# WH<sup>®</sup>

# CH334/CH335 Datasheet

V2

http://wch.cn

# **Overview**

CH334 and CH335 are USB2.0 protocol compliant 4-port USB HUB controller chips, supporting USB2.0 high-speed and full-speed for uplink ports, and USB2.0 high-speed 480Mbps, full-speed 12Mbps and low-speed 1.5Mbps for downlink ports, supporting not only low-cost STT mode (single TT schedules 4 downlink ports in time share), but also supports high performance MTT mode (4 TTs each corresponding to 1 port, concurrent processing). Industrial grade design with streamlined peripherals for use in computer and industrial control machine motherboards, peripherals, embedded systems, etc.

#### **Features**

- 4-port USB HUB, providing 4 USB 2.0 downlink ports, backward compatible with USB 1.1 protocol specification
- Support each port independent power control or GANG overall linkage power control
- Support independent overcurrent detection of each port or overall overcurrent detection of GANG, support 5V withstand overcurrent signal input
- Support high performance MTT mode, providing independent TT for each port to achieve full bandwidth concurrent transmission, with 4 times the total bandwidth of STT
- Support port status LED indicators
- Configurable via external EEPROM to support composite devices, non-removable devices, custom VIDs, PIDs and port configurations
- Built-in information memory, for industry-specific needs can be customized in bulk manufacturer or product information and configuration
- Self-developed dedicated USB PHY, low-power consumption technology, significantly reduced compared to the first generation of HUB chips, support self-powered or bus-powered
- Self-powered or bus-powered mode configurable via I/O pins or external EEPROM
- Provides crystal oscillator with built-in capacitor, supports external 12MHz input, and built-in PLL provides 480MHz clock for USB PHY
- Built-in 1.5KΩ pull-up resistor on the uplink port, built-in pull-down resistor on the downlink port required for USB Host, streamlined periphery
- Built-in LDO linear buck regulator converts USB bus supply voltage to 3.3V operating power for the chip
- 6KV enhanced ESD performance, Class 3A
- Industrial grade temperature range: -40~85°C
- QFN28, SOP16, QSOP28 and other small, low-cost, easy-to-process packages are available

# **Chapter 1 Pinouts and pin definition**

## 1.1 Pin Arrangement

Figure 1-1 Pin Distribution CH334G DM4 XI XC GNI DP4 DM3 PSELF NC. #/CDP VDD33 DP3 RESET# DM2 DP2 V5 DPU NC. VDD33 V5 VDD33 LED4/SDA LED1 LED2 PWREN# DP 1 DM 1 DP 2 DM 2 DP 3 DM 3 NC. NC. SNI NC. NC. DM 1 DP 1 DMU DPU DMU RESET#/CDF XO XI NC GND NC. NC. VDD33 CH334R PAKSK PAKSK XI XO GND DM1 DM2 DM2 DM3. CH334F DM3 VDD33 CH334Q DM2 DP2 V5 DPU 10 DMU RESET#/CDF DM 1 DP 1 TON DRU-OVCUR3# OVCUR4# RESET#/CDP-DM4-DP4-VDD33 OVCUR3# OVCUR4# LED3/SCL RESET#/CDP DP4 CH334U VDD33 LED3/SCL PSELF DP3 13 12 11 10 PGANG OV CUR 2# OV CUR 2# OV CUR 1# GND DM3 DP3 NC. OV CUR# XC DM3 XO OVCUR1# XC LED4/SDA XI NC /PSELF N2# /PGANG 11# 14#/SUSP LED4/SDA DP4 LED2 GND LED1 LED4/SDA VDD33 VDD33 DM3 PWREN# DM<sub>2</sub> 8 9 10 11 12 13 14 DM2 VDD33  $DP\bar{2}$ DM 1 DP 1 GND VDD33 **PSELF** NC. /CDF DPU DMU CH334H CH335F RESET# LED3/SCL OVCU CH334S **PSELF** DP 1 NC DM2 DP2 DM 1 DPU PGANG OV CUR 2# DP. DM 4 PWREN# DMU RESET#/CDP DP 2 GNI 14 15 16 7 6 5 VDD33 **PGANG** OV CUR 1# NC. DM2 VDD33 V5 VDD33 XΙ DP: LED4/SDA XÖ DM3 LED4/SDA OV CUR# NC. DM: DM3 NC. XO DP3 NC. NC. OXIX DM4 DP4 NC. PGANG PSELF V5 VDD33 XI GND DM4 INC. GND DMU DPU DP1 NC. GND DM2 DP2 PWREN DP4 CH334P RESET#/CDP NC GND LED3/SCL CH334L

Note: Pin 0# refers to the QFN package backplane (exposed pad).

# 1.2 Model Comparison

Table 1-1 Function comparison of the same cluster model

| Model<br>Function                                 | CH334G | CH334R | СН334Р | CH334U<br>CH334F | CH334S<br>CH334Q | CH334H<br>CH334L | CH335F      |
|---------------------------------------------------|--------|--------|--------|------------------|------------------|------------------|-------------|
| TT mode                                           | STT    | MTT    | MTT    | MTT              | MTT              | MTT              | MTT         |
| Overcurrent                                       | ×      | ×      | ×      | GANG             | GANG             | Independent      | Independent |
| detection                                         | *      | ^      | *      | mode             | mode             | / GANG           | / GANG      |
| Power Control                                     | ×      | ×      | ×      | GANG             | GANG             | GANG mode        | Independent |
| rower Control                                     | ^      | ^      | ^      | mode             | mode             | GANG mode        | / GANG      |
| LED indicator                                     | ×      | ×      | 1-LED  | 5-LED            | 1-LED            | 1-LED            | 5-LED / 9-  |
| LED indicator                                     | ^      | ^      | 1-LED  | 3-LED            | 1-LLD            | 1-LED            | LED         |
| I/0 pin configuration Power supply mode           | ×      | ×      | ×      | V                | V                | V                | V           |
| External EEPROM Provide configuration information | ×      | ×      | ×      | V                | V                | V                | V           |
| Custom configuration information                  | V      | V      | V      | V                | V                | √                | <b>√</b>    |
| USB3.0 pass-<br>through                           | ×      | _      | _      | _                | _                | _                | V           |

# 1.3 Packaging

Table 1-2 Package Description

| Package form | Shapin      | g width | Pin sp    | oacing    | Package Description    | Order Model |
|--------------|-------------|---------|-----------|-----------|------------------------|-------------|
| SOP16        | 3.9mm       | 150mil  | 1.27mm    | 50mil     | Standard 16-pin chip   | CH334G      |
| QSOP16       | 3.9mm       | 150mil  | 0.635mm   | 25mil     | 1/4 size 16-pin SMD    | CH334R      |
| QSOP28       | 3.9mm       | 150mil  | 0.635mm   | 25mil     | 1/4 size 28-pin SMD    | CH334U      |
| SSOP28       | 5.3mm       | 209mil  | 0.65mm    | 25mil     | Reduced 28-pin chip    | CH334S      |
| QFN16_3x3    | 3*3mm       |         | 0.5mm     | 19.7mil   | Square Leadless 16-pin | СН334Р      |
| QFN24_4x4    | 4*4mm       |         | 0.5mm     | 19.7mil   | Square Leadless 24-pin | CH334F      |
| QFN28_5x5    | 5*5mm       |         | 0.5mm     | 19.7mil   | Square Leadless 28-pin | СН334Н      |
| QFN36_6x6    | 6*6mm       |         | 0.5mm     | 19.7mil   | Square leadless 36-pin | CH334Q      |
| LQFP48       | 7*7mm       |         | 0.5mm     | 19.7mil   | Standard LQFP 48-pin   | CH334L      |
| LQIT 40      | / / 1111111 |         | 0.5111111 | 17./11111 | chip                   | CHSSAL      |
| QFN28_4x4    | 4*4mm       |         | 0.4mm     | 15.7mil   | Square Leadless 28-pin | CH335F      |

Note: Preferred CH334P, small size; CH335 full pinout; other package forms focus on PCB compatibility; CH334L only batch booking.

