

CGHV35150

150 W, 2900 - 3500 MHz, 50V, GaN HEMT for S-Band Radar Systems

Cree's CGHV35150 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV35150 ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package.

Package Type: 440193 / 440206 PN: CGHV35150F / CGHV35150P

Typical Performance 3.1 - 3.5 GHz (T_c = 85°C)

Parameter	3.1 GHz	3.2 GHz	3.3 GHz	3.4 GHz	3.5 GHz	Units
Output Power	180	180	180	170	150	dB
Gain	13.5	13.5	13.5	13.3	12.7	dBc
Drain Efficiency	50	49	50	49	48	%

Note: Measured in the CGHV35150-AMP application circuit, under 300 μ s pulse width, 20% duty cycle, P_{IN} = 39 dBm

Features:

- Rated Power = 150 W @ T_{CASE} = 85°C
- Operating Frequency = 2.9 3.5 GHz
- Transient 100 μsec 300 μsec @ 20% Duty Cycle
- 13.5 dB Power Gain @ T_{CASE} = 85°C
- 50 % Typical Drain Efficiency @ T_{CASF} = 85°C
- Input Matched
- <0.3 dB Pulsed Amplitude Droop

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	300	μs	
Duty Cycle	DC	20	%	
Drain-Source Voltage	V _{DSS}	125	Volts	25°C
Gate-to-Source Voltage	$V_{\sf GS}$	-10, +2	Volts	25°C
Storage Temperature	T_{STG}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Forward Gate Current	I _{GMAX}	30	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	12	А	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case ³	$R_{_{\theta JC}}$	0.81	°C/W	300 μsec, 20%, 85°C
Pulsed Thermal Resistance, Junction to Case ⁴	$R_{\scriptscriptstyle{\thetaJC}}$	0.86	°C/W	300 μsec, 20%, 85°C
Case Operating Temperature	T _c	-40, +150	°C	30 seconds

Note:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹ (T _c = 25°C)	DC Characteristics¹ (T _c = 25°C)							
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	V _{DS} = 10 V, I _D = 28.8 mA		
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V_{DC}	$V_{DS} = 50 \text{ V, I}_{D} = 500 \text{ mA}$		
Saturated Drain Current ²	I _{DS}	21.6	25.9	-	Α	$V_{DS} = 6.0 \text{ V, } V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	$V_{_{BR}}$	150	-	-	V _{DC}	$V_{GS} = -8 \text{ V, I}_{D} = 28.8 \text{ mA}$		
RF Characteristics 3 (T _c = 85 $^\circ$ C, F ₀ = 3.1 -	RF Characteristics³ (T _c = 85°C, F _o = 3.1 - 3.5 GHz unless otherwise noted)							
Output Power at 3.1 GHz	P _{out}	130	170	-	W	V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm		
Output Power at 3.5 GHz	P _{out}	100	135	-	W	V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm		
Gain at 3.1 GHz	G_{P}	12.0	13.3	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 39 \text{ dBm}$		
Gain at 3.5 GHz	$G_{_{P}}$	11.0	12.3	-	dB	$V_{DD} = 50 \text{ V, I}_{DQ} = 500 \text{ mA, P}_{IN} = 39 \text{ dBm}$		
Drain Efficiency at 3.1 GHz	D_E	40	47	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 39 \text{ dBm}$		
Drain Efficiency at 3.5 GHz	D _E	40	44	-	%	$V_{DD} = 50 \text{ V, I}_{DQ} = 500 \text{ mA, P}_{IN} = 39 \text{ dBm}$		
Amplitude Droop	D	-	-0.3	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 39 \text{ dBm}$		
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm Pulsed		

Notes:

¹ Current limit for long term, reliable operation

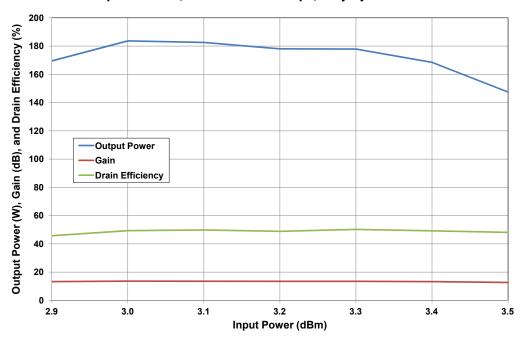
² Refer to the Application Note on soldering at http://www.cree.com/rf/document-library

