current transaction token and the corresponding PID identification MASK_UIS_TOKEN process. If the preset trigger synchronization bit bUEP_R_TOG OUT affairs of each endpoint, you can U_TOG_OK or bUIS_TOG_OK

Analyzing the currently received data packet matches the bit synchronous triggering the trigger bits of the synchronization endpoint, if the data synchronization, the data is valid; if the data is not synchronized, then the data should be discarded. After each processed USB transmit or receive interrupt should trigger the right to modify the sync bit respective endpoint for the next data packet transmitted synchronization and detects whether the received data packet the next synchronization; Further, by providing the can bUEP_AUTO_TOG automatic trigger bits corresponding synchronization flip successful transmission or reception is successful.

Data length of each of the endpoint is ready to send in the respective buffer, ready to be sent is set independently UEPn_T_LEN; and each endpoint of each received data in the buffer, but the received data length are the length of the USB receiver USB_RX_LEN register may be distinguished based on the current when the USB endpoint number received interrupt.

Table 16.3.1 USB device endpoint list associated registers (gray scale control by the reset bUC_RESET_SIE) Name

	<u>address</u>	description	Reset value
UDEV_CTRL	D1h	Physical USB device port control register	10xx 0000b
UEP1_CTRL	Endpoint	Control register 1 D2h	0000 0000b
UEP1_T_LEN	Endpoint 1	I D3h transmit length register	0xxx xxxxb
UEP2_CTRL	Endpoint	Control register 2 D4h	0000 0000b
UEP2_T_LEN	Length reg	ister Endpoint 2 transmits D5h	0000 0000b
UEP3_CTRL	Endpoint	Control Register 3 D6h	0000 0000b
UEP3_T_LEN	Endpoint t	ransmit length register 3 D7h	0xxx xxxxb
UEP0_CTRL	Endpoint	Control Register 0 DCh	0000 0000b
UEP0_T_LEN	DDh trans	mit length register Endpoint 0	0xxx xxxxb
UEP4_CTRL	Endpoint	Control register 4 DEh	0000 0000b
UEP4_T_LEN	4 transmit	length register endpoint DFh	0xxx xxxxb
UEP4_1_MOD	EAh end	point mode control register 4	0000 0000b
UEP2_3_MOD	EBh end	point mode control register 3	0000 0000b
UEP0_DMA_H	EDh End	point 0 and 4 buffer start address high byte	0000 00xxb
UEP0_DMA_L	Endpoint (4 ECh and the buffer start address low byte	xxxx xxxxb
UEP0_DMA	ECh	UEP0_DMA_L and UEP0_DMA_H composed of 16 SFR	0xxxh
UEP1_DMA_H	EFh Endp	ooint 1 buffer start address high byte	0000 00xxb
UEP1_DMA_L	EEh End	point 1 buffer start address low byte	xxxx xxxxb
UEP1_DMA	EEh	UEP1_DMA_L and UEP1_DMA_H composed of 16 SFR	0xxxh
UEP2_DMA_H	E5h End	point buffer start address high byte	0000 00xxb
UEP2_DMA_L	Endpoint	2 E4h buffer start address low byte	xxxx xxxxb
UEP2_DMA	E4h	UEP2_DMA_L and UEP2_DMA_H composed of 16 SFR	0xxxh
UEP3_DMA_H	Endpoint	E7h buffer start address high byte 3	0000 00xxb
UEP3_DMA_L	Endpoint	E6h buffer start address low byte 3	xxxx xxxxb
UEP3_DMA	E6h	UEP3_DMA_L and UEP3_DMA_H composed of 16 SFR	0xxxh

<u>USB</u> Assume <u>Preparation of a physical port control</u> send <u>Register (</u> UDEV_CTRL), by the reset control bUC_RESET_SIE:

Place	name	access	description	Reset value
7	bUD_PD_DIS	RW	USB device port UDP / pull-down resistor internal UDM pin disable bit, which is 1 to disable the internal pull-down resistor; bit 0 of the internal pulldown resistor. This bit is not bUSB_IO_EN control mode can also be used to provide the pull-down resistor GPIO	1
<u>6</u>	Retention	RO res	erved.	0
<u>5</u>	bUD_DP_PIN	RO UD	current state of the pin is low represents 0; 1 indicates a high level	х
<u>4</u>	bUD_DM_PIN	RO UD	M current state of the pin is low represents 0; 1 indicates a high level	х
<u>3</u>	Retention	RO res	erved.	0

