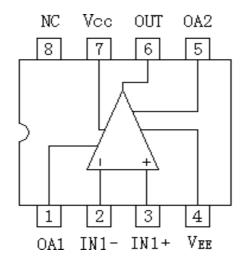


运算放大器电路


1. 概述

CF741CP 为高增益通用运算放大器电路。该运算放大器具有内部相位补偿,它设计在较宽的电压范围内双电源条件下工作。本电路用途广泛,能完成加、减、乘、除、积分、微分、对数等运算。也可用作信号发生、放大、比较、变换、整流、滤波等电路,可用于各种电子仪器设备中。特点

- 内部包含相位补偿回路和过流保护回路,外围元件少
- 消耗电流小: Icc=1.7mA(典型值, RL=∞)
- 调零回路简单
- 增益高,功耗小

2. 功能框图和引出脚说明

2.1 功能框图

2.2 引出脚说明:

引出脚 序号	符号	功能	引出脚序 号	符号	功能
1	OA1	调零 1	5	OA2	调零 2
2	IN-	反相输入	6	OUT	输出
3	IN+	同相输入	7	Vcc	正电源
4	VEE	负电源	8	NC	空脚

无锡华晶微电子股份有限公司

地址: 江苏省无锡市梁溪路 14号

电话: (0510) 5807123-5542

传真: (0510) 5803016

华晶双极电路 CF741CP

3. 电参数

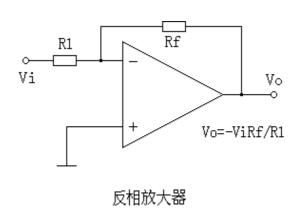
3.1 极限值

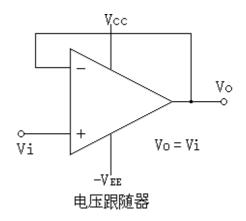
参数名称	符号	数	单位	
多	11 5	最小	最大	平位.
电源电压	Vcc	<u>±</u> 9	±18	V
最大差模输入电压	VIDM		± 30	V
共模输入电压范围	Vicr	±15		V
允许功耗	PD		310	mW
工作温度	Tamb	0	70	${\mathbb C}$
贮存温度	Tstg	-55	125	${\mathbb C}$

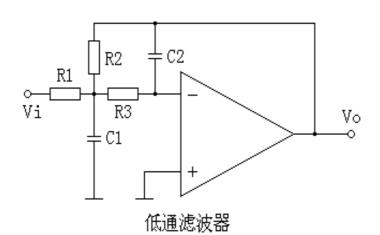
3.2 电特性

(若无特别规定 Tamb=25℃, Vcc=±15V)

1番目	符号	测试条件	数值			光
项目			最小	典型	最大	单位
输入失调电压	Vio	Vi=0, Vo=0, Rs=10K Ω		2.0	6.0	mV
输入失调电流	Iio	Vi=0, Vo=0		20	200	nA
输入偏置电流	Vib	Vi=0, Vo=0		80	500	nA
共模输入电压范围	Vicr	Kcmr=70dB	±12	±13		V
共模抑制比	Kcmr	Vi=±10V Rs≤10K Ω	70	90		dB
电压放大倍数	Av	$R_L=2K \Omega$ $V_0=\pm 10V$	20	200		V/mV
失调调整范围	Vior	$R_N=10K \Omega$		±15		mV
电源电压变动抑制比	Ksvr			30	150	μV/V
输出峰一峰电压	Vo(P-P)	$V_S=\pm 15V$ $R_L=10K \Omega$	±12	±14		V
		$V_S=\pm 15V$ RL=2K Ω	±10	±13		V
电源电流	Icc	R _L =∞,Vi=0		1.7	2.8	mA
功耗	PD	R _L =∞,Vi=0		50	85	mW
输出短路电流	Ios			25		mA

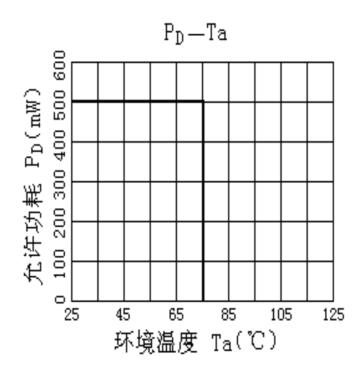

华晶双极电路 CF741CP

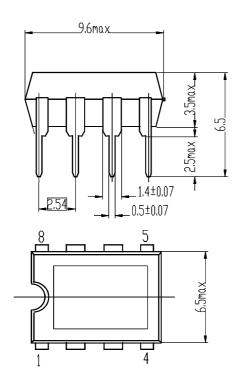

输出电阻		Ros	开环	75	Ω
海大	上升时间	Tr	Av=1,Vi=20mV RL=2K Ω	0.3	μS
瞬态响应 —	过冲因素	Kov	CL≤100PF	5.0	%
转换速率		Sr	Av=1, RL=2K Ω	0.5	V/μS

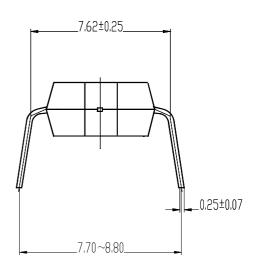

3.3 推荐工作条件

项目	符号	最小	典型	最大	单位
电源电压	Vcc			±15	V
调零电阻	Rz	10			$\mathbf{K} \Omega$

3.4 应用线路图






华晶双极电路 CF741CP

4. 特性曲线

5. 外形尺寸图