 $^{^{\}rm 3}$ Measured for the CGHV35150P at P $_{\rm DISS}$ = 150 W

 $^{^4}$ Measured for the CGHV35150F at P_{DISS} = 150 W

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

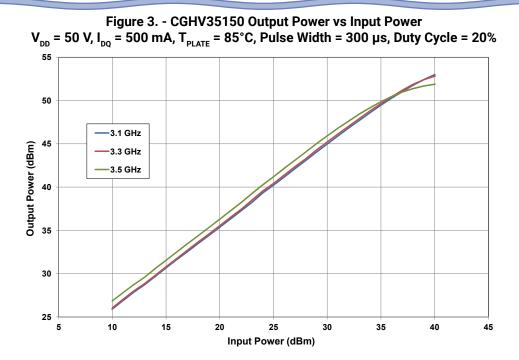

 $^{^3}$ Measured in CGHV35150-AMP. Pulse Width = 300 μS , Duty Cycle = 20%.

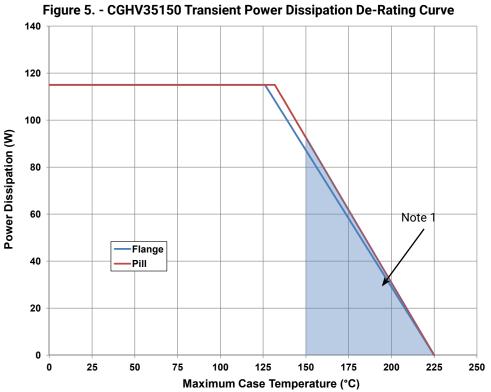
Typical Performance

Figure 1. - CGHV35150 Typical Sparameters $V_{DD} = 50 \text{ V, } I_{DO} = 500 \text{ mA, } T_{CASE} = 25^{\circ}\text{C}$ 20 15 10 Magnitude (dB) 5 0 -5 S21 -10 ·S11 -15 2.5 2.7 2.9 3.1 3.9 3.7 Frequency (GHz)

Figure 2. - CGHV35150 Typical RF Results V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm Tplate = 85°C, Pulse Width = 300 μ s, Duty Cycle = 20 %

Typical Performance

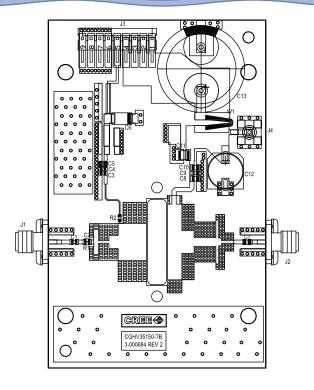



Figure 4. - CGHV35150 Gain and Drain Efficiency vs Input Power V_{nn} = 50 V, I_{nn} = 500 mA, Tplate = 85°C, Pulse Width = 300 μs, Duty Cycle = 20 % 50 16 Gain (dB) and Drain Efficiency (%) Drain Eff - 3.1 GHz Drain Eff - 3.3 GHz 40 14 Drain Eff - 3.5 GHz Gain - 3.1 GHz Gain - 3.3 GHz 30 12 Gain - 3.5 GHz 10 10 8 0 30 35 40 45 Input Power (dBm)

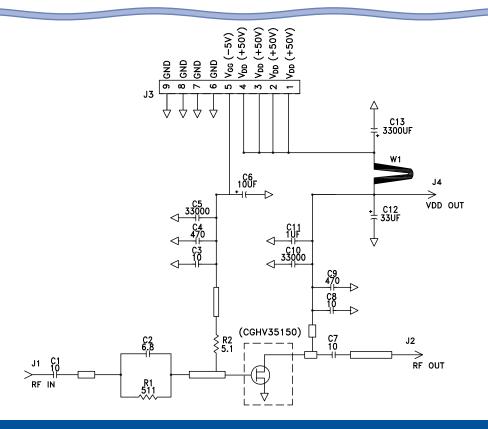
Electrostatic Discharge (ESD) Classifications