# 1.4 Pin Description

Table 1-3 Pin definition

| Pin  | numb |    | in wi |    |    | e nar | ne | Pins | Туре | Function Description                 |
|------|------|----|-------|----|----|-------|----|------|------|--------------------------------------|
| 335F | G/R  | 4F | 4U    | 4S | 4Q | 4H    | 4L | Name |      |                                      |
| 20   | 10   | 14 | 15    | 25 | 30 | 1     | 3  | DMU  | USB  | Uplink port USB2.0 signal cable D-   |
| 21   | 11   | 15 | 16    | 26 | 31 | 2     | 4  | DPU  | USB  | Uplink port USB2.0 signal line D+    |
| 6    | 7    | 11 | 10    | 27 | 1  | 3     | 5  | DM1  | USB  | 1# downlink port USB signal cable D- |
| 7    | 8    | 12 | 11    | 28 | 2  | 4     | 6  | DP1  | USB  | 1# downlink port USB signal line D+  |
| 8    | 5    | 9  | 8     | 2  | 3  | 6     | 9  | DM2  | USB  | 2# downlink port USB signal cable D- |
| 9    | 6    | 10 | 9     | 3  | 4  | 7     | 10 | DP2  | USB  | 2# downlink port USB signal line D+  |
| 13   | 3    | 7  | 6     | 8  | 6  | 12    | 17 | DM3  | USB  | 3# downlink port USB signal cable D- |
| 14   | 4    | 8  | 7     | 9  | 7  | 13    | 18 | DP3  | USB  | 3# downlink port USB signal line D+  |
| 15   | 1    | 5  | 4     | 11 | 8  | 15    | 21 | DM4  | USB  | 4# downlink port USB signal cable D- |
| 16   | 2    | 6  | 5     | 12 | 9  | 16    | 22 | DP4  | USB  | 4# downlink port USB signal line D+  |

| 11 | 16 | 4  | 3             | 6  | 33       | 10       | 14                 | XI              | Ι  | Crystal oscillator input, connected to the external crystal end                                                                  |
|----|----|----|---------------|----|----------|----------|--------------------|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------|
| 12 | 15 | 3  | 2             | 7  | 32       | 11       | 15                 | ХО              | О  | Crystal oscillator inverted output, connected to the other end of the external crystal                                           |
| 17 | 9  | 16 | 17            | 13 | 20       | 17       | 26                 | RESET#          | 5I | External reset input with built-in pull-up resistor, active low. It is recommended to be completely suspended when not reset.    |
| 26 | 12 | 19 | 20            | 23 | -        | 27       | 47                 | V5              | P  | 5V or 3.3V power input, external 1uF or larger capacitor                                                                         |
| 28 | 13 | 20 | 21            | 24 | 29       | 28       | 48                 | VDD33           | Р  | Main power supply, LDO output and 3.3V input.  External 0.1uF+10uF decoupling capacitor, or 1uF decoupling capacitor             |
| -  | -  | -  | 13            | -  | 10<br>23 | 14<br>21 | 19                 | VDD33           | P  | 3.3V power input, external 1uF or 0.1uF decoupling capacitor                                                                     |
| 27 | 14 | -  | 1<br>12<br>28 | 15 | 14<br>35 | -        | 2<br>8<br>13<br>20 | GND             | Р  | Common ground terminal                                                                                                           |
| 0  | -  | 0  | -             | -  | 0        | 0        | -                  | GND             | P  | Common ground terminal (base plate)                                                                                              |
| 24 | -  | 1  | 26            | 21 | 21       | 25       | 42                 | OVCUR# OVCUR1   | 51 | GANG integral mode line port overcurrent detection input pin.  1# downlink port overcurrent detection input pin, low overcurrent |
| 23 | -  | -  | -             | -  | -        | 24       | 40                 | OVCUR2<br>#     | 5I | 2# Downlink port overcurrent detection input pin, low overcurrent                                                                |
| 19 | -  | -  | -             | -  | -        | 20       | 30                 | OVCUR3          | 5I | 3# Downlink port overcurrent detection input pin, low overcurrent                                                                |
| 18 | -  | -  | -             | -  | -        | 19       | 28                 | OVCUR4 #        | 5I | 4# downlink port overcurrent detection input pin, low overcurrent                                                                |
| 4  | -  | 24 | 25            | 4  | 18       | 8        | 11                 | PWREN# PWREN1 # | 0  | GANG integral mode line port power output control pins.  1# downlink port power output control pin, low on                       |
| 2  | -  | -  | -             | -  | -        | -        | -                  | PWREN2 #        | О  | 2# downlink port power output control pin, low on                                                                                |

|    |   |    |    |    |    |    |    | 1                   |     | <del>,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|---|----|----|----|----|----|----|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | - | -  | -  | -  | -  | -  | -  | PWREN3 #            | О   | 3# downlink port power output control pin, low on                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5  | - | -  | -  | -  | -  | -  | -  | SUSP<br>PWREN4<br># | О   | GANG overall mode SUSPEND sleep state output pin, high level indicates sleep state, low level indicates normal state.  4# downlink port power output control pin, low on                                                                                                                                                                                                                                                                                                              |
| -  | - | 18 | 19 | 17 | -  | 22 | 37 | PSELF               | Ι   | Configure power supply mode with built-in pull-up resistor: default high level is self-powered, low level is set for bus power                                                                                                                                                                                                                                                                                                                                                        |
| -  | - | -  | 1  | 18 | -  | 23 | 39 | PGANG               | I/O | Configure power overcurrent protection mode during reset with built-in pull-up resistor. Switch to sleep/normal state output after reset is complete.  Default high level for overall overcurrent detection and overall power control, with low output indicating normal state and high indicating sleep state after reset.  External pull-down resistor set low for independent overcurrent detection, after reset the output high indicates normal state, low indicates sleep state |
| 1  | - | 22 | 23 | -  | -  | -  | -  | LED1<br>PSELF       | I/O | LED1: port status indication signal 1.  PSELF: configure power supply mode during reset, built-in pull-up, default high for self-power, plus pull-down to set low for bus power                                                                                                                                                                                                                                                                                                       |
| 3  | - | 23 | 24 | -  | -  | -  | -  | LED2<br>PGANG       | I/O | LED2: port status indication signal 2.  PGANG: configure power overcurrent protection mode during reset, built-in pull-up, default high for overall overcurrent detection and overall power control, plus pull-down to set low for independent overcurrent detection                                                                                                                                                                                                                  |
| 22 | - | 13 | 14 | 14 | 19 | 18 | 27 | LED3<br>SCL         | I/O | LED3: port status indication signal 3.  SCL: Output for EEPROM clock signal line during reset                                                                                                                                                                                                                                                                                                                                                                                         |
| 25 | - | 21 | 22 | 22 | 22 | 26 | 43 | LED4<br>SDA         | I/O | LED4: port status indication signal 4.  SDA: EEPROM bi-directional data signal line                                                                                                                                                                                                                                                                                                                                                                                                   |

|   |   |         |          |                                |   |     |   |     | during reset                                    |
|---|---|---------|----------|--------------------------------|---|-----|---|-----|-------------------------------------------------|
| - | - | 2<br>17 | 18<br>27 | 1<br>5<br>10<br>16<br>19<br>20 | * | 5 9 | * | NC. | Empty pins or reserved pins, disable connection |

# Pin Type:

- 1) I: 3.3V signal input.
- 2) O: 3.3V signal output.
- 3) 5I: Rated 3.3V signal input, supports 5V withstand voltage.
- 4) P: Power or ground.

