

VCXO Module IC with Built-in Varicap

www.datasheet4u.com

OVERVIEW

The CF5074A is VCXO module IC with built-in varicap diodes. The integrated varicap diode BiCMOS process allows the device to be fabricated on a single chip. A newly developed oscillator circuit features reduced drive level of crystal and wide pullrange. A VCXO module can be constructed with just the connection of a crystal unit, making the devices ideal as surface-mounted, compact VCXO modules.

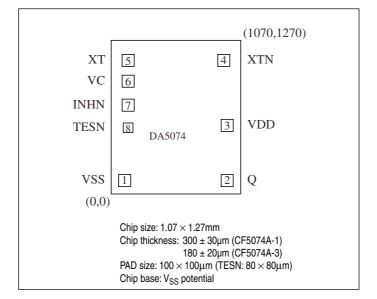
FEATURES

- 2.25 to 3.6V operating supply voltage range
- 50MHz to 80MHz operating frequency range
- Varicap diode built-in
- Oscillation start-up detector function
- CMOS output duty level
- 4mA (min) output drive capability

- 15pF output load
- Standby function
 - High impedance in standby mode
- BiCMOS process
- Chip form (CF5074A)

APPLICATIONS

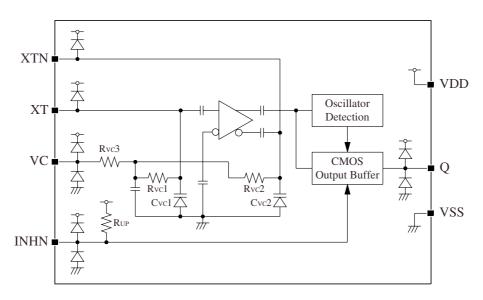
■ VCXO modules


ORDERING INFORMATION

Device	Package
CF5074A-1	Chip form
CF5074A-3	Onip ionii

PAD LAYOUT

(Unit: µm)


www.datasheet4u.com

PAD DESCRIPTION AND DIMENSIONS

Pad No. Name	1/0	Description	Pad dimensions [µm]		
Pau No.	Name	I/O	Description	Х	Y
1	VSS	-	(–) supply pin	111	111
2	Q	0	Output pin. High-impedance in standby mode	958	111
3	VDD	-	(+) supply pin	958	567
4	XTN	0	Oscillator output. Crystal connection pin	930	1104
5	XT	I	Oscillator input. Crystal connection pin	140	1104
6	VC	I	Oscillation frequency control voltage input pin. Positive polarity (frequency increases with increasing voltage)	140	932
7	INHN	I	Output state control voltage input pin. Standby mode when LOW. Power-saving pull-up resistor built-in	140	734
8	TESN	I	Test pin (leave open)	140	547

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

 $V_{SS} = 0V$ unless otherwise noted.

www.datashe

eet4u.com Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.5 to 7.0	V
Input voltage range	V _{IN}	-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}	-0.5 to V _{DD} + 0.5	V
Storage temperature range	T _{STG}	-65 to +150	°C
Output current	I _{OUT}	20	mA

RECOMMENDED OPERATING CONDITIONS

 $V_{SS} = 0V$ unless otherwise noted.

Parameter	Cumbal	Rating			Unit	
Parameter	Symbol	Min	Тур	Max	Onit	
Operating supply voltage	V _{DD}	2.25	-	3.6	V	
Output frequency	f _{OUT}	50	-	80	MHz	
Output load capacitance	C _L	-	-	15	pF	
Input voltage	V _{IN}	V _{SS}	-	V _{DD}	V	
Operating temperature	T _{OPR}	-40	+25	+85	°C	