2	bUD_LOW_SPEED	RW	USB device physical port speed mode enable bit, 1 bit of the low-speed mode selected is 1.5Mbps; this bit is 0 12Mbps full mode selection	0
1	bUD_GP_BIT	RW Gen	eral equipment flag: Users can define their own, can be set or cleared by software	0
0	bUD_PORT_EN	RW	Physical USB device port enable bit, which is 1 can make physical port; bit disables the physical port 0	0

Endpoint n Control Register (UEP n_CTRL):

<u> </u>	IL II CONTO NEGISTER (OLI II	• · · · · · ·	•		_
Place	name	access	description	Reset value	
7	bUEP_R_TOG	RW	N USB endpoint receiver (processing SETUP / OUT transaction) of the desired synchronous trigger bit, which is 0 for a desired DATA0; represents the desired DATA1 1	0	
6	bUEP_T_TOG	RW	N USB endpoint transmitter (IN transaction processing) prepared synchronization trigger bit, which is 0 indicates send DATA0; 1 denotes a transmission DATA1	0	
<u>5</u>	Retention	RO res	erved.	0	
4	bUEP_AUTO_TOG	RW	Bit synchronization is triggered automatically flip enable control bit, which is represented by a corresponding synchronization trigger automatically inverted position following a successful transmission or reception is successful; 0 indicates no flipping automatically, but can be manually swite.	0 ched. Only supp	orts endpoint 1/2/3
3_	bUEP_R_RES1	Endpoin	n RW receiver response to the SETUP / OUT transaction control high	0	
2	bUEP_R_RES0	Endpoin	n RW receiver response to the SETUP / OUT transaction control low	0	
1_	bUEP_T_RES1	N RW er	dpoint transmitter in response to the high IN transaction control	0	j
<u>0</u>	bUEP_T_RES0	N RW er	dpoint transmitter in response to the IN transaction control low	0	j

The receiver and the bUEP_R_RES1 bUEP_R_RES0 MASK_UEP_R_RES composed of n for the control endpoint responds to the SETUP / OUT transaction: 00 indicates acknowledgment ACK or ready; 01 represents a time-out / no response, the endpoint for implementing the non-real-time / 0 synchronous transmission; 10 shows the response NAK or busy; 11 represents a response STALL or error.

MASK_UEP_T_RES bUEP_T_RES1 and a composition for controlling the endpoint bUEP_T_RES0 n transmitter responds to the IN transaction: 00 response DATA0 / DATA1 or the desired data ready and ACK; 01 a response indicating DATA0 / DATA1 and no response expected, for achieving non- real-time endpoint / 0 synchronous transmission; busy or NAK response indicating 10; 11 or STALL response indicating an error.

${\bf Endpoint} \ n \ transmit \underline{ \ Length \ register \ (UEPn_T_L \ EN)};$

Place	name	access	description	Reset value
r7 01	bUEPn_T_LEN_	<u>.</u>		xxh
[7: 0]	bUEP2_T_LEN_	RW num	ber of data bytes is provided ready to send USB endpoint n (n = 0/1/3/4) USB endpoint number set ready to send data byte 2	00h

4 USB endpoint mode control register Unit (UEP 4_1_MOD):

			,	
Place	name	access	description	Reset value
7	bUEP1_RX_EN	RW This	bit is 0 prohibits receiving endpoint 1; 1 enables terminal 1 receives (OUT)	0
6	bUEP1_TX_EN	RW This	bit is 0 Disable Endpoint 1 transmits; 1 enable Endpoint 1 transmits (IN)	0
5	Retention	RO res	erved.	0
4	bUEP1_BUF_MOD	Endpoi	nt RW data buffer mode control bit 1	0
3	bUEP4_RX_EN	R0 4 rec	eives this bit disables endpoint is 0; 1 to enable the receiving terminal 4 (OUT)	0
2	bUEP4_TX_EN	RW This	bit is 0 prohibits transmitting endpoint 4; 1 to enable transmission 4 Endpoint (IN)	0
[1: 0]	Retention	RO res	erved.	00b

Controlled by the USB endpoint and bUEP4_TX_EN bUEP4_RX_EN composition data buffer mode 0 and 4, with reference to the following table.