# **Chapter 2 Structure**

## 2.1 System Architecture

**I2C** BC USPORT Transceiver UTMI LED Controller USPORT Routing Logic HS FS/LS REPEATER REPEATER HUB Controller TT \* 4RAM ROM DSPORT Routing Logic DSPORT1 DSPORT2 DSPORT3 DSPORT4 Transceiver Transceiver Transceiver Transceiver

Figure 2-1 System block diagram

Figure 2-1 is a block diagram of the internal structure of the HUB controller system. The HUB controller consists of three main modules: Repeater, TT and controller. The controller is similar to an MCU processor for global management and control. The routing logic will connect the port to Repeater when the speed of uplink port and downlink port are the same, and connect the port to TT when the speed of uplink port and downlink port are not the same.

TT is divided into single TT and multiple TT, i.e., STT and MTT, STT is a single TT core dispatched in time to handle the transactions sent down to all downlink ports by the USB host, MTT refers to multiple TT in parallel, which is 4 TT cores corresponding to and processing the transactions of one downlink port in real time, so MTT can provide fuller bandwidth for the access devices of each downlink port and better support multi-port large concurrent transmission of large data volumes.

Notes:

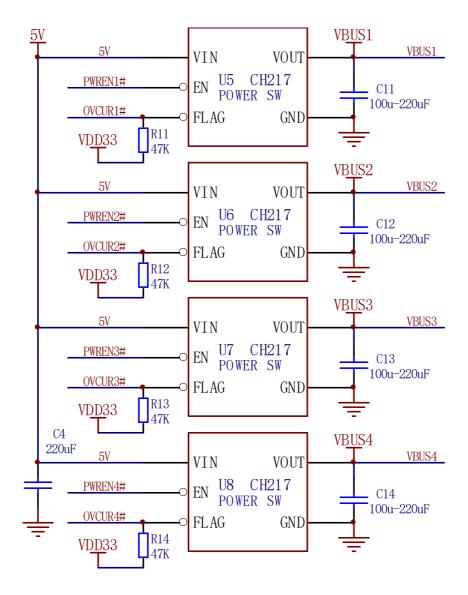
USPORT Transceiver: Uplink port transceiver PHY DSPORT Transceiver: downlink port transceiver PHY

REPEATER: HUB Repeater TT: Processing converter.

# **Chapter 3 Functions**

#### 3.1 Overcurrent detection

CH334/CH335 support three overcurrent protection modes: Individual independent control power and independent overcurrent detection, GANG overall control power and independent overcurrent detection, and GANG overall linked control power and overall overcurrent detection (default mode), as shown in Table 3-1.


Table 3-1 Overcurrent protection control pin description

| Overcurrent       | Power control pins | Sampling pins for overcurrent | Reference    |
|-------------------|--------------------|-------------------------------|--------------|
| protection mode   |                    | detection                     | Chart        |
| Dual independent  | PWREN1#PWREN2#,    | OVCUR1#, OVCUR2#, OVCUR3#,    | Figure 3-1-1 |
| mode              | PWREN3#, PWREN4#   | OVCUR4#                       | rigule 3-1-1 |
| The whole control | PWREN#             | OVCUR1#, OVCUR2#, OVCUR3#,    |              |
| solo inspection   |                    | ,                             | Figure 3-1-2 |
| mode              | (PWREN1#)          | OVCUR4#                       |              |
| GANG overall      | PWREN#             | OVCUR# (OVCUR1#)              | Figure 3-1-3 |
| model             | (PWREN1#)          | OVCOR# (OVCORI#)              | rigule 3-1-3 |

CH335F supports dual independent mode and GANG overall mode; CH334H/L supports whole control solo check mode and GANG overall mode; CH334U/S/F/Q supports GANG overall mode only; CH334G/R/P does not support overcurrent detection.

#### 3.1.1 Dual independent mode

Figure 3-1-1 Dual independent mode, R11~R14 can be omitted



U5 to U8 are USB current-limiting distribution switch chips with integrated internal overcurrent detection for VBUS power distribution management, such as CH217 chip or similar functions. In applications without external power supply at 5V, it is recommended to set the current limit below 1A or even 500mA through ISET external resistors. the FLAG pins of U5~U8 are open-drain outputs, which require R11~R14 pull-ups respectively. Under the default configuration, OC\_LEVEL=0, the OVCUR# pin of HUB chip provides built-in weak pull-up current, so R11~R14 can be omitted. the capacity of C11~C14 is selected according to the need, the minimum 120uF in the specification. the dual independent mode requires setting GANG\_MODE=0 to select independent overcurrent detection mode. In the figure, VBUS1/VBUS2/VBUS3/VBUS4 are connected to the VBUS power pins of downlink ports 1/2/3/4 respectively.

#### 3.1.2 Whole control solo inspection model

The preferred whole control solo check circuit is based on Figure 3-1-1 dual independent mode circuit modification, with PWREN# simultaneously controlling U5 to U8. Considering that C11 to C14 are charged simultaneously when the 4 groups of switches are turned on, it is recommended that the capacity of C4 is not less than the accumulated capacity of C11 to C14.

Figure 3-1-2 Another non-preferred circuit for the whole control solo check mode

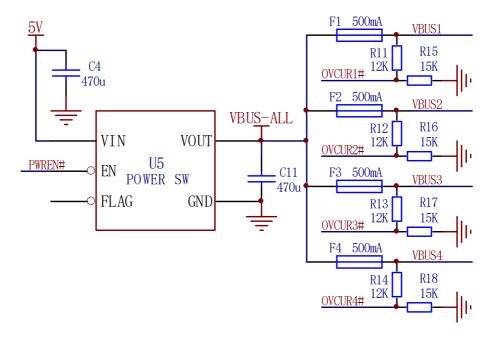
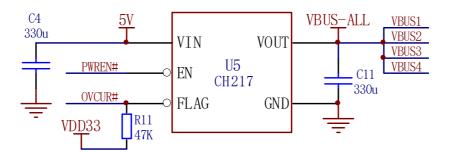




Figure 3-1-2 is another option, U5 is the shared power switch chip, F1 to F4 are the insurance resistors, and C11 is selected as needed. Alternatively, there is a simplified application that removes power control, based on Figure 3-1-2 that omits U5/C4 and shorts the VBUS-ALL to 5V.

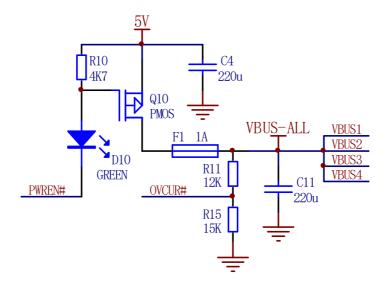
#### 3.1.3 GANG overall model

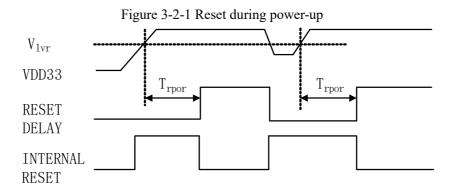
Figure 3-1-3 GANG overall mode, R11 can be omitted



U5 is a USB current-limiting power switch chip. R11 can be omitted in the default configuration, and the capacity of C11 can be selected as needed.

Figure 3-1-4 Simplified GANG overall mode power control and overcurrent detection circuit Schematic





Figure 3-1-4 is a simplified schematic, for principle reference only. The default configuration OC\_LEVEL=0, R11 and R15 voltage divider to select the overcurrent detection point for VBUS down to about 4V. If the configuration OC\_LEVEL = 1, then you can remove R15 and change R11 to 1K.

#### 3.2 Reset

A power-on reset module is embedded in the chip, which generally eliminates the need for an externally provided reset signal. An external reset input pin, RESET#/CDP, which has a built-in pull-up resistor, is also provided.

#### 3.2.1 Power-on reset

When the power supply is powered on, the chip's internal POR power-on reset module generates a power-on reset timing and delays Trpor for about 12mS to wait for the power supply to stabilize. During operation, when the power supply voltage falls below  $V_{lvr}$ , the chip's internal LVR low voltage reset module generates a low voltage reset until the voltage comes back up, and delays until the power supply stabilizes. Figure 3-2-1 shows the power-on reset process and the low-voltage reset process.