ELECTRICAL CHARACTERISTICS

 $V_{\rm DD}$ = 2.25 to 3.6V, $V_{\rm C}$ = 0.5 $V_{\rm DD}$, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

www.d

atashe Parameter	Combal	Conditions		Rating			
Parameter	Symbol			Min	Тур	Max	Unit
		Measurement circuit 2, load circuit 1, INHN = open, C _L = 15pF, f = 80MHz	V _{DD} = 2.25 to 2.75V	-	20	30	mA
Current consumption	I _{DD}		V _{DD} = 3.0 to 3.6V	-	26	36	mA
HIGH-level output voltage	V _{OH}	Q: Measurement circuit 1, I _{OI}	_H = -4mA	V _{DD} - 0.4	V _{DD} - 0.2	-	V
LOW-level output voltage	V _{OL}	Q: Measurement circuit 1, I _{Ol}	= 4mA	-	0.2	0.4	V
Output leakage current	L	Q: Measurement circuit 6,	$V_{OH} = V_{DD}$	-	-	10	μΑ
Output leakage current	l _Z	INHN = LOW	V _{OL} = V _{SS}	-	-	10	μΑ
HIGH-level input voltage	V _{IH}	INHN		0.7V _{DD}	-	-	V
LOW-level input voltage	V _{IL}	INHN		-	-	0.3V _{DD}	V
INHN pull-up resistance	R _{UP1}	Measurement circuit 3	INHN = V _{SS}	0.4	0.8	1.2	MΩ
	R _{UP2}	Measurement circuit 3	INHN = 0.7V _{DD}	15	-	150	kΩ
Oscillator block built-in resistance	R _{VC1}	Measurement circuit 4		75	150	225	kΩ
	R _{VC2}			75	150	225	kΩ
	R _{VC3}		10	30	90	kΩ	
Oscillator block built-in capacitance		Capacitance of C _{VC1} and C _{VC2}	V _C = 0.3V	13	16.3	19.6	pF
	C _{VC}		V _C = 1.65V	6.7	8.9	10.9	pF
			V _C = 3.0V	3.3	4.7	6.1	pF
VC input resistance	R _{VIN}	Measurement circuit 7, Ta = 25°C		10	-	-	MΩ
VC input impedance	Z _{VIN}	Measurement circuit 8, V _C = 0V, f = 10kHz, Ta = 25°C		-	250	-	kΩ
VC input capacitance	C _{VIN}	Measurement circuit 8, $V_C = 0V$, $f = 10kHz$, $Ta = 25^{\circ}C$		-	60	-	pF
Modulation bandwidth	fm	$\label{eq:local_problem} \begin{array}{l} \text{Measurement circuit 9, -3dB frequency, V_{DD} = 3.3V,} \\ V_{C} = 3.3$Vp-p, $Ta = 25^{\circ}$C, $crystal: $f = 80$MHz,} \\ C0 = 4.8pF, $\gamma \le 440 \\ \end{array}$		_	30	-	kHz

SWITCHING CHARACTERISTICS

 $V_{\rm DD}$ = 2.25 to 3.6V, $V_{\rm C}$ = 0.5 $V_{\rm DD}$, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

www.datash

eet4u.com	Combal	Conditions		Rating			Unit
Parameter	Symbol			Min	Тур	Max	Ollit
Output rise time	t _{r1}	$\begin{array}{l} \text{Measurement circuit 2, load circuit 1,} \\ \text{0.2V}_{\text{DD}} \rightarrow \text{0.8V}_{\text{DD}}, \text{Ta} = 25^{\circ}\text{C, C}_{\text{L}} = 15\text{pF} \end{array}$		_	2.5	4	ns
Output fall time	t _{f1}	Measurement circuit 2, load circuit 1, $0.8V_{DD} \rightarrow 0.2V_{DD}$, Ta = 25°C, C _L = 15pF		-	2.5	4	ns
0.11.11.	D. I.	Measurement circuit 2,	V _{DD} = 2.5V	40	50	60	%
Output duty cycle	Duty	load circuit 1, Ta = 25°C, C _L = 15pF		45	50	55	%
Output disable delay time	t _{PLZ}	Measurement circuit 5, load circuit 1,		-	-	100	ns
Output enable delay time	t _{PZL}	Ta = 25°C, $C_L \le 15pF$		-	-	100	ns

FUNCTIONAL DESCRIPTION

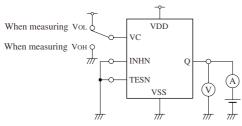
Standby Function

When INHN goes LOW, the device is in standby mode. The Q output becomes high impedance and the oscillator circuit continues running.