Endpoint Table 16.3.2 Buffer Mode 0 and 4

NIEDA DV EN NIEDA TV EN	Objective Description LIEDO DMA to the standard days are sent of two levels birth
bUEP4_RX_EN bUEP4_TX_EN	Structure Description: UEP0_DMA to the start address arranged from low to high

0	0	Endpoint 0 64 single-byte receive and transmit buffers (IN and OUT)
1	0	Endpoint 0 64 single-byte receive and transmit buffers; endpoint 4 single 64-byte receive buffer (OUT)
0	1	Endpoint 0 64 single-byte receive and transmit buffers; endpoint 4 single 64-byte transmit buffer (IN)
1	1	Endpoint 0 64 single-byte receive and transmit buffers; endpoint 4 single 64-byte receive buffer (OUT); endpoint 4 single 64-byte transmit buffer (IN). All 192 bytes arranged as follows: UEP0_DMA + 0 Address: Endpoint 0 duplexer; UEP0_DMA + 64 Address: 4 receives endpoint; UEP0_DMA + 128 Address: transmitting endpoint 4

$\underline{\text{USB}} \ 2,\! 3 \ \text{endpoint control mode} \underline{\text{register}} \ (\text{UEP2_3_MOD}) :$

Place	name	access	description	Reset value
<u>7</u>	bUEP3_RX_EN	RW this	bit disables the reception terminal 3 is 0; 1 to enable the receiving end 3 (OUT)	0
<u>6</u>	bUEP3_TX_EN	RW This	bit is 0 prohibits transmission terminal 3; 3 1 enables transmission endpoint (IN)	0
<u>5</u>	Retention	RO res	erved.	0
<u>4</u>	bUEP3_BUF_MOD	Endpoi	nt RW mode control bit data buffer 3	0
<u>3</u>	bUEP2_RX_EN	R0 this b	it disables the receiving terminal 2 is 0; 1 to enable the receiving terminal 2 (OUT)	0
<u>2</u>	bUEP2_TX_EN	RW This	bit is 0 prohibits sending endpoints 2; 2 enable transmission of Endpoint 1 (IN)	0
<u>1</u>	Retention	RO res	erved.	0
<u>o</u>	bUEP2_BUF_MOD	Endpoi	nt RW data buffer mode control bit 2	0

Control the USB endpoint data buffer mode and 1,2,3 bUEPn_RX_EN bUEPn_TX_EN and by (n = 1/2/3) combinations bUEPn_BUF_MOD, refer to the following table. Wherein the dual mode byte buffer 64, the data transfer according to the USB bUEP _ * _ TOG = 0 before the selected 64-byte buffer, according bUEP _ * _ TOG = 64 bytes 1 selection buffer, automatic switching.

Table 16.3.3 Buffer Mode Endpoint n (n = 1/2/3)

bUEPn RX EN bUEPr	TX EN bUEPn BUF	MOD Structure Description:	UEPn_DMA to the start address arranged from low to high
0	0	x	Endpoint is disabled, unused buffer UEPn_DMA
1	0	0	Single 64-byte receive buffer (OUT)
1	0	1	Dual 64-byte receive buffer, by selecting bUEP_R_TOG
0	1	0	Single 64-byte transmit buffer (IN)
0	1	1	Dual 64-byte transmit buffer, by selecting bUEP_T_TOG
1	1	0	Single-byte receive buffer 64; 64 single-byte transmit buffer
			Dual 64-byte receive buffer, by selecting bUEP_R_TOG; 64 double-byte transmit buffer, by selecting bUEP_T_TOG. All 256 bytes arranged as follows:
1	1	1	UEPn_DMA + 0 Address: bUEP_R_TOG = 0 endpoint receives; UEPn_DMA + 64 Address: bUEP_R_TOG = Endpoint receives 1; UEPn_DMA + 128 Address: bUEP_T_TOG = endpoint sends 0:00; UEPn_DMA + 192 Address: bUEP_T_TOG = Endpoint 1 transmits