#### 3.2.2 External reset

The external reset input pin RESET#/CDP has a built-in pull-up resistor of about  $25K\Omega$ , so if the chip needs to be reset externally, then the pin can be driven low, and the drive internal resistance is recommended to be no greater than  $800\Omega$ , and the low-level pulse width of the reset needs to be greater than 4uS.

| RESET#/CDP pin         | Conditions                | Results                         |
|------------------------|---------------------------|---------------------------------|
| Drive is low           | During power-up or during | Reset HUB chip                  |
| Drive is low           | normal operation          | Reset HOB chip                  |
| Duivo is high          | Duning maryan ya          | Enable CDP and turn off low-    |
| Drive is high          | During power-up           | power sleep                     |
| No drive or no         | Decision accessors        | No CDP enabled, low-power sleep |
| connection(default)    | During power-up           | support                         |
| Drive high or no drive | During normal operation   | No effect                       |

Table 3-2 Reset Pin Control and Mode Description

For applications where the MCU pin directly drives the RESET#/CDP pin of the HUB chip, if the MCU pin outputs a high-level during power-up, it may enable the charging function of CH334/CH335 and turn off the low-power sleep, so if you want to avoid enabling the charging function and reduce the sleep current, then you need to connect a series connection between the MCU pin and the RESET#/CDP pin of the HUB chip. diode, refer to Figure 3-2-2.

Figure 3-2-2 MCU pin driven reset and avoid enabling charging function



#### 3.2.3 Charging function

In addition to CDP, we can also provide Type-C and USB PD high-voltage fast charging whole solutions.

#### 3.3 LED indicators

According to USB2.0 protocol specification, CH334/CH335 provides downlink port status LED indicator control pins, the corresponding green LED of the port is on to indicate normal port status, the green LED is off to indicate no device or hanging Suspend, and the corresponding red LED of the port is on to indicate abnormal port. CH334/CH335 can dynamically drive 1-LED application and 5-LED application, and CH335 also supports 9-LED application. The LED current limiting resistors R5 to R8 in each figure can be selected from  $100\Omega$  to  $1K\Omega$  range.

#### 3.3.1 LED4 pin 1-LED application

The LED4 pin can dynamically drive an LED in a time-sharing manner, with LED indicating normal operation Active and off indicating HUB chip sleep Suspend. as shown in Figure 3-3-1, the LED current limiting resistor R9 in the figure is selectable from  $200\Omega$  to  $1K\Omega$  range.

Figure 3-3-1 LED indicator 1 application schematic



#### 3.3.2 5-LED application of CH335

For CH335, pins LED1/PSELF or LED2/PGANG are supported to be pulled down externally for configuration during reset. Because pins LED1/2 double as LED drive outputs, LED1 and LED2 cannot be directly shorted to GND. the specific pull-down method is to connect a  $4.7K\Omega$  resistor between pins LED1 or LED2 and pin LED3, optionally in the range of  $3K\Omega$  to  $6.8K\Omega$ . LED3 is output low during reset, and LED1/PSELF or LED2/PGANG pull-down as shown in Figure 3-3-2. If pin LED1 or LED2 has been used to drive LED indicators, to avoid conflicts, then it is recommended to give preference to EEPROM configuration or custom configuration.

GANG mode is selected by default, no PGANG configuration is required for independent overcurrent detection, and R4 should be removed from the figure.

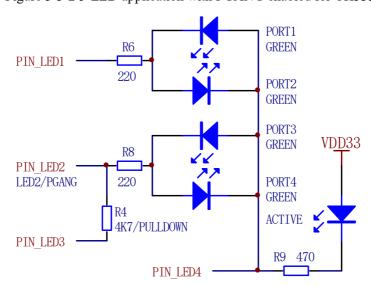



Figure 3-3-2 5-LED application with PGANG enabled for CH335

#### 3.3.3 5-LED application of CH334U/F

For CH334U and CH334F, there are independent PSELF pins available for configuration, and they do not support independent overcurrent detection and do not require PGANG configuration options, so pins LED1 and LED2 do not need to be used for PSELF and PGANG configuration.

The 5-LED application of CH334U/CH334F is shown in Figure 3-3-3, note the LEDs correspond to the ports. The green LED corresponding to each port is on to indicate that the port status is normal, and the green LED is off to indicate that there is no device on the port or Suspend is hung, all LEDs are optional.

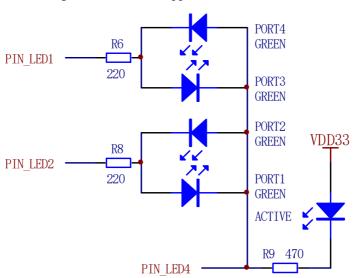



Figure 3-3-3 5-LED application of CH334U/F

#### 3.3.4 All 9-LED application

The 9-LED application is mainly used for CH335, as shown in Figure 3-3-4. The 9-LED application adds four red LEDs compared to the 5-LED application, and the corresponding red LEDs on the port indicate port abnormalities, including port overcurrent or transmission errors, etc.

PIN LED1 PORT1 PORT1 **R5 GREEN** RED **R6** 220 220 PORT2 PORT2 **RED GREEN** PORT3 PIN LED2 PORT3 VDD33 **RED GREEN R7 R8** 220 220 PORT4 PORT4 RED **GREEN** ACTIVE BLUE PIN LED3 R9 470 PIN LED4

Figure 3-3-4 9-LED indicator application schematic

#### 3.3.5 PGANG pin LEDs

Some package forms provide PGANG pin or PSELF pin, PSELF is a built-in pull-up resistor input pin, used to configure the power supply mode. PGANG is a bi-directional pin, built-in pull-up resistor, during the reset to configure the power supply overcurrent protection mode, after the completion of the reset to sleep Suspend, normal Active state output. PGANG pin driven LED Equivalent to LED4 pin driven 1-LED applications, the difference is that the LED4 pin is dynamic time-sharing drive LED, PGANG pin is static drive, LED current limit resistor R9 can be larger.

As shown in the left diagram of Figure 3-3-5, the PGANG pin is pulled up by the built-in resistor by default and goes high by default to select overall overcurrent detection and overall power control. the PGANG pin outputs low and the LED is on to indicate Active and the LED is off to indicate Suspend.

As shown in Figure 3-3-5 right, the PGANG pin is pulled down by external resistor R4, low by default, and independent overcurrent detection is selected. the PGANG pin is internally inverted to output, and the PGANG pin outputs high and the LED is on to indicate Active, and the LED is off to indicate Suspend.

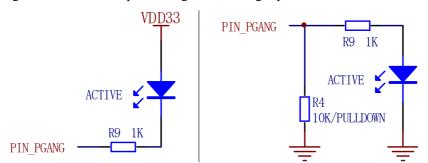
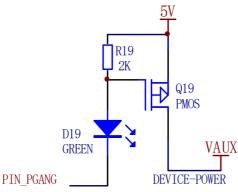




Figure 3-3-5 PGANG pin driving LED, the right picture is enabled PGANG

The statically driven PGANG pin can be used to control power to external devices, such as powering off peripherals during Suspend.


Figure 3-3-6 PGANG pin control external device power schematic



## 3.4 EEPROM configuration interface

CH334 and CH335 provide a two-wire I2C interface to communicate with an external EEPROM memory chip with address 0 and custom manufacturer ID, product ID, configuration, etc. The SCL pin outputs a clock frequency of 187.5KHz and the SDA pin has a built-in pull-up current of approximately 250uA to support open-drain bi-directional data communication. No external pull-up resistor is required. Referring to Figure 3-4, there is no conflict between connecting external EEPROM and LED driver, supporting 9-LED, 5-LED, 1-LED, and no-LED applications.

Figure 3-4 External EEPROM connection diagram



CH334 and CH335 have built-in information memory, which can replace the external EEPROM for batch customization of vendor or product information and configuration for industry-specific needs, such as setting the number of downlink ports and setting the non-removable characteristics of devices on the downlink ports, etc.