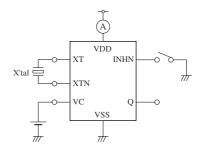
INHN	Q	Oscillator
HIGH (or open)	f _O	Operating
LOW	High impedance	Operating

Power-saving Pull-up Resistor

The INHN pin pull-up resistance changes in response to the input level (HIGH or LOW). When INHN is tied LOW, the pull-up resistance becomes large, reducing the current consumed by the resistance. When INHN is left open, the pull-up resistance becomes small, such that even if the input is affected by external noise the outputs are stable due to INHN being tied HIGH by the pull-up resistor.

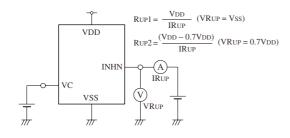

Oscillation Start-up Detector Function

The devices also feature an oscillation start-up detector circuit. This circuit functions to disable the outputs until the oscillation starts. This prevents unstable oscillator output at oscillator start-up when power is applied.

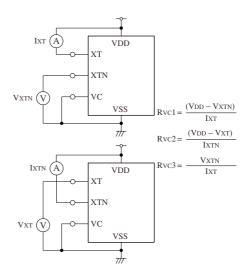

MEASUREMENT CIRCUITS

Measurement Circuit 1

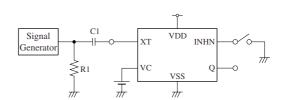
www.datasheet4u.com



Measurement Circuit 2

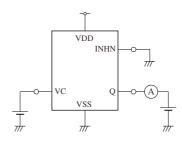

 $V_C = 0.5V_{DD}$, INHN = open, crystal oscillation

Measurement Circuit 3



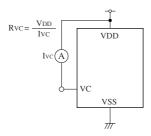
 $V_{\text{C}} = 0.5 V_{\text{DD}}$

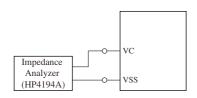
Measurement Circuit 4



Measurement Circuit 5

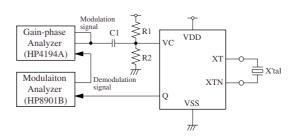
XT input signal: 10MHz, 1.0Vp-p C1 = 0.001 μ F, R1 = 50 Ω , V = 0.5V DD


Measurement Circuit 6

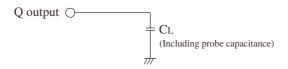

$$V_C = 1/2V_{DD}$$

Measurement Circuit 7

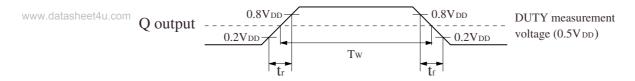
www.datasheet4u.com



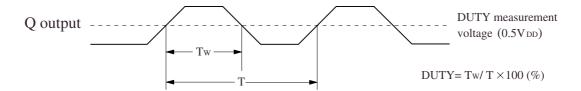
Measurement Circuit 8


VC input signal: 100Hz to 10kHz, 0.1Vp-p, $V_C = 0V$

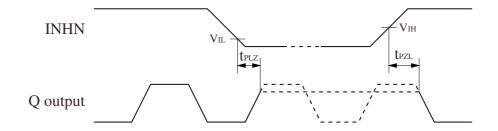
Measurement Circuit 9


C1 = 20µF, R1 = R2 = 100M Ω , V_{DD} = 3.3V VC modulation signal: 100Hz to 100kHz, 3.3Vp-p

Load Circuit 1



Switching Time Measurement Waveform


Output duty level, t_r, t_f

Output duty cycle

Output Enable/Disable Delay Times

INHN input waveform $tr = tf \le 10ns$

www.datasheet4u.com

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0318BE 2006.04