USB endpoint n <u>Buffer origin</u> site (UEPn_ DMA) (n = 0/1/2/3):

Place	name	access	description description	
[7: 0]	UEPn_DMA_H	Endpoir	nt n RW high byte buffer start address, only lower 2 bits effective, 6 Fixed 0	0xh
[7: 0]	UEPn_DMA_L	RW En	dpoint n buffer start address low byte	xxh

Note: the length of the received data buffer> = min (maximum packet length might receive 2 bytes + 64 bytes)

17, touch buttons Touch-Key

17.1 Touch-Key Profile

CH552 chip capacitor provides a detection module and associated timers having six input channels, to support capacity range 5pF ~ 150pF. Since capacitive can support up to six touch keys, mutual capacitance touch can support up to 15 keys.

17.2 Touch-Key Register

Table 17.2.1 Touch-Key associated register list

name	address	description	Reset value
TKEY_CTRL	C3h	Touch-Key Control Register	x0h
TKEY_DATH	C5h	Touch-Key high byte data (read-only)	00h
TKEY_DATL	C4h	Touch-Key low-byte data (read only)	xxh
TKEY_DAT	C4h	TKEY_DATL and TKEY_DATH composed of 16 SFR	00xxh

Touch-Ke y Control Register (TKEY_C TRL):

Place	name	access	description	Reset value
7	bTKC_IF	RO	Timer interrupt flag. If bTKD_CHG = 0 is automatically set at the end of the current timing cycle an interrupt request, when the end of the preparation phase is automatically cleared, or cleared by writing TKEY_CTRL. If bTKD_CHG = 1 is automatically cleared, the interrupt is not requested, the current cycle is skipped, and the next cycle is detected and re-prepared and automatically set at the end of the next cycle of the interrupt request 1	х
[6: 5]	Retention	RO res	erved.	00b
4	bTKC_2MS	RW	The capacitance detection period of the timer selection: 0-1mS; 1-2mS. Week period before 87uS preparation stage, the remaining time detection phase. These times are based on the time when Fosc = 24MHz	0
3	Retention	RO res	erved.	0
2	bTKC_CHAN2	RW touc	h key input selecting the capacitance detection high	0
1	bTKC_CHAN1	RW the	capacitance detection touch key input selection bit	0
0	bTKC_CHAN0	RW capa	citance touch key detecting low input selection	0

By the bTKC_CHAN2 ~ BTKC_CHAN0 selected Optional touch button electric Capacitive detector input channel.

bTKC_CHAN2	bTKC_CHAN1_	bTKC_CHAN0_	Selecting the capacitance detection touch key input channels
0	0	0	Close power capacitance detection module, or merely as a period of 1mS independent timer interrupt 2mS
0	0	1	TIN0 (P1.0)
0	1	0	TIN1 (P1.1)
0	1	1	TIN2 (P1.4)
1	0	0	TIN3 (P1.5)
1	0	1	TIN4 (P1.6)
1	1	0	TIN5 (P1.7)
1	1	1	Power-on detection module, but the capacitor is not connected to any channel

Place	name	access	description	Reset value
7	bTKD_CHG	RO	Touch-Key control change flag. This bit is one, the capacitance is rewritten TKEY_CTRL detection stage, may cause TKEY_DAT data is invalid, and did not mention bTKC_IF end of	0
,	TKEY_DATH [7]		the current cycle. This bit is set each Preparation phase cycle is automatically cleared when the end, the mask bit of data to be taken	J
6	Retention	RO res	eserved.	
[5: 0]	TKEY_DATH	RO	Fouch-Key high byte of data. Automatically cleared at the end of each timing cycle of the preparation phase; automatic counting stage capacitance detection; data preparation phase remains unchanged, so that the timer interrupt routine read	
[7: 0]	TKEY_DATL	RO	Touch-Key low-byte data. Automatically cleared at the end of each timing cycle of the preparation phase; automatic counting stage capacitance detection; data preparation phase remains unchanged, so that the timer interrupt routine read	xxh