#### 3.5 EEPROM contents

CH334/CH335 supports loading configuration information such as vendor identification code VID and product identification code PID from external EEPROM. After the chip is powered on, the data of internal ROM is loaded first, and the data of external EEPROM is loaded after loading internal ROM data. If the checksum of data in EEPROM is invalid, all data in EEPROM is dropped; if the CHKSUM of EEPROM is valid, all data in EEPROM is loaded, the specific layout of EEPROM is shown in Table 3-5-1, and the definition of each address in EEPROM is explained in Table 3-5-2.

Table 3-5-1 EEPROM Address Layout

|      | 00    | 01   | 02   | 03   | 04   | 05 | 06       | 07    | 08   | 09 | 0A | 0 | 0 | 0 | - | 0F |
|------|-------|------|------|------|------|----|----------|-------|------|----|----|---|---|---|---|----|
|      | 00    | 01   | 02   | 03   | 04   | 03 | 00       | 07    | 00   | 07 | UA | В | С | D | Е | 01 |
| 001- | VID I | VID_ | PID_ | PID_ | CHKS | F  | Device   | Port  | Max  | SI | CF | F | F | F | F | F  |
| 00h  | VID_L | Н    | L    | Н    | UM   | F  | Removabl | Numbe | Powe | G  | G  | F | F | F | F | F  |

|         | 1       | I | 1 | 1 |       |              |          |        |    | ı       |      |      |       | Т    | $\neg$ |
|---------|---------|---|---|---|-------|--------------|----------|--------|----|---------|------|------|-------|------|--------|
|         |         |   |   |   |       | e            | r        | r      |    |         |      |      |       |      |        |
|         | Vendor  |   |   |   |       |              |          |        |    |         |      |      |       |      |        |
| 10h     | Length  |   |   |   | V     | endor String | (UNICO   | DDE)   |    |         |      |      |       |      |        |
| 20h     |         |   |   |   |       |              |          |        |    |         |      |      |       |      |        |
| 30h     |         |   |   |   |       |              |          |        |    |         | Ven  | ıdor | Strir | ng E | nd     |
| 40h     | Product |   |   |   | D.,   | aduat String | (LINIICO | DE)    |    |         |      |      |       |      |        |
| 4011    | Length  |   |   |   | rı    | oduct String | (UNICC   | DE)    |    |         |      |      |       |      |        |
| 50h     |         |   |   |   |       |              |          |        |    |         |      |      |       |      |        |
| 60h     |         |   |   |   |       |              |          |        |    |         | Proc | duct | Strir | ıg E | nd     |
| 70h     | SN      |   |   | G | 1     | N1 C4        | : (LINII | ICODE) |    |         |      |      |       |      |        |
| /on     | Length  |   |   | 3 | eriai | Number Str   | ing (UN  | ICODE, | )  |         |      |      |       |      |        |
| 80h-9Fh |         |   |   |   |       |              |          |        | Se | erial l | Nun  | ıber | Strir | ıg E | nd     |
| A0h-    |         |   |   |   |       | D 1          |          |        |    |         |      |      |       |      |        |
| FFh     |         |   |   |   |       | Reserved     |          |        |    |         |      |      |       |      |        |

Table 3-5-2 EEPROM address content definition

|         |                     | Table 3-3-2 EET ROW address content definition                                                                                                                                                                                                       |        |  |  |  |  |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| Byte    | Parameter           | Parameter Description                                                                                                                                                                                                                                | Defaul |  |  |  |  |
| Address | Abbreviation        | - ·····                                                                                                                                                                                                                                              |        |  |  |  |  |
| 00h     | VID_L               | The low byte of the vendor identification code VID.                                                                                                                                                                                                  | 86h    |  |  |  |  |
| 01h     | VID_H               | The high byte of the vendor identification code VID.                                                                                                                                                                                                 | 1Ah    |  |  |  |  |
| 02h     | PID_L               | The low byte of the product identification code PID.                                                                                                                                                                                                 | 随型号    |  |  |  |  |
| 03h     | PID_H               | The high byte of the product identifier PID.                                                                                                                                                                                                         | 80h    |  |  |  |  |
| 04h     | CHKSUM              | The checksum CHKSUM must be equal toVID_H+VID_L+PID_L+PID_H+1.  Otherwise, all data in the EEPROM is ignored.                                                                                                                                        |        |  |  |  |  |
| 06h     | Device<br>Removable | Bit4: A value of 1 indicates that the device connected to downlink port 4 is not removable.  Bit3: A 1 indicates that the device connected to downlink port 3 is not removable.  Bit2: A 1 indicates that the device connected to downlink port 2 is | 00h    |  |  |  |  |

|     |             | not removable.                                                     |     |
|-----|-------------|--------------------------------------------------------------------|-----|
|     |             | Bit1: A value of 1 indicates that the device connected to downlink |     |
|     |             | port 1 is not removable.                                           |     |
| 07h | Port Number | Number of downlink ports, valid value range 1 to 4.                | 04h |
| 08h | Max Power   | Maximum operating current in 2mA.                                  | 32h |
|     |             | 0Ah information CFG valid signature flag, must be 5Ah, otherwise   |     |
| 09h | SIG         | CFG is invalid.                                                    | 5Ah |
|     |             | Bit7: Reserved.                                                    |     |
|     |             | Bit6: EEPROM write permission, 0=write protect, 1=allow to be      |     |
|     |             | rewritten by USB tool.                                             |     |
|     |             | Bit5: Overcurrent detection voltage threshold OC_LEVEL             |     |
|     |             | selection.                                                         |     |
|     |             | Default 0=2.4V and weak pull-up, 1=4.1V and weak pull-down.        |     |
|     |             | 4.1V is optional when PMOS is used to simplify power control,      |     |
|     |             | otherwise 2.4V is used.                                            |     |
|     |             | Bit4& 3: Select how long the power is delayed after turning on to  |     |
|     |             | detect overcurrent OC_DELAY.                                       |     |
|     |             | 00: approximately 300uS, for fast opening and small VBUS           |     |
|     |             | capacitance.                                                       |     |
| 0Ah | CFG         | 01: about 3mS.                                                     | 57h |
|     |             | 10: approximately 10mS.                                            |     |
|     |             | 11: About 30mS, suitable for slow opening and large VBUS           |     |
|     |             | capacitance.                                                       |     |
|     |             | Bit2: Configure the power supply mode SELF_POWER.                  |     |
|     |             | Default 1 = self-powered (recommended), 0 = bus-powered.           |     |
|     |             | EEPROM configuration 0 is equivalent to the pin PSELF set low.     |     |
|     |             | Bit1: Indicator enable INDICATOR_EN, default 0, 1=enable           |     |
|     |             | indicator.                                                         |     |
|     |             | Bit0: Configure the power overcurrent protection mode              |     |
|     |             | GANG_MODE.                                                         |     |
|     |             | Default 1 = overall linked overcurrent detection, 0 = independent  |     |
|     |             | overcurrent detection.                                             |     |

| EEPROM configuration 0 is equivalent to the pin PGANG or |  |
|----------------------------------------------------------|--|
| LED2 external pull-down.                                 |  |

## 3.6 Bus-powered and self-powered

CH334/CH335 support USB bus power and HUB self-power. The bus power comes from the USB uplink port with 500mA or 900mA, 1.5A and other standards. The USB cable internal resistance loss and HUB's own consumption will reduce the power supply to the downlink port, and the downlink port voltage may be low. Self-powered usually comes from the external power port, depending on the external power supply capacity.

Since the voltages of self-powered and bus-powered are hardly equal, the HUB needs to avoid high currents from direct shorting of the two. In addition, when the USB uplink port is powered off, the HUB also needs to avoid backing up current from the self-powered external power supply to the USB bus and the USB host.

#### 3.6.1 Two-way isolation schematic

Diodes D1 and D2 are used to bi-directionally isolate the VBUS bus power and P6 port external power supply to prevent the two power supplies from backfilling each other, using high power Schottky diodes to reduce their own voltage drop, the downlink port VBUS gets 4.7V or even lower, for illustration purposes only.