	Gai	n	
Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

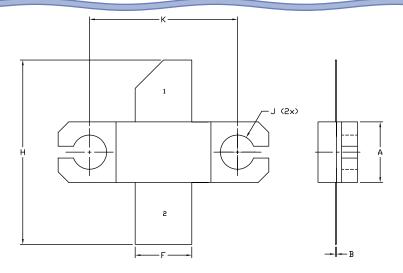
CGHV35150 Power Dissipation De-rating Curve


Note 1. Area exceeds Maximum Case Temperature (See Page 2).

CGHV35150-AMP Application Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 511 OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1 OHM, +/- 1%, 1/16W, 0603	1
C1,C7,C8	CAP, 10pF, +/- 1%, 250V, 0805	3
C2	CAP, 6.8pF, +/- 0.25 pF,250V, 0603	1
C3	CAP, 10.0pF, +/-5%,250V, 0603	1
C4,C9	CAP, 470PF, 5%, 100V, 0603, X	2
C5,C10	CAP, 33000PF, 0805,100V, X7R	1
C6	CAP 10uF 16V TANTALUM	1
C11	CAP, 1.0UF, 100V, 10%, X7R, 1210	1
C12	CAP, 33 UF, 20%, G CASE	1
C13	CAP, 3300 UF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK,SMD	1
W1	CABLE ,18 AWG, 4.2	1
	PCB, RO4350, 20 MIL THK, CGHV35150	1
Q1	CGHV35150	1

CGHV35150-AMP Application Circuit Outline



CGHV35150-AMP Application Circuit Schematic

Product Dimensions CGHV35150F (Package Type — 440193)

5. ALL PLATED SURFACES ARE NI/AU INCHES MILLIMETERS DIM MIN MAX MIN MAX Α 0.225 0.235 5.72 5.97 В 0.004 0.006 0.10 0.15 0.145 0.165 С 3.68 4.19 0.077 0.087 D 1.96 2.21 Ε 0.355 0.365 9.02 9.27 0.210 0.220 5.33 5.59 G 0.795 | 0.805 | 20.19 | 20.45

0.670 0.730

ø .130

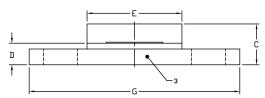
0.562

17.02 18.54

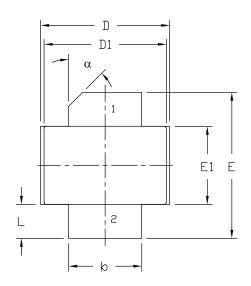
3.30

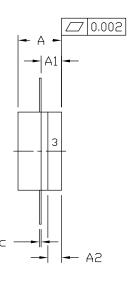
14.28

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

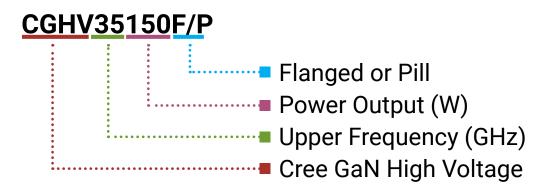

2. CONTROLLING DIMENSION: INCH.


PIN 1. GATE PIN 2. DRAIN PIN 3. SDURCE

NOTES

Product Dimensions CGHV35150P (Package Type - 440206)

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INCHES		MILLIMETERS		NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45° REF		45°	REF	·

- PIN 1. GATE
 - 2. DRAIN
 - 3. SOURCE

Part Number System

Parameter	Value	Units	
Upper Frequency ¹	3.5	GHz	
Power Output	150	W	
Package	Flange	-	

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Product Ordering Information

Order Number	Description	Unit of Measure	lmage
CGHV35150F	GaN HEMT	Each	CREE COTSESS
CGHV35150P	GaN HEMT	Each	CREE COTRIGOR COTRIGOR
CGHV35150-TB	Test board without GaN HEMT	Each	
CGHV35150F-AMP	Test board with GaN HEMT installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639