17.3 Touch-Key function

Capacitance detecting step:

- (1), provided TKEY_CTRL register bTKC_2MS and bTKC_CHAN2 ~ bTKC_CHAN0, the input channel selection period. Is
 - Selected input channels, it must be set in the GPIO pins into high impedance mode, or open drain output mode and state output 1 (corresponding to high impedance input), Pn_DIR_PU [x] = 0.
- (2) cleared bTKC_IF and enable interrupts IE_TKEY wait timer interrupt, or by initiative inquiry into the bTKC_IF interrupt routine. (3), the capacitance detection of the current channel is automatically set preparation phase bTKC_IF interrupt request, while after the next cycle is completed,

TKEY_DAT unchanged and maintain data about 87uS.

- (4), entering the interrupt routine, first reads capacitance data from TKEY_DAT the current channel, and the highest bit mask bTKD_CHG, the
- Data are relative values, and inversely proportional to the capacitance, when the touch data is smaller than the key depression data is not pressed. (5), provided TKEY_CTRL register bTKC_2MS and bTKC_CHAN2 ~ bTKC_CHAN0, select the next input channel. That

Write automatically cleared bTKC_IF, end interrupt request.

- (6), data TKEY_DAT data (4) and the step of reading a previously saved without the key channel, and determines whether the change in capacitance

 And if a key is pressed.
- (7), a return from interrupt immediately after completion of the capacitance detecting a passage to step (3).

18, parameters

18.1 absolutely Correct The maximum value (equal to or exceed absolute maximum value will likely cause the chip to work Do not Normal or even loss Bad)

name	Parameter Description	Minimum Ma	ıximum <u>unit</u>	
TA	When the ambient temperature is less than the system frequency 28MHz work Fsys	- 40	85	°C
TA32M	When the ambient temperature is greater than the system frequency 28MHz work Fsys	20	70	°C
TS	The ambient temperature during storage	- 55	125	°C
VCC	Supply voltage (VCC power supply connected, GND Ground)	- 0.4	5.8	V
VIO	In addition to the other input P3.6 / P3.7 or voltage on the output pin	- 0.4	VCC + 0.4	V
VIOU	The voltage on the P3.6 / P3.7 input or output pin	- 0.4	<u>V33 + 0.4</u>	V

18.2 Electric Gas parameters 5V (test conditions: TA = 25 °C, VCC = 5V, Fsys = 6MHz)

name	Parameter Description		Min Typ Max	unit_		
VCC5	Supply voltage VCC pin	V33 only external capacitor	3.7	5	5.5	V
V33	Internal USB output voltage of the power regulator		3.14	3.27	3.4	V

-					
ICC24M5	The total supply current work Fsys = 24MHz	8	11		mA
ICC6M5	The total supply current work Fsys = 6MHz	4	6		mA
ICC750K5	The total supply current work Fsys = 750KHz	2	3		mA
ISLP5	The total supply current after sleep		0.1	0.2 mA	
	VCC = V33 = 5V, and an optional external crystal clock,				
ISLP5L	BLDO3V3_OFF = 1 and off LDO, the total		0.008	0.02	mA
	supply current total sleep				
IADC5	ADC analog to digital converter module operating current		200	800	uA
ICMP5	The comparator module operating current		100	500	uA
ITKEY5	The capacitance detection touch key operation current		150	250	uA
VIL5	Low level input voltage	- 0.4		1.2	V
VIH5	High-level input voltage	2.4		<u>VCC + 0.4</u>	V
VOL5	Low Output Voltage (12mA current sinking)			0.4	V
VOH5	High level output voltage (output current 8mA)	VCC-0.4			V
VOH5U	P3.6 / P3.7 high-level output voltage (output current 8mA) V33-0.4				V
IIN	No pull-input of the input current	5	0	5	uA
IDN5	Input current with the input pull-down resistor	- 35	70	- 140	uA
IUP5	Pull-up resistor input of the input current	35	70	140	uA
IUP5X <u>Pull in</u>	IUP5X Pull input to the input end is low at a high switching current		400	600	uA
Vpot	Vpot Power-on reset threshold voltage		2.3	2.5	V