Optionally, voltage divider resistors R31 and R32 are used to enable automatic configuration of both bus-powered and self-powered modes.

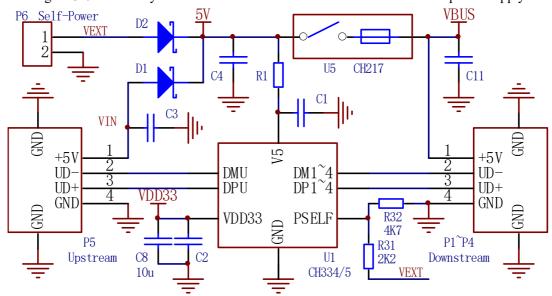



Figure 3-6-1 Schottky diode bidirectional isolation of VBUS and external power supply

#### 3.6.2 Practical single isolation scheme

The ideal diode functions as a low dropout single conductor, and U3 is used to prevent the external power supply from port P6 from backing up to uplink port VBUS. At 500mA current, the voltage drop of U3 is about one-third of the voltage drop of the Schottky diode, and 4.9V is available at downlink port VBUS.

Optionally, the V5 power supply for CH334/5 in the figure skips U3 to be supplied directly from the uplink port VBUS. In this case, U3 provides simple overcurrent and short-circuit protection for the uplink port VBUS power supply even without the USB current-limited distribution switch CH217.

Self-Power/External-Input **VBUS** U3 CH213K 2 VO-U5 CH217 C4 C11 GND R1 VIN +5V UD-UD+ GND +5 V UD-UD+ GND  $\sqrt{5}$ DMU DPU  $\begin{array}{c} \text{DM1} \widetilde{\phantom{a}} 4 \\ \text{DP1} \widetilde{\phantom{a}} 4 \end{array}$ VDD33 VDD33 P5 P1~P4 Upstream C8 U1 Downstream 10u CH334/5

Figure 3-6-2 The ideal diode isolating VBUS and external power supply

# **Chapter 4 Parameters**

# 4.1 Absolute maximum value (critical or exceeding the absolute maximum value will probably cause

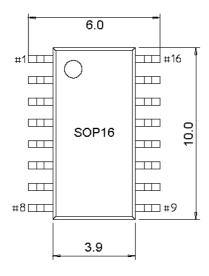
the chip to work improperly or even be damaged)

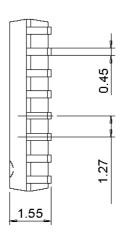
| Name  | Parameter description                                            | Minimum<br>value | Maximum<br>value | Unit |
|-------|------------------------------------------------------------------|------------------|------------------|------|
| TA    | Ambient temperature at work                                      | -40              | 85               | °C   |
| TS    | Ambient temperature during storage                               | -55              | 150              | °C   |
| V5    | LDO input supply voltage (V5 pin to power, GND pin to ground)    | -0.4             | 5.5              | V    |
| VDD33 | Operating supply voltage (VDD33 pin to power, GND pin to ground) | -0.4             | 4.0              | V    |
| V5I   | Voltage on 5V withstand voltage input pins                       | -0.4             | 5.3              | V    |
| VUSB  | Voltage on USB signal pins                                       | -0.4             | VDD33+0.4        | V    |
| VGPIO | Voltage on other (3.3V) input or output pins                     | -0.4             | VDD33+0.4        | V    |
| VESD  | HBM ESD withstand voltage on USB signal pins                     | 5K               | 7K               | V    |

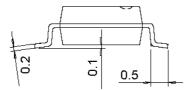
# **4.2 Electrical parameters** (test conditions: TA=25°C, V5=5V or V5=VDD33=3.3V)

| Name  | P                                          | arameter descri | iption                  | Minimum | Typical | Maximum | Unit |
|-------|--------------------------------------------|-----------------|-------------------------|---------|---------|---------|------|
|       |                                            |                 |                         | value   | value   | value   |      |
|       | LDO input s                                | upply voltage   | voltage Enable internal |         | 5.0     | 5.25    | V    |
|       | @ V5                                       |                 | LDO                     | 4.6     |         |         |      |
| V5    | External supply voltage @                  |                 | No internal             | 3.2     | 3.3     | 3.4     |      |
|       | V5                                         |                 | LDO required            |         |         |         |      |
|       | LDO output voltage                         |                 | Enable internal         | 3.2     | 3.3     | 3.5     | V    |
| VDD22 | @VDD33                                     |                 | LDO                     |         |         |         |      |
| VDD33 | External 3.3V supply                       |                 | No internal             | 3.2     | 3.3     | 3.4     |      |
|       | @VDD33                                     |                 | LDO required            |         |         |         |      |
| и в о | Internal power regulator LDO external load |                 |                         |         |         | 2.0     |      |
| ILDO  | capability                                 |                 |                         |         |         | 20      | mA   |
| ICC   | Operating                                  | Upstream        | 4 downstream            |         | 0.5     |         |      |
|       | current                                    | High-speed      | high-speed              |         | 85      |         | mA   |

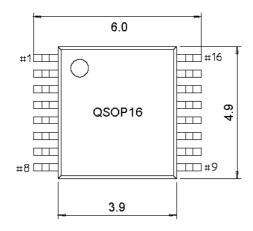
|        |                                              | Upstream                    | 1 downstream      |        |        |       |        |
|--------|----------------------------------------------|-----------------------------|-------------------|--------|--------|-------|--------|
|        |                                              | High-speed                  | high-speed        |        | 42     |       | mA     |
|        |                                              | Upstream                    | 4 downstream      |        | 25     |       |        |
|        |                                              | High-speed                  | full-speed        |        | 25     |       | mA     |
|        |                                              | Upstream                    | 1 downstream      |        | 21     |       | mA     |
|        |                                              | High-speed                  | full-speed        |        | 21     |       | IIIA   |
|        |                                              | Upstream                    | 4 downstream      |        | 20     |       | mA     |
|        |                                              | Full-speed                  | full-speed        |        | 20     |       | ША     |
|        |                                              | Upstream                    | No equipment      |        |        |       |        |
|        |                                              | High-speed                  | on the downlink   |        | 0.27   |       | mA     |
|        |                                              | Upstream                    | 1.5KΩ pull-up     |        | 0.27   |       | 1112 X |
|        |                                              | Full-speed                  | included          |        |        |       |        |
|        | Deep sleep supply current (without 1.5K Ω    |                             |                   |        |        |       |        |
| ISLP   | pull-up)                                     |                             |                   |        | 0.07   | 0.3   | mA     |
|        | Or: own sleep power current (not connected   |                             |                   |        |        |       | 224 2  |
|        |                                              | to USB host)                |                   |        |        |       |        |
| VIL    | Low level input voltage on pins other than   |                             |                   | 0      |        | 0.8   | V      |
|        | o                                            | vercurrent dete             | ection            |        |        |       |        |
| VIH    | High level input voltage for pins other than |                             |                   | 2.0    |        | VDD33 | V      |
|        | overcurrent detection                        |                             |                   |        |        |       |        |
| VILRST | Low inpu                                     | t voltage on the            | e RESET# pin      | 0      |        | 0.75  | V      |
| VIX    | Error of overcurrent detection voltage       |                             |                   |        | ±0.2   |       | V      |
|        | threshold OC_LEVEL                           |                             |                   |        |        |       |        |
|        | Low Level                                    | LED pin, draws 15mA current |                   |        | 0.5    | 0.6   | V      |
| VOL    | Output                                       | PWREN# pin, draws 4mA       |                   |        | 0.5    | 0.6   | V      |
|        | Voltage                                      | сі                          | ırrent            |        |        |       |        |
|        | High level Output                            | LED pin, 10n                | nA output current | VDD33- | VDD33- |       | V      |
| VOH    |                                              | ,                           |                   | 0.6    | 0.5    |       |        |
|        | Voltage                                      | PWREN# pin, output 1mA      |                   | VDD33- | VDD33- | 4.3   | V      |
|        | 6                                            | current                     |                   | 0.6    | 0.5    | 7.3   | •      |

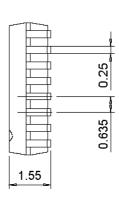

| IPU   | Pull-up                                | LED1/2/3/PSELF/PGANG | 16  | 40  | 80  | uA |
|-------|----------------------------------------|----------------------|-----|-----|-----|----|
|       | current                                | pins                 |     |     |     |    |
| IPUOC | Pull-up                                | OVCUR# pins          | 8   | 14  | 22  | uA |
|       | current                                | OVCOR# pills         |     |     |     |    |
| IPDOC | Pull-down                              | OVCUR# pins          | 2   | 5   | 40  | uA |
|       | current                                | OVCOR# pins          |     |     |     |    |
| Vlvr  | Voltage threshold for power supply low |                      | 2.4 | 2.9 | 3.2 | V  |
|       | voltage reset                          |                      |     |     |     |    |

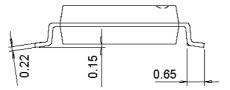

# **Chapter 5 Package information**


*Note: The unit of dimensioning is mm (millimeter).* 

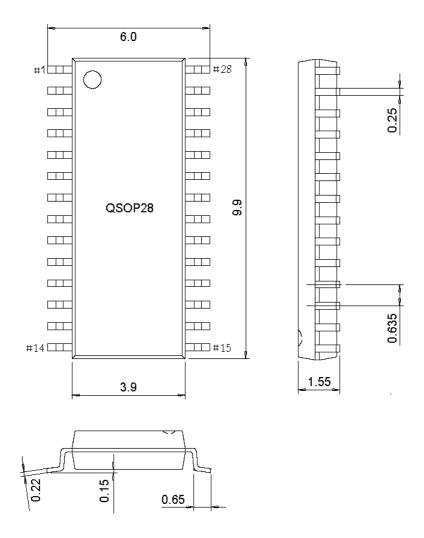
The pin center spacing is the nominal value without error, and the dimensional error other than that is no more than  $\pm 0.2$ mm.