$\underline{18.3 \ Electric} \ Gas \ parameters \ 3.3V \ (test \ conditions: \ TA = 25 \ ^{\circ}C, \ VCC = V33 = 3 \ \underline{.3V, Fsys} = 6MHz)$

name	Parameter Description		Min Typ Max	unit_		
\/O.00	VCC pin	V33 shorted to VCC, open USB	3.0	3.3	3.6	V
VCC3	<u>voltage</u>	V33 shorted to VCC, turn off USB	2.5	3.3	3.6	V
ICC16M3	The total sup	oply current work Fsys = 16MHz	4	6		mA
ICC6M3	The total supply current work Fsys = 6MHz		2	4		mA
ICC750K3	The total sup	ply current work Fsys = 750KHz	1	2		mA
ISLP3	Th	e total supply current after sleep		0.07	0.15	mA
ISLP3L	bLDO3V3_OFF = 1 closed LDO, the total supply current total sleep			0.004	0.01	mA
IADC3	ADC an	alog to digital converter module operating current		150	500	uA
ICMP3	The comparator module operating current			70	300	uA
ITKEY3	The capacitance detection touch key operation current			130	200	uA
VIL3	Low level input voltage		- 0.4		0.8	V
VIH3	High-level input voltage		1.9		<u>VCC + 0.4</u>	V
VOL3	Low-level output voltage (current sinking 8mA)				0.4	V
VOH3	High level output voltage (output current 5mA)		VCC-0.4			V
VOH3U	P3.6 / P3.7 high-level output voltage (output current 8mA) V33-0.4					V
IIN	No pull-input of the input current		5	0	5	uA
IDN3	Input current with the input pull-down resistor		15	30	- 60	uA
IUP3	Pull-up resistor input of the input current		15	30	60	uA
IUP3X <u>Pull in</u>	IUP3X Pull input to the input end is low at a high switching current		100	170	250	uA
Vpot	Power	on reset threshold voltage	2.1	2.3	2.5	V

18.4 When Order parameter (test conditions: TA = 25 °C, VCC = 5V or VCC = V 33 = 3.3V, F s ys = 6MHz)

10.4 WHEH Order parameter (test conditions: TA = 25 °C, VCC = 5V or VCC = V_33 = 3.3V, F s Vs = 6MHZ)					
name	Parameter Description	Min Typ Max	unit unit		
Fxt	Frequency external crystal or clock frequency input XI	6	twenty four	25	MHz
Fosc	V33 = 3V ~ 23.64 by the internal clock frequency after calibration when 3.6	/	twenty four	24.36	MHz
Fosc27	V33 = 2.7V ~ 23.28 by the internal clock frequency calibrated at 3V		twenty four	24.72	MHz
Fosc25	Internal clock frequency after V33 = 2.5V calibrated	twenty one	twenty four	27	MHz
FpII	After the internal PLL frequency multiplier	twenty four	96	100	MHz
Fusb4x When using the USB device function, USB sampling clock frequency		47.04	48	48.96	MHz
Fsys -	Clock frequency of the system frequency (VCC> = 4.9V)	0.1	6	32	MHz
	Clock frequency of the system frequency (4.9V> VCC> = 4.0V)	0.1	6	twenty four	MHz
	Clock frequency of the system frequency (4.0V> VCC> = 2.8V)	0.1	6	16	MHz
	Clock frequency of the system frequency (VCC <2.8V)	0.1	6	12	MHz
Tpor	Power on Reset delay	9	11	15	mS
Trst	Active reset signal RST input from the outside width	70			nS
Trdl	Warm Reset Delay	30	45	60	uS
Twdc	Calculated watchdog timeout period / timing period 65536 * (0x100 - WD O G_COUNT) / Fsys				
Tusp	Automatic detection of USB suspend time	4	5	6	mS
Twak	After the chip sleep wake completion time	1	2	10	uS

19, modify the record

version	date	Explanation
V1.0	2016.12.20	Original Issue