## 5.1 SOP16

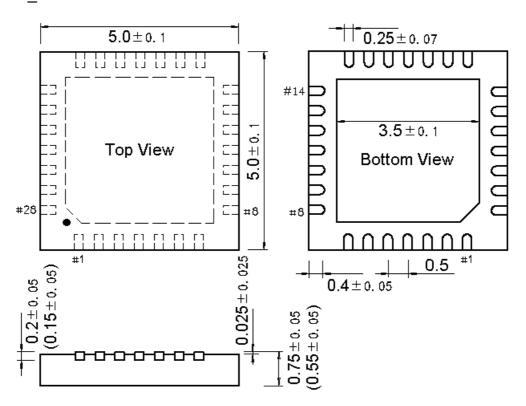


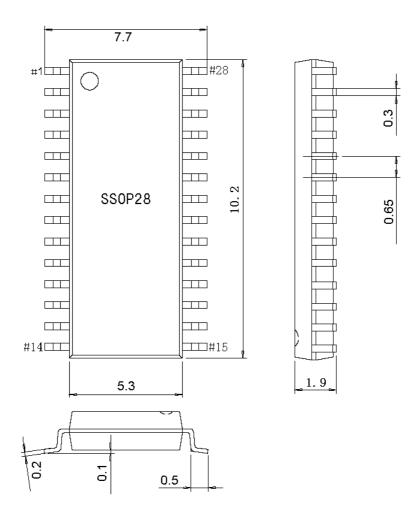




# **5.2 QSOP16**

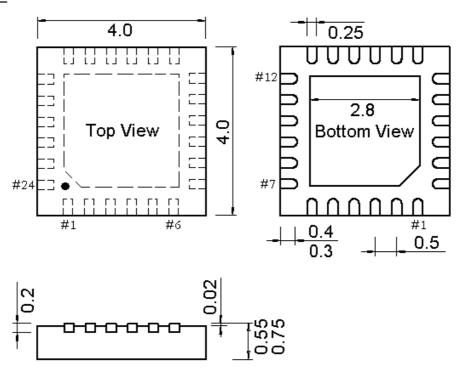




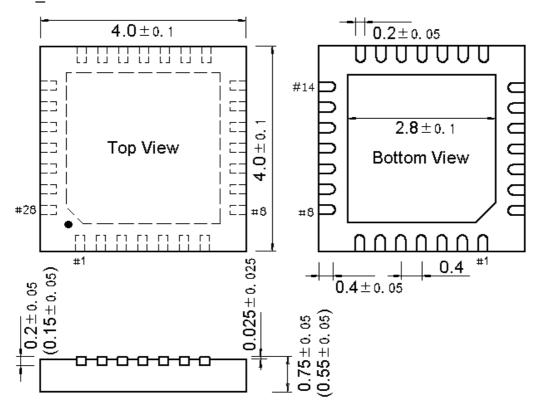




# **5.3 QSOP28**

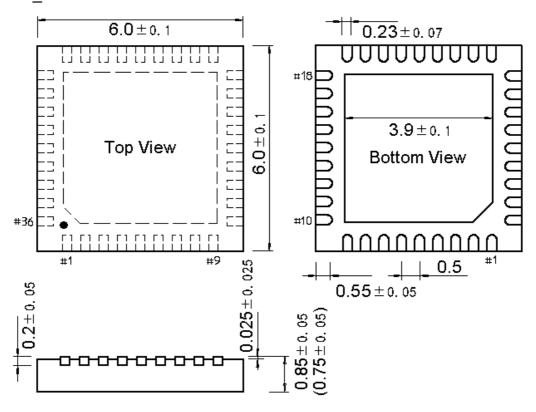



# 5.4 QFN28\_5x5

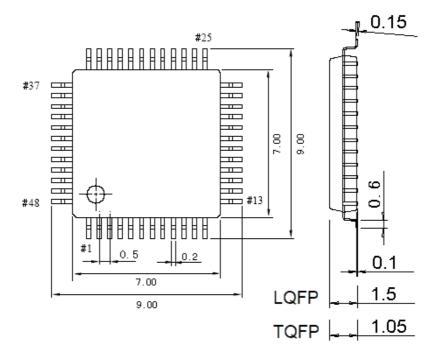



# 5.5 SSOP28

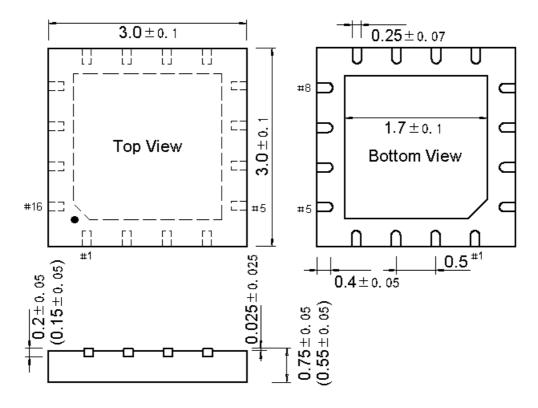



# 5.6 QFN24\_4x4



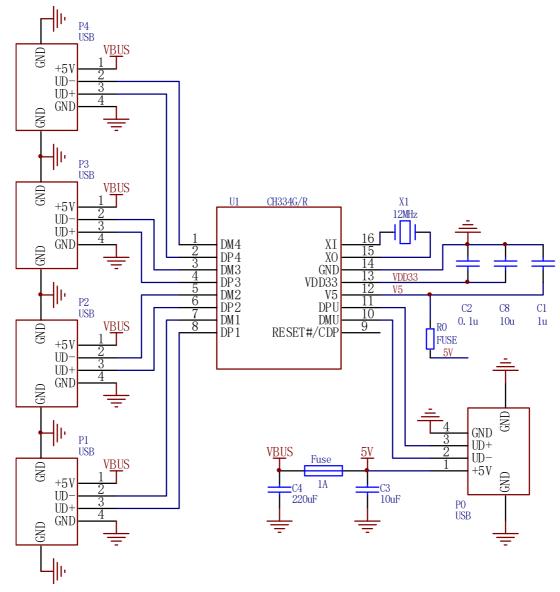

# 5.7 QFN28 4x4




# 5.8 QFN36\_6x6



# **5.9 LQFP48**




# 5.10 QFN16\_3x3



# **Chapter 6 Applications**

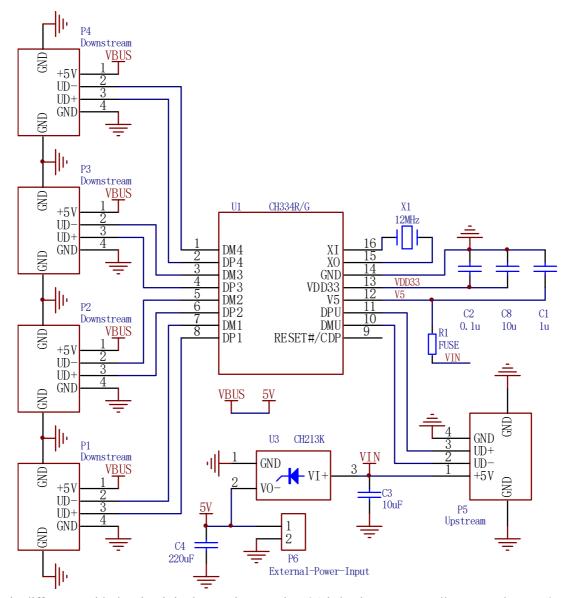
## 6.1 Simplified application, bus-powered only



R0 is a 100mA fuse resistor, for simplified applications,  $0\Omega$  can be used. if there is an overvoltage protection device, it is connected to pin V5.

For the first version of CH334 with 0 in the penultimate 5 digits of the lot number, R0 is changed to 1N4001 or similar diode.

Fuse, the insurance resistor between 5V and VBUS, can be replaced with a USB current-limiting power switch chip for faster protection response and better results.


Industrial grade applications are recommended to connect both V5 and VDD33 to an external 3.3V power supply to reduce the maximum power consumption of the HUB chip from 85mA\*5V to 85mA\*3.3V, which helps to reduce the voltage drop and temperature rise of the HUB chip. It is measured to support extended industrial grade temperature range -40°C~105°C and available for short term at 125°C (some parameters will be over). Note that the fuse resistor and USB power switch chip may not support high temperature.

The CH334Q does not have an internal LDO buck regulator and V5 pin, all VDD33 needs to be connected to an external 3.3V supply.

At the moment of powered hot-plug of USB devices on the downlink port, the dynamic load may cause the VBUS and 5V voltages to drop instantaneously, which in turn may generate LVR low-voltage reset and thus the whole HUB disconnected and reconnected. Improvement method. ① Increase the electrolytic capacitor of the 5V power

supply within the allowed range of the specification (increase the capacity of C4 shown in the figure) to alleviate the dip. ② Increase the capacitance of the LDO output of the HUB chip (increase the capacity of C8 shown in the figure, e.g. 22uF). ③ not to use the internal LDO of the HUB, but to externally supply 3.3V to V5 and VDD33 pins, and to increase the capacitance of the 3.3V power supply. ④ Enhance the 5V power supply or change it to self-powered, in addition, improving the quality of the USB cable will also improve the power supply.

## 6.2 Simplified application with external power supply



The main difference with the circuit in the previous section 6.1 is having an externally powered port P6, U3 is the ideal diode CH213 for avoiding backflow of external power from P6 to the VBUS of uplink port P5, especially in the case when the uplink port, for example, the computer is turned off while P6 is still externally powered. Theoretically U3 can be replaced with a Schottky diode, but it is necessary to choose a device with a lower voltage drop of its own, otherwise it will reduce the output voltage of the VBUS of the downlink port. At 300mA load current, the voltage drop of the Schottky diode is about 0.3V and the voltage drop of the ideal diode is about 0.06V. Since P6 itself and the external power supply usually have no load, the backflow from P5 to P6 is generally not considered.

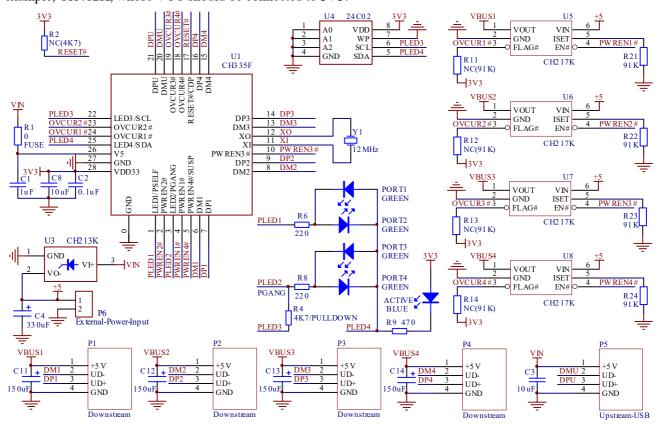
The ideal diode CH213 has simple overcurrent and short-circuit protection with a faster protection response, thus replacing and eliminating the fuse resistor Fuse between 5V and VBUS in the previous section 6.1. The external power supply to which P6 is connected needs to have overcurrent and short-circuit protection itself, otherwise, a fuse resistor needs to be added between P6 and 5V, or between 5V and VBUS with a USB Otherwise, you need to

add a fuse resistor between P6 and 5V, or add a USB power switch chip between 5V and VBUS.

#### 6.3 On-board Embedded HUB

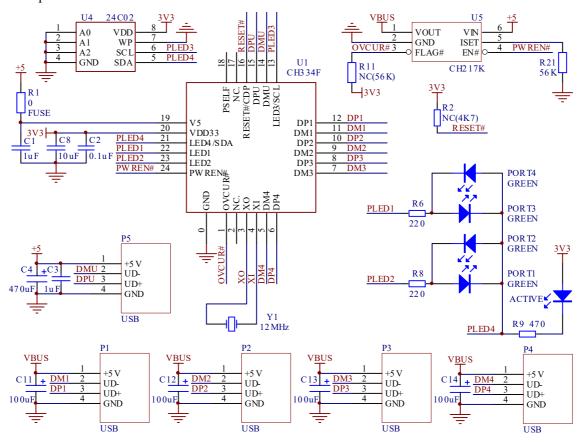
If there is an on-board 3.3V supply, then it is recommended to connect both V5 and VDD33 of the HUB chip to the 3.3V supply. In this case, C8 and C2 can also be combined into a single 1uF capacitor (optional).

If the USB device is also fixed on-board, then the corresponding USB device on the downlink port can also be set to be non-removable, and it is possible to simplify VBUS power control, direct 5V to the USB device, simplify or eliminate overcurrent detection, etc.


## 6.4 Independent overcurrent detection applications

The following figure shows the application reference diagram of independent power distribution control and independent overcurrent detection for each port of the HUB, which can be used for computers and HUB hubs. In the diagram, R21 to R24 set the current limit threshold according to the power supply capability, the FLAG# pin of CH217 can generate over-current or over-temperature alarm signal to notify the HUB controller and computer, and the OVCUR# pin of CH334/5 has built-in pull-up resistor (default OC LEVEL=0).

P6 is the external self-powered input port and the ideal diode U3 is used to avoid backflow of external power to the USB power of the uplink port. If there is no P6 or if anti-backflow is not considered, then U3 is not needed and the connection between VIN and +5V can be shorted.


PCB design needs to consider the actual operating current carrying capacity, VIN, +5V, VOUT (VBUS\*) and P6 and each port GND alignment path of the PCB as wide as possible, if there is an over-hole is recommended multiple parallel connection.

It is recommended to add overvoltage protection devices to VIN and ESD protection devices to all USB signals, for example, CH412K, whose VCC should be connected to 3V3.



# 6.5 Overall overcurrent detection applications

The following diagram shows the application reference diagram of GANG power distribution control and overall overcurrent detection for all ports of the HUB. CH217 is the USB power distribution switch chip that supports overcurrent protection.

